Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 7/2010

01-07-2010 | Original Article

PET imaging of HER1-expressing xenografts in mice with 86Y-CHX-A″-DTPA-cetuximab

Authors: Tapan K. Nayak, Celeste A. S. Regino, Karen J. Wong, Diane E. Milenic, Kayhan Garmestani, Kwamena E. Baidoo, Lawrence P. Szajek, Martin W. Brechbiel

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 7/2010

Login to get access

Abstract

Purpose

Cetuximab is a recombinant, human/mouse chimeric IgG1 monoclonal antibody that binds to the epidermal growth factor receptor (EGFR/HER1). Cetuximab is approved for the treatment of patients with HER1-expressing metastatic colorectal cancer. Limitations in currently reported radiolabeled cetuximab for PET applications prompted the development of 86Y-CHX-A″-DTPA-cetuximab as an alternative for imaging HER1-expressing cancer. 86Y-CHX-A″-DTPA-cetuximab can also serve as a surrogate marker for 90Y therapy.

Methods

Bifunctional chelate, CHX-A″-DTPA was conjugated to cetuximab and radiolabeled with 86Y. In vitro immunoreactivity was assessed in HER1-expressing A431 cells. In vivo biodistribution, PET imaging and noncompartmental pharmacokinetics were performed in mice bearing HER1-expressing human colorectal (LS-174T and HT29), prostate (PC-3 and DU145), ovarian (SKOV3) and pancreatic (SHAW) tumor xenografts. Receptor blockage was demonstrated by coinjection of either 0.1 or 0.2 mg cetuximab.

Results

86Y-CHX-A″-DTPA-cetuximab was routinely prepared with a specific activity of 1.5–2 GBq/mg and in vitro cell-binding in the range 65–75%. Biodistribution and PET imaging studies demonstrated high HER1-specific tumor uptake of the radiotracer and clearance from nonspecific organs. In LS-174T tumor-bearing mice injected with 86Y-CHX-A″-DTPA-cetuximab alone, 86Y-CHX-A″-DTPA-cetuximab plus 0.1 mg cetuximab or 0.2 mg cetuximab, the tumor uptake values at 3 days were 29.3 ± 4.2, 10.4 ± 0.5 and 6.4 ± 0.3%ID/g, respectively, demonstrating dose-dependent blockage of the target. Tumors were clearly visualized 1 day after injecting 3.8–4.0 MBq 86Y-CHX-A″-DTPA-cetuximab. Quantitative PET revealed the highest tumor uptake in LS-174T (29.55 ± 2.67%ID/cm3) and the lowest tumor uptake in PC-3 (15.92 ± 1.55%ID/cm3) xenografts at 3 days after injection. Tumor uptake values quantified by PET were closely correlated (r2 = 0.9, n = 18) with values determined by biodistribution studies.

