Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 6/2011

01-06-2011 | Review Article

Focus on time-of-flight PET: the benefits of improved time resolution

Author: Maurizio Conti

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 6/2011

Login to get access

Abstract

TOF PET is characterized by a better trade-off between contrast and noise in the image. This property is enhanced in more challenging operating conditions, allowing for example shorter examinations or low counts, successful scanning of larger patients, low uptake, visualization of smaller lesions, and incomplete data sampling. In this paper, the correlation between the time resolution of a TOF PET scanner and the improvement in signal-to-noise in the image is introduced and discussed. A set of performance advantages is presented which include better image quality, shorter scan times, lower dose, higher spatial resolution, lower sensitivity to inconsistent data, and the opportunity for new architectures with missing angles. The recent scientific literature that reports the first experimental evidence of such advantages in oncology clinical data is reviewed. Finally, the directions for possible improvement of the time resolution of the present generation of TOF PET scanners are discussed.
Literature
2.
go back to reference Moses WW. Time of flight in PET revisited. IEEE Trans Nucl Sci. 2003;50:1325–30.CrossRef Moses WW. Time of flight in PET revisited. IEEE Trans Nucl Sci. 2003;50:1325–30.CrossRef
5.
go back to reference Gariod R, Allemand R, Carmoreche E, et al. The LETI positron tomograph architecture and time of flight improvements. Proceeding of the Workshop on Time-of-flight tomography, Washington University. IEEE Publication; 1982. p. 25–29. Gariod R, Allemand R, Carmoreche E, et al. The LETI positron tomograph architecture and time of flight improvements. Proceeding of the Workshop on Time-of-flight tomography, Washington University. IEEE Publication; 1982. p. 25–29.
6.
go back to reference Yamamoto M, Ficke DC, Ter-Pogossian MM. Experimental assessment of the gain achieved by the utilization of time-of-flight information in a positron emission tomograph (Super PETT I). IEEE Trans Med Imaging. 1982;1:187–92.PubMedCrossRef Yamamoto M, Ficke DC, Ter-Pogossian MM. Experimental assessment of the gain achieved by the utilization of time-of-flight information in a positron emission tomograph (Super PETT I). IEEE Trans Med Imaging. 1982;1:187–92.PubMedCrossRef
7.
go back to reference Wong WH, Mullani NA, Philippe EA, Hartz RK, Bristow D, Yerian K, et al. Performance characteristics of the University of Texas TOFPET-I PET camera. J Nucl Med. 1984;25:46–7. Wong WH, Mullani NA, Philippe EA, Hartz RK, Bristow D, Yerian K, et al. Performance characteristics of the University of Texas TOFPET-I PET camera. J Nucl Med. 1984;25:46–7.
8.
go back to reference Lewellen TK, Bice AN, Harrison RL, Pencke MD, Link JM. Performance measurements of the SP3000/UW time-of-flight positron emission tomograph. IEEE Trans Nucl Sci. 1988;35:665–9.CrossRef Lewellen TK, Bice AN, Harrison RL, Pencke MD, Link JM. Performance measurements of the SP3000/UW time-of-flight positron emission tomograph. IEEE Trans Nucl Sci. 1988;35:665–9.CrossRef
9.
go back to reference Ishii K, Orihara H, Matsuzawa T, Binkley DM, Nutt R. High resolution time-of-flight positron emission tomograph. Rev Sci Instrum. 1990;61:3755–62.CrossRef Ishii K, Orihara H, Matsuzawa T, Binkley DM, Nutt R. High resolution time-of-flight positron emission tomograph. Rev Sci Instrum. 1990;61:3755–62.CrossRef
10.
