Skip to main content
Top
Literature
1.
go back to reference Wagner HN Jr, Knight N. A personal history of nuclear medicine. Springer Verlag; 2006. Wagner HN Jr, Knight N. A personal history of nuclear medicine. Springer Verlag; 2006.
2.
go back to reference Sokoloff L. [1-14C]-2-deoxy-d-glucose-method for measuring local cerebral glucose utilization. Mathematical analysis and determination of the “lumped” constants. Neurosci Res Program Bull 1976;14:466–8.PubMed Sokoloff L. [1-14C]-2-deoxy-d-glucose-method for measuring local cerebral glucose utilization. Mathematical analysis and determination of the “lumped” constants. Neurosci Res Program Bull 1976;14:466–8.PubMed
3.
go back to reference Reivich M, Kuhl D, Wolf A, Grenberg J, Phelps M, Ido T, et al. The [F-18]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 1979;44:127–37.PubMed Reivich M, Kuhl D, Wolf A, Grenberg J, Phelps M, Ido T, et al. The [F-18]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 1979;44:127–37.PubMed
4.
go back to reference Reivich M, Alavi A, Greenberg J, Wolf A. [F-18]fluorodeoxyglucose method for measuring local cerebral glucose metabolism in man: technique and results. Prog Nucl Med 1981;7:138–48.PubMed Reivich M, Alavi A, Greenberg J, Wolf A. [F-18]fluorodeoxyglucose method for measuring local cerebral glucose metabolism in man: technique and results. Prog Nucl Med 1981;7:138–48.PubMed
5.
go back to reference Grenberg J, Reivich M, Alavi A, Hand P, Rosenquist A, Rintelmann W, et al. Metabolic mapping of functional activity in human subjects with the [F-18]fluorodeoxyglucose technique. Science 1981;212:678–80.CrossRef Grenberg J, Reivich M, Alavi A, Hand P, Rosenquist A, Rintelmann W, et al. Metabolic mapping of functional activity in human subjects with the [F-18]fluorodeoxyglucose technique. Science 1981;212:678–80.CrossRef
6.
go back to reference Phelps ME, Mazziotta JC, Huang SC. Study of cerebral function with positron computed tomography. J Cereb Blood Flow Metab 1982;2:113–62.PubMed Phelps ME, Mazziotta JC, Huang SC. Study of cerebral function with positron computed tomography. J Cereb Blood Flow Metab 1982;2:113–62.PubMed
7.
go back to reference Di Chiro G, De La Paz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, et al. Glucose utilization of cerebral gliomas measured by [F-18]fluorodeoxyglucose and positron emission tomography. Neurology. 1982;32:1323–9.PubMed Di Chiro G, De La Paz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, et al. Glucose utilization of cerebral gliomas measured by [F-18]fluorodeoxyglucose and positron emission tomography. Neurology. 1982;32:1323–9.PubMed
8.
go back to reference Engel J Jr, Kuhl DE, Phelps ME. Pattern of human local cerebral glucose metabolism during epileptic seizures. Science 1982;218:64–6.CrossRefPubMed Engel J Jr, Kuhl DE, Phelps ME. Pattern of human local cerebral glucose metabolism during epileptic seizures. Science 1982;218:64–6.CrossRefPubMed
9.
go back to reference Theodore WH, Newmark ME, Sato S, Brooks R, Patronas N, De La Paz R, et al. [18F]fluorodeoxyglucose positron emission tomography in refractory complex partial seizures. Ann Neurol 1983;14(4):429–37.CrossRefPubMed Theodore WH, Newmark ME, Sato S, Brooks R, Patronas N, De La Paz R, et al. [18F]fluorodeoxyglucose positron emission tomography in refractory complex partial seizures. Ann Neurol 1983;14(4):429–37.CrossRefPubMed
10.