Conclusion

This study demonstrated the feasibility of preparation of high specific activity 86Y-CHX-A″-DTPA-cetuximab and its application for quantitative noninvasive PET imaging of HER1-expressing tumors. 86Y-CHX-A″-DTPA-cetuximab offers an attractive alternative to previously labeled cetuximab for PET and further investigation for clinical translation is warranted.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mendelsohn J, Baselga J. Epidermal growth factor receptor targeting in cancer. Semin Oncol 2006;33:369–85.CrossRefPubMed Mendelsohn J, Baselga J. Epidermal growth factor receptor targeting in cancer. Semin Oncol 2006;33:369–85.CrossRefPubMed
2.
go back to reference Harari PM. Epidermal growth factor receptor inhibition strategies in oncology. Endocr Relat Cancer 2004;11:689–708.CrossRefPubMed Harari PM. Epidermal growth factor receptor inhibition strategies in oncology. Endocr Relat Cancer 2004;11:689–708.CrossRefPubMed
3.
go back to reference Capdevila J, Elez E, Macarulla T, Ramos FJ, Ruiz-Echarri M, Tabernero J. Anti-epidermal growth factor receptor monoclonal antibodies in cancer treatment. Cancer Treat Rev 2009;35:354–63.CrossRefPubMed Capdevila J, Elez E, Macarulla T, Ramos FJ, Ruiz-Echarri M, Tabernero J. Anti-epidermal growth factor receptor monoclonal antibodies in cancer treatment. Cancer Treat Rev 2009;35:354–63.CrossRefPubMed
4.
go back to reference Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004;351:337–45.CrossRefPubMed Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004;351:337–45.CrossRefPubMed
5.
go back to reference Personeni N, Fieuws S, Piessevaux H, De Hertogh G, De Schutter J, Biesmans B, et al. Clinical usefulness of EGFR gene copy number as a predictive marker in colorectal cancer patients treated with cetuximab: a fluorescent in situ hybridization study. Clin Cancer Res 2008;14:5869–76.CrossRefPubMed Personeni N, Fieuws S, Piessevaux H, De Hertogh G, De Schutter J, Biesmans B, et al. Clinical usefulness of EGFR gene copy number as a predictive marker in colorectal cancer patients treated with cetuximab: a fluorescent in situ hybridization study. Clin Cancer Res 2008;14:5869–76.CrossRefPubMed
6.
go back to reference Loupakis F, Pollina L, Stasi I, Ruzzo A, Scartozzi M, Santini D, et al. PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J Clin Oncol 2009;27:2622–9.CrossRefPubMed Loupakis F, Pollina L, Stasi I, Ruzzo A, Scartozzi M, Santini D, et al. PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J Clin Oncol 2009;27:2622–9.CrossRefPubMed
7.
go back to reference Wen X, Wu QP, Ke S, Ellis L, Charnsangavej C, Delpassand AS, et al. Conjugation with (111)In-DTPA-poly(ethylene glycol) improves imaging of anti-EGF receptor antibody C225. J Nucl Med 2001;42:1530–7.PubMed Wen X, Wu QP, Ke S, Ellis L, Charnsangavej C, Delpassand AS, et al. Conjugation with (111)In-DTPA-poly(ethylene glycol) improves imaging of anti-EGF receptor antibody C225. J Nucl Med 2001;42:1530–7.PubMed
8.
go back to reference Schechter NR, Wendt 3rd RE, Yang DJ, Azhdarinia A, Erwin WD, Stachowiak AM, et al. Radiation dosimetry of 99mTc-labeled C225 in patients with squamous cell carcinoma of the head and neck. J Nucl Med 2004;45:1683–7.PubMed Schechter NR, Wendt 3rd RE, Yang DJ, Azhdarinia A, Erwin WD, Stachowiak AM, et al. Radiation dosimetry of 99mTc-labeled C225 in patients with squamous cell carcinoma of the head and neck. J Nucl Med 2004;45:1683–7.PubMed
9.
go back to reference Barrett T, Koyama Y, Hama Y, Ravizzini G, Shin IS, Jang BS, et al. In vivo diagnosis of epidermal growth factor receptor expression using molecular imaging with a cocktail of optically labeled monoclonal antibodies. Clin Cancer Res 2007;13:6639–48.CrossRefPubMed Barrett T, Koyama Y, Hama Y, Ravizzini G, Shin IS, Jang BS, et al. In vivo diagnosis of epidermal growth factor receptor expression using molecular imaging with a cocktail of optically labeled monoclonal antibodies. Clin Cancer Res 2007;13:6639–48.CrossRefPubMed
10.