go back to reference Jakoby BW, Bercier Y, Conti M, Casey ME, Gremillion T, Hayden C, et al. Performance investigation of a time-of-flight PET/CT scanner. Nuclear Science Symposium Conference Record, 2008. IEEE. p. 3738–3743. Jakoby BW, Bercier Y, Conti M, Casey ME, Gremillion T, Hayden C, et al. Performance investigation of a time-of-flight PET/CT scanner. Nuclear Science Symposium Conference Record, 2008. IEEE. p. 3738–3743.
11.
go back to reference Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med. 2007;48:471–80.PubMed Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med. 2007;48:471–80.PubMed
12.
go back to reference Wilson JM and Turkington TG. TOF-PET small-lesion image quality measured over a range of phantom sizes. Nuclear Science Symposium Conference Record, 2009. IEEE. p. 3710–3714. Wilson JM and Turkington TG. TOF-PET small-lesion image quality measured over a range of phantom sizes. Nuclear Science Symposium Conference Record, 2009. IEEE. p. 3710–3714.
13.
go back to reference Daube-Witherspoon ME, Surti S, Perkins A, Kyba CCM, Wiener R, Werner ME, et al. The imaging performance of a LaBr3-based PET scanner. Phys Med Biol. 2010;55:45–64.PubMedCrossRef Daube-Witherspoon ME, Surti S, Perkins A, Kyba CCM, Wiener R, Werner ME, et al. The imaging performance of a LaBr3-based PET scanner. Phys Med Biol. 2010;55:45–64.PubMedCrossRef
14.
go back to reference Conti M. Effect of random reduction on signal-to-noise-ratio in TOF PET. IEEE Trans Nucl Sci. 2006;53:1188–93.CrossRef Conti M. Effect of random reduction on signal-to-noise-ratio in TOF PET. IEEE Trans Nucl Sci. 2006;53:1188–93.CrossRef
15.
16.
go back to reference Budinger TF. Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med. 1983;24:73–8.PubMed Budinger TF. Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med. 1983;24:73–8.PubMed
17.
go back to reference Mullani NA, Markham J, Ter-Pogossian MM. Feasibility of time-of-flight reconstruction in positron emission tomography. J Nucl Med. 1980;21:1095–97.PubMed Mullani NA, Markham J, Ter-Pogossian MM. Feasibility of time-of-flight reconstruction in positron emission tomography. J Nucl Med. 1980;21:1095–97.PubMed
18.
go back to reference Wong WH, Mullani NA, Philippe EA, Hartz RK, Gould KL. Image improvement and design optimization of the time-of-flight PET. J Nucl Med. 1983;24:52–60.PubMed Wong WH, Mullani NA, Philippe EA, Hartz RK, Gould KL. Image improvement and design optimization of the time-of-flight PET. J Nucl Med. 1983;24:52–60.PubMed
19.
go back to reference Tomitani T. Image reconstruction and noise evaluation in photon time-of-flight assisted positron emission tomography. IEEE Trans Nucl Sci. 1981;28:4582–88.CrossRef Tomitani T. Image reconstruction and noise evaluation in photon time-of-flight assisted positron emission tomography. IEEE Trans Nucl Sci. 1981;28:4582–88.CrossRef
20.
go back to reference Snyder DL, Thomas LJ, Ter-Pogossian MM. A mathematical model for positron emission tomography systems having time-of-flight measurements. IEEE Trans Nucl Sci. 1981;28:3575–83.CrossRef Snyder DL, Thomas LJ, Ter-Pogossian MM. A mathematical model for positron emission tomography systems having time-of-flight measurements. IEEE Trans Nucl Sci. 1981;28:3575–83.CrossRef
21.
go back to reference Strother SC, Casey ME, Hoffman EJ. Measuring PET scanner sensitivity: relating count rates to image signal-to-noise ratios using noise equivalent counts. IEEE Trans Nucl Sci. 1990;37:783–8.CrossRef Strother SC, Casey ME, Hoffman EJ. Measuring PET scanner sensitivity: relating count rates to image signal-to-noise ratios using noise equivalent counts. IEEE Trans Nucl Sci. 1990;37:783–8.CrossRef
22.
go back to reference Conti M, Bendriem B, Casey ME, Chen M, Kehren F, Michel C, et al. First experimental results of time-of-flight reconstruction on an LSO PET scanner. Phys Med Biol. 2005;50:4507–26.PubMedCrossRef Conti M, Bendriem B, Casey ME, Chen M, Kehren F, Michel C, et al. First experimental results of time-of-flight reconstruction on an LSO PET scanner. Phys Med Biol. 2005;50:4507–26.PubMedCrossRef