go back to reference Patronas NJ, Di Chiro G, Smith BH, De La Paz R, Brooks RA, Milam HL, et al. Depressed cerebellar glucose metabolism in supratentorial brain tumors. Brain Res 1984;291:93–101.CrossRefPubMed Patronas NJ, Di Chiro G, Smith BH, De La Paz R, Brooks RA, Milam HL, et al. Depressed cerebellar glucose metabolism in supratentorial brain tumors. Brain Res 1984;291:93–101.CrossRefPubMed
11.
go back to reference von Monakov C. Lokalisation im Gehirn und funktionelle störungen induziert durch kortikale läsionen. Wiesbaden: JF Bergmann; 1914. von Monakov C. Lokalisation im Gehirn und funktionelle störungen induziert durch kortikale läsionen. Wiesbaden: JF Bergmann; 1914.
12.
go back to reference Foster NL, Chase TN, Fedio P, Patronas NJ, Brooks RA, Di Chiro G. Alzheimer’s disease: focal cortical changes shown by positron emission tomography. Neurology 1983;33:961–5.PubMed Foster NL, Chase TN, Fedio P, Patronas NJ, Brooks RA, Di Chiro G. Alzheimer’s disease: focal cortical changes shown by positron emission tomography. Neurology 1983;33:961–5.PubMed
13.
14.
go back to reference Friedland RP, Budinger TF, Ganz E, Yano Y, Mathis CA, Koss B, et al. Regional cerebral metabolic alterations in dementia of the Alzheimer type: positron emission tomography with [F-18]fluorodeoxyglucose. J Comput Assist Tomogr 1983;7:590–8.CrossRefPubMed Friedland RP, Budinger TF, Ganz E, Yano Y, Mathis CA, Koss B, et al. Regional cerebral metabolic alterations in dementia of the Alzheimer type: positron emission tomography with [F-18]fluorodeoxyglucose. J Comput Assist Tomogr 1983;7:590–8.CrossRefPubMed
15.
go back to reference Silverman DHS. Evaluating pathology in the brain with nuclear medicine. Semin Nucl Med 2008;38(4):225–6.CrossRefPubMed Silverman DHS. Evaluating pathology in the brain with nuclear medicine. Semin Nucl Med 2008;38(4):225–6.CrossRefPubMed
16.
go back to reference Herholz K, Herscovitch P, Heiss WD. Imaging brain function. In: Herholz K, Herscovitch P, Heiss WD, editors. NeuroPET: positron emission tomography in neuroscience and clinical neurology, vol 3. New York: Springer-Verlag; 2004. p. 143–85. Herholz K, Herscovitch P, Heiss WD. Imaging brain function. In: Herholz K, Herscovitch P, Heiss WD, editors. NeuroPET: positron emission tomography in neuroscience and clinical neurology, vol 3. New York: Springer-Verlag; 2004. p. 143–85.
17.
go back to reference Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977;28:897–916.CrossRefPubMed Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977;28:897–916.CrossRefPubMed
18.
20.
go back to reference Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 2001;21:1133–45.CrossRefPubMed Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 2001;21:1133–45.CrossRefPubMed
21.
go back to reference Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 1994;91:10625–9.CrossRefPubMed Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 1994;91:10625–9.CrossRefPubMed
22.
go back to reference Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci U S A 1998;95:316–21.CrossRefPubMed Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci U S A 1998;95:316–21.CrossRefPubMed
23.
go back to reference Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW. Neural activity triggers neuronal oxidative metabolism followed by astrocytes glycolysis. Science 2004;305:99–103.CrossRefPubMed Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW. Neural activity triggers neuronal oxidative metabolism followed by astrocytes glycolysis. Science 2004;305:99–103.CrossRefPubMed
24.
go back to reference Koehler RC, Roman RJ, Harder DR. Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 2009;32(3):160–9.CrossRefPubMed Koehler RC, Roman RJ, Harder DR. Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 2009;32(3):160–9.CrossRefPubMed
25.