go back to reference Milenic DE, Wong KJ, Baidoo KE, Ray GL, Garmestani K, Williams M, et al. Cetuximab: preclinical evaluation of a monoclonal antibody targeting EGFR for radioimmunodiagnostic and radioimmunotherapeutic applications. Cancer Biother Radiopharm 2008;23:619–31.CrossRefPubMed Milenic DE, Wong KJ, Baidoo KE, Ray GL, Garmestani K, Williams M, et al. Cetuximab: preclinical evaluation of a monoclonal antibody targeting EGFR for radioimmunodiagnostic and radioimmunotherapeutic applications. Cancer Biother Radiopharm 2008;23:619–31.CrossRefPubMed
11.
go back to reference Ping Li W, Meyer LA, Capretto DA, Sherman CD, Anderson CJ. Receptor-binding, biodistribution, and metabolism studies of 64Cu-DOTA-cetuximab, a PET-imaging agent for epidermal growth-factor receptor-positive tumors. Cancer Biother Radiopharm 2008;23:158–71.CrossRefPubMed Ping Li W, Meyer LA, Capretto DA, Sherman CD, Anderson CJ. Receptor-binding, biodistribution, and metabolism studies of 64Cu-DOTA-cetuximab, a PET-imaging agent for epidermal growth-factor receptor-positive tumors. Cancer Biother Radiopharm 2008;23:158–71.CrossRefPubMed
12.
go back to reference Cai W, Chen K, He L, Cao Q, Koong A, Chen X. Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur J Nucl Med Mol Imaging 2007;34:850–8.CrossRefPubMed Cai W, Chen K, He L, Cao Q, Koong A, Chen X. Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur J Nucl Med Mol Imaging 2007;34:850–8.CrossRefPubMed
13.
go back to reference Eiblmaier M, Meyer LA, Watson MA, Fracasso PM, Pike LJ, Anderson CJ. Correlating EGFR expression with receptor-binding properties and internalization of 64Cu-DOTA-cetuximab in 5 cervical cancer cell lines. J Nucl Med 2008;49:1472–9.CrossRefPubMed Eiblmaier M, Meyer LA, Watson MA, Fracasso PM, Pike LJ, Anderson CJ. Correlating EGFR expression with receptor-binding properties and internalization of 64Cu-DOTA-cetuximab in 5 cervical cancer cell lines. J Nucl Med 2008;49:1472–9.CrossRefPubMed
14.
go back to reference Perk LR, Visser GW, Vosjan MJ, Stigter-van Walsum M, Tijink BM, Leemans CR, et al. (89)Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals (90)Y and (177)Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med 2005;46:1898–906.PubMed Perk LR, Visser GW, Vosjan MJ, Stigter-van Walsum M, Tijink BM, Leemans CR, et al. (89)Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals (90)Y and (177)Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med 2005;46:1898–906.PubMed
15.
go back to reference Aerts HJ, Dubois L, Perk L, Vermaelen P, van Dongen GA, Wouters BG, et al. Disparity between in vivo EGFR expression and 89Zr-labeled cetuximab uptake assessed with PET. J Nucl Med 2009;50:123–31.CrossRefPubMed Aerts HJ, Dubois L, Perk L, Vermaelen P, van Dongen GA, Wouters BG, et al. Disparity between in vivo EGFR expression and 89Zr-labeled cetuximab uptake assessed with PET. J Nucl Med 2009;50:123–31.CrossRefPubMed
16.
go back to reference Boswell CA, Regino CA, Baidoo KE, Wong KJ, Bumb A, Xu H, et al. Synthesis of a cross-bridged cyclam derivative for peptide conjugation and 64Cu radiolabeling. Bioconjug Chem 2008;19:1476–84.CrossRefPubMed Boswell CA, Regino CA, Baidoo KE, Wong KJ, Bumb A, Xu H, et al. Synthesis of a cross-bridged cyclam derivative for peptide conjugation and 64Cu radiolabeling. Bioconjug Chem 2008;19:1476–84.CrossRefPubMed
17.
go back to reference Boswell CA, Sun X, Niu W, Weisman GR, Wong EH, Rheingold AL, et al. Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J Med Chem 2004;47:1465–74.CrossRefPubMed Boswell CA, Sun X, Niu W, Weisman GR, Wong EH, Rheingold AL, et al. Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J Med Chem 2004;47:1465–74.CrossRefPubMed
18.
go back to reference Nayak TK, Brechbiel MW. Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges. Bioconjug Chem 2009;20:825–41.CrossRef Nayak TK, Brechbiel MW. Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges. Bioconjug Chem 2009;20:825–41.CrossRef
19.
go back to reference Garmestani K, Milenic DE, Plascjak PS, Brechbiel MW. A new and convenient method for purification of 86Y using a Sr(II) selective resin and comparison of biodistribution of 86Y and 111In labeled herceptin. Nucl Med Biol 2002;29:599–606.CrossRefPubMed Garmestani K, Milenic DE, Plascjak PS, Brechbiel MW. A new and convenient method for purification of 86Y using a Sr(II) selective resin and comparison of biodistribution of 86Y and 111In labeled herceptin. Nucl Med Biol 2002;29:599–606.CrossRefPubMed