23.
go back to reference Huang B, Law MWM, Khong PL. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology. 2009;251:166–74.PubMedCrossRef Huang B, Law MWM, Khong PL. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology. 2009;251:166–74.PubMedCrossRef
24.
go back to reference Roberts F, Gunawardana DH, Pathmaraj K, Wallace A, Mi T, Berlangieri SU, et al. Radiation dose to PET technologists and strategies to lower occupational exposure. J Nucl Med Technol. 2005;33:44–7.PubMed Roberts F, Gunawardana DH, Pathmaraj K, Wallace A, Mi T, Berlangieri SU, et al. Radiation dose to PET technologists and strategies to lower occupational exposure. J Nucl Med Technol. 2005;33:44–7.PubMed
25.
go back to reference Murray I, Kalemis A, Glennon J, Hasan S, Quraishi S, Beyer T, et al. Time-of-flight PET/CT using low-activity protocols: potential implications for cancer therapy monitoring. Eur J Nucl Med Mol Imaging. 2010;37:1643–53.PubMedCrossRef Murray I, Kalemis A, Glennon J, Hasan S, Quraishi S, Beyer T, et al. Time-of-flight PET/CT using low-activity protocols: potential implications for cancer therapy monitoring. Eur J Nucl Med Mol Imaging. 2010;37:1643–53.PubMedCrossRef
26.
go back to reference Lhommel R, van Elmbt L, Goffette P, van den Eynde M, Jamar F, Pauwels S, et al. Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-Spheres. Eur J Nucl Med Mol Imaging. 2010;37:1654–62.PubMedCrossRef Lhommel R, van Elmbt L, Goffette P, van den Eynde M, Jamar F, Pauwels S, et al. Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-Spheres. Eur J Nucl Med Mol Imaging. 2010;37:1654–62.PubMedCrossRef
27.
go back to reference Surti S, Karp JS. Design considerations for a limited-angle, dedicated breast, TOF PET scanner. Phys Med Biol. 2009;53:2911–21.CrossRef Surti S, Karp JS. Design considerations for a limited-angle, dedicated breast, TOF PET scanner. Phys Med Biol. 2009;53:2911–21.CrossRef
28.
go back to reference Crespo P, Shakirin G, Fiedler F, Enghardt W, Wagner A. Direct time-of-flight for quantitative, real-time in-beam PET: a concept and feasibility study. Phys Med Biol. 2007;52:6795–811.PubMedCrossRef Crespo P, Shakirin G, Fiedler F, Enghardt W, Wagner A. Direct time-of-flight for quantitative, real-time in-beam PET: a concept and feasibility study. Phys Med Biol. 2007;52:6795–811.PubMedCrossRef
29.
go back to reference Wang W, Hu Z, Gualtieri EE, Parma MJ, Walsh ES, Sebok D, et al. Systematic and distributed time-of-flight list mode PET reconstruction. Nuclear Science Symposium Conference Record, 2006. IEEE. p. 1715–1722. Wang W, Hu Z, Gualtieri EE, Parma MJ, Walsh ES, Sebok D, et al. Systematic and distributed time-of-flight list mode PET reconstruction. Nuclear Science Symposium Conference Record, 2006. IEEE. p. 1715–1722.
30.
go back to reference Werner ME, Surti S, Karp JS. Implementation and evaluation of a 3D PET single scatter simulation with TOF modeling. Nuclear Science Symposium Conference Record, 2006. IEEE. p. 1768–1773. Werner ME, Surti S, Karp JS. Implementation and evaluation of a 3D PET single scatter simulation with TOF modeling. Nuclear Science Symposium Conference Record, 2006. IEEE. p. 1768–1773.
31.
go back to reference Turkington TG, Wilson JM. Attenuation artifacts and time-of-flight PET. Nuclear Science Symposium Conference Record, 2009. IEEE. p. 2997–2999. Turkington TG, Wilson JM. Attenuation artifacts and time-of-flight PET. Nuclear Science Symposium Conference Record, 2009. IEEE. p. 2997–2999.
32.
