Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 3/2009

01-03-2009 | Original Article

Image-derived input functions for PET brain studies

Authors: Jurgen E. M. Mourik, Mark Lubberink, Alie Schuitemaker, Nelleke Tolboom, Bart N. M. van Berckel, Adriaan A. Lammertsma, Ronald Boellaard

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 3/2009

Login to get access

Abstract

Purpose

To assess the robustness of a previously introduced method to obtain accurate image-derived input functions (IDIF) for three other tracers.

Methods

Dynamic PET and online blood data of five repeat [11C]PIB (Pittsburgh Compound-B) ([11C]PIB), six repeat (R)-[11C]verapamil, and ten single (R)-[11C]PK11195 studies were used. IDIFs were extracted from partial volume corrected scans using the four hottest pixels per plane method. Results obtained with IDIFs were compared with those using standard online measured arterial input functions (BSIF). IDIFs were used both with and without calibration based on manual blood samples.

Results

For (R)-[11C]verapamil, accurate IDIFs were obtained using noncalibrated IDIFs (slope 0.96±0.17; R 2 0.92±0.07). However, calibration was necessary to obtain IDIFs comparable to the BSIF for both [11C]PIB (slope 1.04±0.05; R 2 1.00±0.01) and (R)-[11C]PK11195 (slope 0.96±0.05; R 2 0.99±0.01). The need for calibration may be explained by the sticking property of both tracers, indicating that BSIF may be affected by sticking and therefore may be unreliable.