go back to reference Sokoloff L, Mangold R, Weschsler RL, Kennedy C, Kety SS. The effect on mental arithmetic on cerebral circulation and metabolism. J Clin Invest 1955;34:1101–8.CrossRefPubMed Sokoloff L, Mangold R, Weschsler RL, Kennedy C, Kety SS. The effect on mental arithmetic on cerebral circulation and metabolism. J Clin Invest 1955;34:1101–8.CrossRefPubMed
26.
go back to reference Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network. Anatomy, function and relevance to disease. Ann N Y Acad Sci 2008;1124:1–38.CrossRefPubMed Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network. Anatomy, function and relevance to disease. Ann N Y Acad Sci 2008;1124:1–38.CrossRefPubMed
27.
go back to reference Garrity AG, Pearson GD, McKierman K, Lloyd D, Kiehl K, Calhoun V. Aberrant “default mode” functional connectivity in schizophrenia. Am J Psychiatry 2007;164(3):450–8.CrossRefPubMed Garrity AG, Pearson GD, McKierman K, Lloyd D, Kiehl K, Calhoun V. Aberrant “default mode” functional connectivity in schizophrenia. Am J Psychiatry 2007;164(3):450–8.CrossRefPubMed
28.
go back to reference Shulman RG, Rothman DL, Behar KL, Hyder F. Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci 2004;27:489–95.CrossRefPubMed Shulman RG, Rothman DL, Behar KL, Hyder F. Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci 2004;27:489–95.CrossRefPubMed
29.
go back to reference Barros LF, Porras OH, Bittner CX. Why glucose transport in the brain matters for PET. Trends Neurosci 2005;28:117–9.CrossRefPubMed Barros LF, Porras OH, Bittner CX. Why glucose transport in the brain matters for PET. Trends Neurosci 2005;28:117–9.CrossRefPubMed
30.
go back to reference Attwell D, Iadecola C. The neural basis of functional brain imaging signals. Trends Neurosci 2002;25:621–5.CrossRefPubMed Attwell D, Iadecola C. The neural basis of functional brain imaging signals. Trends Neurosci 2002;25:621–5.CrossRefPubMed
31.
go back to reference Schon EA, Manfredi G. Neuronal degeneration and mitochondrial dysfunction. J Clin Invest 2003;111:303–12.PubMed Schon EA, Manfredi G. Neuronal degeneration and mitochondrial dysfunction. J Clin Invest 2003;111:303–12.PubMed
32.
go back to reference Mattson PM, Magnus T. Ageing and neuronal vulnerability. Nature 2006;7:278–94. Mattson PM, Magnus T. Ageing and neuronal vulnerability. Nature 2006;7:278–94.
33.
go back to reference Fukui H, Morales CT. The mitochondrial impairment, oxidative stress and neurodegeneration connection: reality or just an attractive hypothesis? Trends Neurosci 2008;31(5):251–6.CrossRefPubMed Fukui H, Morales CT. The mitochondrial impairment, oxidative stress and neurodegeneration connection: reality or just an attractive hypothesis? Trends Neurosci 2008;31(5):251–6.CrossRefPubMed
34.
go back to reference Sestini S. The neural basis of functional neuroimaging signal with positron and single-photon emission tomography. Cell Mol Life Sci 2007;64:1778–84.CrossRefPubMed Sestini S. The neural basis of functional neuroimaging signal with positron and single-photon emission tomography. Cell Mol Life Sci 2007;64:1778–84.CrossRefPubMed
35.
go back to reference Weng X, Ding YS, Wolkow ND. Imaging the functioning human brain. Proc Natl Acad Sci U S A 1999;96:11073–4.CrossRefPubMed Weng X, Ding YS, Wolkow ND. Imaging the functioning human brain. Proc Natl Acad Sci U S A 1999;96:11073–4.CrossRefPubMed
36.