go back to reference National Electrical Manufacturers Association. NEMA Standards Publication NU 2-2001: Performance Measurements of Positron Emission Tomographs. Rosslyn, VA: National Electrical Manufacturers Association; 2001. National Electrical Manufacturers Association. NEMA Standards Publication NU 2-2001: Performance Measurements of Positron Emission Tomographs. Rosslyn, VA: National Electrical Manufacturers Association; 2001.
33.
go back to reference Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med. 2008;49:462–70.PubMedCrossRef Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med. 2008;49:462–70.PubMedCrossRef
34.
go back to reference Kadrmas DJ, Casey ME, Conti M, Jakoby BW, Lois C, Townsend DW. Impact of time-of-flight on PET tumor detection. J Nucl Med. 2009;50:1315–23.PubMedCrossRef Kadrmas DJ, Casey ME, Conti M, Jakoby BW, Lois C, Townsend DW. Impact of time-of-flight on PET tumor detection. J Nucl Med. 2009;50:1315–23.PubMedCrossRef
35.
go back to reference Lois C, Jakoby BW, Long MJ, Hubner KF, Barker DW, Casey ME, et al. An assessment of the impact of incorporating time-of-flight (TOF) information into clinical PET/CT imaging. J Nucl Med. 2010;51:237–45.PubMedCrossRef Lois C, Jakoby BW, Long MJ, Hubner KF, Barker DW, Casey ME, et al. An assessment of the impact of incorporating time-of-flight (TOF) information into clinical PET/CT imaging. J Nucl Med. 2010;51:237–45.PubMedCrossRef
36.
go back to reference Moses WW, Ullisch M. Factors influencing timing resolution in a commercial LSO PET camera. IEEE Trans Nucl Sci. 2006;53:78–85.CrossRef Moses WW, Ullisch M. Factors influencing timing resolution in a commercial LSO PET camera. IEEE Trans Nucl Sci. 2006;53:78–85.CrossRef
37.
go back to reference Conti M, Eriksson L, Rothfuss H, Melcher C. Comparing fast scintillators with TOF PET potentiality. IEEE Trans Nucl Sci. 2009;56:926–33.CrossRef Conti M, Eriksson L, Rothfuss H, Melcher C. Comparing fast scintillators with TOF PET potentiality. IEEE Trans Nucl Sci. 2009;56:926–33.CrossRef
38.
go back to reference Kyba CCM, Glodo J, van Loef EVD, Karp JS, Shah KS. Energy and time response of six prototype scintillators for TOF-PET. IEEE Trans Nucl Sci. 2008;55:1404–8.CrossRef Kyba CCM, Glodo J, van Loef EVD, Karp JS, Shah KS. Energy and time response of six prototype scintillators for TOF-PET. IEEE Trans Nucl Sci. 2008;55:1404–8.CrossRef
39.
40.
go back to reference Renker D. New trends of photodetectors. Nucl Instrum Methods Phys Res A. 2007;571:1–6.CrossRef Renker D. New trends of photodetectors. Nucl Instrum Methods Phys Res A. 2007;571:1–6.CrossRef
41.
go back to reference Schaart DR, Seifert S, Vinke R, van Dam HT, Dendooven P, Loehner H, et al. LaBr3:Ce and SiPMs for time-of-flight PET: achieving 100 ps coincidence resolving time. Phys Med Biol. 2010;55:N179–89.PubMedCrossRef Schaart DR, Seifert S, Vinke R, van Dam HT, Dendooven P, Loehner H, et al. LaBr3:Ce and SiPMs for time-of-flight PET: achieving 100 ps coincidence resolving time. Phys Med Biol. 2010;55:N179–89.PubMedCrossRef
42.
go back to reference Degenhardt C, Prescher G, Frach T, Thon A, de Gruyter R, Schmitz A, et al. The digital silicon photomultiplier – A novel sensor for the detection of scintillation light. Nuclear Science Symposium Conference Record, 2009. IEEE. p. 2383–2386. Degenhardt C, Prescher G, Frach T, Thon A, de Gruyter R, Schmitz A, et al. The digital silicon photomultiplier – A novel sensor for the detection of scintillation light. Nuclear Science Symposium Conference Record, 2009. IEEE. p. 2383–2386.
Metadata
Title
Focus on time-of-flight PET: the benefits of improved time resolution
Author
Maurizio Conti
Publication date
01-06-2011
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 6/2011
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-010-1711-y

Other articles of this Issue 6/2011

European Journal of Nuclear Medicine and Molecular Imaging 6/2011 Go to the issue