20.
go back to reference Palm S, Enmon RM Jr, Matei C, Kolbert KS, Xu S, Zanzonico PB, et al. Pharmacokinetics and biodistribution of (86)Y-trastuzumab for (90)Y dosimetry in an ovarian carcinoma model: correlative microPET and MRI. J Nucl Med 2003;44:1148–55.PubMed Palm S, Enmon RM Jr, Matei C, Kolbert KS, Xu S, Zanzonico PB, et al. Pharmacokinetics and biodistribution of (86)Y-trastuzumab for (90)Y dosimetry in an ovarian carcinoma model: correlative microPET and MRI. J Nucl Med 2003;44:1148–55.PubMed
21.
go back to reference Pippin CG, Parker TA, McMurry TJ, Brechbiel MW. Spectrophotometric method for the determination of a bifunctional DTPA ligand in DTPA-monoclonal antibody conjugates. Bioconjug Chem 1992;3:342–5.CrossRefPubMed Pippin CG, Parker TA, McMurry TJ, Brechbiel MW. Spectrophotometric method for the determination of a bifunctional DTPA ligand in DTPA-monoclonal antibody conjugates. Bioconjug Chem 1992;3:342–5.CrossRefPubMed
22.
go back to reference Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. New York: Dekker; 1982. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. New York: Dekker; 1982.
23.
go back to reference Seidel J, Vaquero JJ, Green MV. Resolution uniformity and sensitivity of the NIH ATLAS small animal PET scanner: comparison to simulated LSO scanners without depth-of-interaction capability. IEEE Trans Nucl Sci 2003;50:1347–50.CrossRef Seidel J, Vaquero JJ, Green MV. Resolution uniformity and sensitivity of the NIH ATLAS small animal PET scanner: comparison to simulated LSO scanners without depth-of-interaction capability. IEEE Trans Nucl Sci 2003;50:1347–50.CrossRef
24.
go back to reference Eckelman WC, Reba RC, Kelloff GJ. Targeted imaging: an important biomarker for understanding disease progression in the era of personalized medicine. Drug Discov Today 2008;13:748–59.CrossRefPubMed Eckelman WC, Reba RC, Kelloff GJ. Targeted imaging: an important biomarker for understanding disease progression in the era of personalized medicine. Drug Discov Today 2008;13:748–59.CrossRefPubMed
25.
go back to reference Cutler PD, Schwarz SW, Anderson CJ, Connett JM, Welch MJ, Philpott GW, et al. Dosimetry of copper-64-labeled monoclonal antibody 1A3 as determined by PET imaging of the torso. J Nucl Med 1995;36:2363–71.PubMed Cutler PD, Schwarz SW, Anderson CJ, Connett JM, Welch MJ, Philpott GW, et al. Dosimetry of copper-64-labeled monoclonal antibody 1A3 as determined by PET imaging of the torso. J Nucl Med 1995;36:2363–71.PubMed
26.
go back to reference Philpott GW, Schwarz SW, Anderson CJ, Dehdashti F, Connett JM, Zinn KR, et al. RadioimmunoPET: detection of colorectal carcinoma with positron-emitting copper-64-labeled monoclonal antibody. J Nucl Med 1995;36:1818–24.PubMed Philpott GW, Schwarz SW, Anderson CJ, Dehdashti F, Connett JM, Zinn KR, et al. RadioimmunoPET: detection of colorectal carcinoma with positron-emitting copper-64-labeled monoclonal antibody. J Nucl Med 1995;36:1818–24.PubMed
27.
go back to reference Perk LR, Vosjan MJ, Visser GW, Budde M, Jurek P, Kiefer GE, et al. p-Isothiocyanatobenzyl-desferrioxamine: a new bifunctional chelate for facile radiolabeling of monoclonal antibodies with zirconium-89 for immuno-PET imaging. Eur J Nucl Med Mol Imaging 2009. doi:10.1007/s00259-009-1263-1. Perk LR, Vosjan MJ, Visser GW, Budde M, Jurek P, Kiefer GE, et al. p-Isothiocyanatobenzyl-desferrioxamine: a new bifunctional chelate for facile radiolabeling of monoclonal antibodies with zirconium-89 for immuno-PET imaging. Eur J Nucl Med Mol Imaging 2009. doi:10.​1007/​s00259-009-1263-1.
28.
go back to reference Divgi CR, Welt S, Kris M, Real FX, Yeh SD, Gralla R, et al. Phase I and imaging trial of indium 111-labeled anti-epidermal growth factor receptor monoclonal antibody 225 in patients with squamous cell lung carcinoma. J Natl Cancer Inst 1991;83:97–104.CrossRefPubMed Divgi CR, Welt S, Kris M, Real FX, Yeh SD, Gralla R, et al. Phase I and imaging trial of indium 111-labeled anti-epidermal growth factor receptor monoclonal antibody 225 in patients with squamous cell lung carcinoma. J Natl Cancer Inst 1991;83:97–104.CrossRefPubMed
29.