go back to reference Silverman DHS, Mosconi L, Ercoli L, Chen W, Small GW. Positron emission tomography scans obtained for the evaluation of cognitive dysfunction. Semin Nucl Med 2008;38(4):251–61.CrossRefPubMed Silverman DHS, Mosconi L, Ercoli L, Chen W, Small GW. Positron emission tomography scans obtained for the evaluation of cognitive dysfunction. Semin Nucl Med 2008;38(4):251–61.CrossRefPubMed
37.
go back to reference Yu AS, Lin HD, Huang SC, Phelps ME, Wu HM. Quantification of cerebral glucose metabolic rate in mice using 18F-FDG and small-animal PET. J Nucl Med 2009;50:966–73.CrossRefPubMed Yu AS, Lin HD, Huang SC, Phelps ME, Wu HM. Quantification of cerebral glucose metabolic rate in mice using 18F-FDG and small-animal PET. J Nucl Med 2009;50:966–73.CrossRefPubMed
38.
go back to reference Lammerstma AA, Brooks DJ, Beaney RP, Turton DR, Kensett MJ, Heather JD, et al. In vivo measurement of regional cerebral haematocrit using positron emission tomography. J Cereb Blood Flow Metab 1984;4:317–22. Lammerstma AA, Brooks DJ, Beaney RP, Turton DR, Kensett MJ, Heather JD, et al. In vivo measurement of regional cerebral haematocrit using positron emission tomography. J Cereb Blood Flow Metab 1984;4:317–22.
39.
go back to reference Okazawa H, Yonekura Y, Fujibayashi Y, Yamauchi H, Ishizu K, Nishizawa S, et al. Measurement of regional cerebral plasma pool and haematocrit with Copper-62 labeled HSA-DTS. J Nucl Med 1996;37:1080–5.PubMed Okazawa H, Yonekura Y, Fujibayashi Y, Yamauchi H, Ishizu K, Nishizawa S, et al. Measurement of regional cerebral plasma pool and haematocrit with Copper-62 labeled HSA-DTS. J Nucl Med 1996;37:1080–5.PubMed
40.
go back to reference Brooks DJ, Beaney RP, Lammerstma AA, Leenders KL, Horlock PL, Kensett MJ, et al. Quantitative measurement of blood brain barrier permeability using rubidium-82 and positron emission tomography. J Cereb Blood Flow Metab 1984;4:535–45.PubMed Brooks DJ, Beaney RP, Lammerstma AA, Leenders KL, Horlock PL, Kensett MJ, et al. Quantitative measurement of blood brain barrier permeability using rubidium-82 and positron emission tomography. J Cereb Blood Flow Metab 1984;4:535–45.PubMed
41.
go back to reference Iannotti F, Fieschi C, Alfano B, Picozzi P, Mansi L, Pozzilli C, et al. Simplified non invasive PET measurement of blood brain barrier permeability. J Comput Assist Tomogr 1987;11:390–7.CrossRefPubMed Iannotti F, Fieschi C, Alfano B, Picozzi P, Mansi L, Pozzilli C, et al. Simplified non invasive PET measurement of blood brain barrier permeability. J Comput Assist Tomogr 1987;11:390–7.CrossRefPubMed
42.
go back to reference Sokoloff L. The physiological and biochemical basis of functional brain imaging. Cogn Neurodyn 2008;2:1–5.CrossRefPubMed Sokoloff L. The physiological and biochemical basis of functional brain imaging. Cogn Neurodyn 2008;2:1–5.CrossRefPubMed
Metadata
Title
The new FDG brain revolution: the neurovascular unit and the default network
Authors
Stelvio Sestini
Antonio Castagnoli
Luigi Mansi
Publication date
01-05-2010
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 5/2010
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-009-1327-2

Other articles of this Issue 5/2010

European Journal of Nuclear Medicine and Molecular Imaging 5/2010 Go to the issue