Conclusion

The present study shows that a previously proposed method to extract IDIFs is suitable for analysing [11C]PIB, (R)-[11C]verapamil and (R)-[11C]PK11195 studies, thereby obviating the need for online arterial sampling.
Literature
1.
go back to reference Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage 1996;4:153–8.PubMedCrossRef Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage 1996;4:153–8.PubMedCrossRef
2.
go back to reference Lammertsma AA, Bench CJ, Hume SP, Osman S, Gunn K, Brooks DJ, et al. Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab 1996;16:42–52.PubMedCrossRef Lammertsma AA, Bench CJ, Hume SP, Osman S, Gunn K, Brooks DJ, et al. Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab 1996;16:42–52.PubMedCrossRef
3.
go back to reference Hall R. Vascular injuries resulting from arterial puncture of catheterization. Br J Surg 1971;58:513–6.PubMedCrossRef Hall R. Vascular injuries resulting from arterial puncture of catheterization. Br J Surg 1971;58:513–6.PubMedCrossRef
4.
go back to reference Machleder HI, Sweeney JP, Barker WF. Pulseless arm after brachial-artery catheterisation. Lancet 1972;1:407–9.PubMedCrossRef Machleder HI, Sweeney JP, Barker WF. Pulseless arm after brachial-artery catheterisation. Lancet 1972;1:407–9.PubMedCrossRef
5.
go back to reference Chen K, Bandy D, Reiman E, Huang SC, Lawson M, Feng D, et al. Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function. J Cereb Blood Flow Metab 1998;18:716–23.PubMedCrossRef Chen K, Bandy D, Reiman E, Huang SC, Lawson M, Feng D, et al. Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function. J Cereb Blood Flow Metab 1998;18:716–23.PubMedCrossRef
6.
go back to reference Mourik JEM, Lubberink M, Klumpers UMH, Lammertsma AA, Boellaard R. Partial volume corrected image derived input functions for dynamic brain studies: methodology and validation for [11C]flumazenil. Neuroimage 2008;39:1041–50.PubMedCrossRef Mourik JEM, Lubberink M, Klumpers UMH, Lammertsma AA, Boellaard R. Partial volume corrected image derived input functions for dynamic brain studies: methodology and validation for [11C]flumazenil. Neuroimage 2008;39:1041–50.PubMedCrossRef
7.
go back to reference Mourik JE, van Velden FH, Lubberink M, Kloet RW, Berckel BN, Lammertsma AA, et al. Image derived input functions for dynamic high resolution research tomograph PET brain studies. Neuroimage 2008;43:676–86.PubMedCrossRef Mourik JE, van Velden FH, Lubberink M, Kloet RW, Berckel BN, Lammertsma AA, et al. Image derived input functions for dynamic high resolution research tomograph PET brain studies. Neuroimage 2008;43:676–86.PubMedCrossRef
8.
go back to reference Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 2005;25:1528–47.PubMedCrossRef Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 2005;25:1528–47.PubMedCrossRef
9.
go back to reference Vogelgesang S, Cascorbi I, Schroeder E, Pahnke J, Kroemer HK, Siegmund W, et al. Deposition of Alzheimer’s beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics 2002;12:535–41.PubMedCrossRef Vogelgesang S, Cascorbi I, Schroeder E, Pahnke J, Kroemer HK, Siegmund W, et al. Deposition of Alzheimer’s beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics 2002;12:535–41.PubMedCrossRef
10.
go back to reference Toornvliet R, van Berckel BN, Luurtsema G, Lubberink M, Geldof AA, Bosch TM, et al. Effect of age on functional P-glycoprotein in the blood-brain barrier measured by use of (R)-[(11)C]verapamil and positron emission tomography. Clin Pharmacol Ther 2006;79:540–8.PubMedCrossRef Toornvliet R, van Berckel BN, Luurtsema G, Lubberink M, Geldof AA, Bosch TM, et al. Effect of age on functional P-glycoprotein in the blood-brain barrier measured by use of (R)-[(11)C]verapamil and positron emission tomography. Clin Pharmacol Ther 2006;79:540–8.PubMedCrossRef
11.
go back to reference Banati RB, Myers R, Kreutzberg GW. PK (‘peripheral benzodiazepine’)-binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia. J Neurocytol 1997;26:77–82.PubMedCrossRef Banati RB, Myers R, Kreutzberg GW. PK (‘peripheral benzodiazepine’)-binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia. J Neurocytol 1997;26:77–82.PubMedCrossRef
12.
go back to reference Boellaard R, van Lingen A, van Balen SC, Hoving BG, Lammertsma AA. Characteristics of a new fully programmable blood sampling device for monitoring blood radioactivity during PET. Eur J Nucl Med 2001;28:81–9.PubMedCrossRef Boellaard R, van Lingen A, van Balen SC, Hoving BG, Lammertsma AA. Characteristics of a new fully programmable blood sampling device for monitoring blood radioactivity during PET. Eur J Nucl Med 2001;28:81–9.PubMedCrossRef
13.
go back to reference Meyer E. Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H215O autoradiographic method and dynamic PET. J Nucl Med 1989;30:1069–78.PubMed Meyer E. Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H215O autoradiographic method and dynamic PET. J Nucl Med 1989;30:1069–78.PubMed
14.
go back to reference Lubberink M, Greuter HNJM, Boellaard R, Luurtsema G, Lammertsma AA. Effect of plasma metabolite correction accuracy on kinetic analysis in positron emission tomography. Neuroimage. 2004;22:T119. Lubberink M, Greuter HNJM, Boellaard R, Luurtsema G, Lammertsma AA. Effect of plasma metabolite correction accuracy on kinetic analysis in positron emission tomography. Neuroimage. 2004;22:T119.
15.
go back to reference Gunn RN, Sargent PA, Bench CJ, Rabiner EA, Osman S, Pike VW, et al. Tracer kinetic modeling of the 5-HT1A receptor ligand [carbonyl-11C]WAY-100635 for PET. Neuroimage 1998;8:426–40.PubMedCrossRef Gunn RN, Sargent PA, Bench CJ, Rabiner EA, Osman S, Pike VW, et al. Tracer kinetic modeling of the 5-HT1A receptor ligand [carbonyl-11C]WAY-100635 for PET. Neuroimage 1998;8:426–40.PubMedCrossRef
16.
go back to reference Logan J. Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol 2000;27:661–70.PubMedCrossRef Logan J. Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol 2000;27:661–70.PubMedCrossRef
17.
go back to reference Schuitemaker A, van Berckel BN, Kropholler MA, Kloet RW, Jonker C, Scheltens P, et al. Evaluation of methods for generating parametric (R)-[11C]PK11195 binding images. J Cereb Blood Flow Metab 2007;27:1603–15.PubMedCrossRef Schuitemaker A, van Berckel BN, Kropholler MA, Kloet RW, Jonker C, Scheltens P, et al. Evaluation of methods for generating parametric (R)-[11C]PK11195 binding images. J Cereb Blood Flow Metab 2007;27:1603–15.PubMedCrossRef
18.
go back to reference Lubberink M, Luurtsema G, van Berckel BN, Boellaard R, Toornvliet R, Windhorst AD, et al. Evaluation of tracer kinetic models for quantification of P-glycoprotein function using (R)-[11C]verapamil and PET. J Cereb Blood Flow Metab 2007;27:424–33.PubMedCrossRef Lubberink M, Luurtsema G, van Berckel BN, Boellaard R, Toornvliet R, Windhorst AD, et al. Evaluation of tracer kinetic models for quantification of P-glycoprotein function using (R)-[11C]verapamil and PET. J Cereb Blood Flow Metab 2007;27:424–33.PubMedCrossRef
19.
go back to reference Boellaard R, Knaapen P, Rijbroek A, Luurtsema GJ, Lammertsma AA. Evaluation of basis function and linear least squares methods for generating parametric blood flow images using 15O-water and positron emission tomography. Mol Imaging Biol 2005;7:273–85.PubMedCrossRef Boellaard R, Knaapen P, Rijbroek A, Luurtsema GJ, Lammertsma AA. Evaluation of basis function and linear least squares methods for generating parametric blood flow images using 15O-water and positron emission tomography. Mol Imaging Biol 2005;7:273–85.PubMedCrossRef
20.
go back to reference Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 1997;6:279–87.PubMedCrossRef Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 1997;6:279–87.PubMedCrossRef
21.
go back to reference Baudrexel S, Graf R, Knoess C, Vollmar S, Wienhard K. Derivation of the input function from dynamic PET images with the HRRT. Nuclear Science Symposium Conference Record 2004;6:3890–92.CrossRef Baudrexel S, Graf R, Knoess C, Vollmar S, Wienhard K. Derivation of the input function from dynamic PET images with the HRRT. Nuclear Science Symposium Conference Record 2004;6:3890–92.CrossRef
Metadata
Title
Image-derived input functions for PET brain studies
Authors
Jurgen E. M. Mourik
Mark Lubberink
Alie Schuitemaker
Nelleke Tolboom
Bart N. M. van Berckel
Adriaan A. Lammertsma
Ronald Boellaard
Publication date
01-03-2009
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 3/2009
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-008-0986-8

Other articles of this Issue 3/2009

European Journal of Nuclear Medicine and Molecular Imaging 3/2009 Go to the issue