go back to reference ImClone. Cetuximab: epidermal growth factor receptor (EGFR) antibody, version 9.0. New York: ImClone Systems, Inc; 2003. ImClone. Cetuximab: epidermal growth factor receptor (EGFR) antibody, version 9.0. New York: ImClone Systems, Inc; 2003.
30.
go back to reference Liu X, Laforest R. Quantitative small animal PET imaging with nonconventional nuclides. Nucl Med Biol 2009;36:551–9.CrossRefPubMed Liu X, Laforest R. Quantitative small animal PET imaging with nonconventional nuclides. Nucl Med Biol 2009;36:551–9.CrossRefPubMed
31.
go back to reference Herzog H, Tellmann L, Scholten B, Coenen HH, Qaim SM. PET imaging problems with the non-standard positron emitters yttrium-86 and iodine-124. Q J Nucl Med Mol Imaging 2008;52:159–65.PubMed Herzog H, Tellmann L, Scholten B, Coenen HH, Qaim SM. PET imaging problems with the non-standard positron emitters yttrium-86 and iodine-124. Q J Nucl Med Mol Imaging 2008;52:159–65.PubMed
32.
go back to reference Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 2008;26:5705–12.CrossRefPubMed Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 2008;26:5705–12.CrossRefPubMed
33.
go back to reference Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 2008;26:1626–34.CrossRefPubMed Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 2008;26:1626–34.CrossRefPubMed
34.
go back to reference Jimeno A, Messersmith WA, Hirsch FR, Franklin WA, Eckhardt SG. KRAS mutations and sensitivity to epidermal growth factor receptor inhibitors in colorectal cancer: practical application of patient selection. J Clin Oncol 2009;27:1130–6.CrossRefPubMed Jimeno A, Messersmith WA, Hirsch FR, Franklin WA, Eckhardt SG. KRAS mutations and sensitivity to epidermal growth factor receptor inhibitors in colorectal cancer: practical application of patient selection. J Clin Oncol 2009;27:1130–6.CrossRefPubMed
35.
go back to reference Tolmachev V, Rosik D, Wallberg H, Sjoberg A, Sandstrom M, Hansson M, et al. Imaging of EGFR expression in murine xenografts using site-specifically labelled anti-EGFR (111)In-DOTA-Z (EGFR:2377) Affibody molecule: aspect of the injected tracer amount. Eur J Nucl Med Mol Imaging 2009. doi:10.1007/s00259-009-1283-x. Tolmachev V, Rosik D, Wallberg H, Sjoberg A, Sandstrom M, Hansson M, et al. Imaging of EGFR expression in murine xenografts using site-specifically labelled anti-EGFR (111)In-DOTA-Z (EGFR:2377) Affibody molecule: aspect of the injected tracer amount. Eur J Nucl Med Mol Imaging 2009. doi:10.​1007/​s00259-009-1283-x.
36.
go back to reference Gainkam LO, Huang L, Caveliers V, Keyaerts M, Hernot S, Vaneycken I, et al. Comparison of the biodistribution and tumor targeting of two 99mTc-labeled anti-EGFR nanobodies in mice, using pinhole SPECT/micro-CT. J Nucl Med 2008;49:788–95.CrossRefPubMed Gainkam LO, Huang L, Caveliers V, Keyaerts M, Hernot S, Vaneycken I, et al. Comparison of the biodistribution and tumor targeting of two 99mTc-labeled anti-EGFR nanobodies in mice, using pinhole SPECT/micro-CT. J Nucl Med 2008;49:788–95.CrossRefPubMed
37.
go back to reference Mishani E, Hagooly A. Strategies for molecular imaging of epidermal growth factor receptor tyrosine kinase in cancer. J Nucl Med 2009;50:1199–202.CrossRefPubMed Mishani E, Hagooly A. Strategies for molecular imaging of epidermal growth factor receptor tyrosine kinase in cancer. J Nucl Med 2009;50:1199–202.CrossRefPubMed
38.
go back to reference Mishani E, Abourbeh G, Eiblmaier M, Anderson CJ. Imaging of EGFR and EGFR tyrosine kinase overexpression in tumors by nuclear medicine modalities. Curr Pharm Des 2008;14:2983–98.CrossRefPubMed Mishani E, Abourbeh G, Eiblmaier M, Anderson CJ. Imaging of EGFR and EGFR tyrosine kinase overexpression in tumors by nuclear medicine modalities. Curr Pharm Des 2008;14:2983–98.CrossRefPubMed
Metadata
Title
PET imaging of HER1-expressing xenografts in mice with 86Y-CHX-A″-DTPA-cetuximab
Authors
Tapan K. Nayak
Celeste A. S. Regino
Karen J. Wong
Diane E. Milenic
Kayhan Garmestani
Kwamena E. Baidoo
Lawrence P. Szajek
Martin W. Brechbiel
Publication date
01-07-2010
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 7/2010
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-009-1370-z

Other articles of this Issue 7/2010

European Journal of Nuclear Medicine and Molecular Imaging 7/2010 Go to the issue