Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 12/2008

01-12-2008 | Original Article

Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots

Authors: Kai Chen, Zi-Bo Li, Hui Wang, Weibo Cai, Xiaoyuan Chen

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 12/2008

Login to get access

Abstract

Purpose

To date, the in vivo imaging of quantum dots (QDs) has been mostly qualitative or semiquantitative. The development of a dual-function positron emission tomography (PET)/near-infrared fluorescence (NIRF) probe might allow the accurate assessment of the tumor-targeting efficacy of QDs.

Materials and methods

An amine-functionalized QD was conjugated with VEGF protein and DOTA chelator for VEGFR-targeted PET/NIRF imaging after 64Cu-labeling. The targeting efficacy of this dual functional probe was evaluated in vitro and in vivo through cell-binding assay, cell staining, in vivo optical/PET imaging, ex vivo optical/PET imaging, and histology.

Results

The DOTA–QD–VEGF exhibited VEGFR-specific binding in both cell-binding assay and cell staining experiment. Both NIR fluorescence imaging and microPET showed VEGFR-specific delivery of conjugated DOTA–QD–VEGF nanoparticle and prominent reticuloendothelial system uptake. The U87MG tumor uptake of 64Cu-labeled DOTA–QD was less than one percentage injected dose per gram (%ID/g), significantly lower than that of 64Cu-labeled DOTA–QD–VEGF (1.52 ± 0.6%ID/g, 2.81 ± 0.3%ID/g, 3.84 ± 0.4%ID/g, and 4.16 ± 0.5%ID/g at 1, 4, 16, and 24 h post injection, respectively; n = 3). Good correlation was also observed between the results measured by ex vivo PET and NIRF organ imaging. Histologic examination revealed that DOTA–QD–VEGF primarily targets the tumor vasculature through a VEGF–VEGFR interaction.

Conclusion

We have successfully developed a QD-based nanoprobe for dual PET and NIRF imaging of tumor VEGFR expression. The success of this bifunctional imaging approach may render higher degree of accuracy for the quantitative targeted NIRF imaging in deep tissue.
Literature
1.
go back to reference Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005;307:538–44.PubMedCrossRef Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005;307:538–44.PubMedCrossRef
2.
go back to reference Cai W, Hsu AR, Li ZB, Chen X. Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Research Letters 2007;2:265–81.CrossRef Cai W, Hsu AR, Li ZB, Chen X. Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Research Letters 2007;2:265–81.CrossRef
3.
go back to reference Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science 1998;281:2013–6.PubMedCrossRef Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science 1998;281:2013–6.PubMedCrossRef
4.
go back to reference Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998;281:2016–8.PubMedCrossRef Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998;281:2016–8.PubMedCrossRef
5.
go back to reference Kaul Z, Yaguchi T, Kaul SC, Hirano T, Wadhwa R, Taira K. Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates. Cell Res 2003;13:503–7.PubMedCrossRef Kaul Z, Yaguchi T, Kaul SC, Hirano T, Wadhwa R, Taira K. Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates. Cell Res 2003;13:503–7.PubMedCrossRef
6.
go back to reference Ness JM, Akhtar RS, Latham CB, Roth KA. Combined tyramide signal amplification and quantum dots for sensitive and photostable immunofluorescence detection. J Histochem Cytochem 2003;51:981–7.PubMed Ness JM, Akhtar RS, Latham CB, Roth KA. Combined tyramide signal amplification and quantum dots for sensitive and photostable immunofluorescence detection. J Histochem Cytochem 2003;51:981–7.PubMed
7.
go back to reference Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 2003;302:442–5.PubMedCrossRef Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 2003;302:442–5.PubMedCrossRef
8.
go back to reference Mattheakis LC, Dias JM, Choi YJ, Gong J, Bruchez MP, Liu J, et al. Optical coding of mammalian cells using semiconductor quantum dots. Anal Biochem 2004;327:200–8.PubMedCrossRef Mattheakis LC, Dias JM, Choi YJ, Gong J, Bruchez MP, Liu J, et al. Optical coding of mammalian cells using semiconductor quantum dots. Anal Biochem 2004;327:200–8.PubMedCrossRef
9.
go back to reference Pathak S, Choi SK, Arnheim N, Thompson ME. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J Am Chem Soc 2001;123:4103–4.PubMedCrossRef Pathak S, Choi SK, Arnheim N, Thompson ME. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J Am Chem Soc 2001;123:4103–4.PubMedCrossRef
10.
go back to reference Algar WR, Krull UJ. Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET). Anal Chim Acta 2007;581:193–201.PubMedCrossRef Algar WR, Krull UJ. Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET). Anal Chim Acta 2007;581:193–201.PubMedCrossRef
11.
go back to reference Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 2002;99:12617–21.PubMedCrossRef Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 2002;99:12617–21.PubMedCrossRef
12.
go back to reference Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 2006;6:669–76.PubMedCrossRef Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 2006;6:669–76.PubMedCrossRef
13.
go back to reference Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004;22:969–76.PubMedCrossRef Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004;22:969–76.PubMedCrossRef
14.
go back to reference Tada H, Higuchi H, Wanatabe TM, Ohuchi N. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 2007;67:1138–44.PubMedCrossRef Tada H, Higuchi H, Wanatabe TM, Ohuchi N. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 2007;67:1138–44.PubMedCrossRef
15.
go back to reference Cai W, Chen K, Li ZB, Gambhir SS, Chen X. Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 2007;48:1862–70.PubMedCrossRef Cai W, Chen K, Li ZB, Gambhir SS, Chen X. Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 2007;48:1862–70.PubMedCrossRef
16.
go back to reference Li ZB, Cai W, Chen X. Semiconductor quantum dots for in vivo imaging. J Nanosci Nanotechnol 2007;7:2567–81.PubMedCrossRef Li ZB, Cai W, Chen X. Semiconductor quantum dots for in vivo imaging. J Nanosci Nanotechnol 2007;7:2567–81.PubMedCrossRef
17.
go back to reference Cai W, Chen X. Nanoplatforms for targeted molecular imaging in living subjects. Small 2007;3:1840–54.PubMedCrossRef Cai W, Chen X. Nanoplatforms for targeted molecular imaging in living subjects. Small 2007;3:1840–54.PubMedCrossRef
18.
go back to reference Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2002;2:683–93.PubMedCrossRef Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2002;2:683–93.PubMedCrossRef
19.
go back to reference Wang H, Cai W, Chen K, Li ZB, Kashefi A, He L, et al. A new PET tracer specific for vascular endothelial growth factor receptor 2. Eur J Nucl Med Mol Imaging 2007;27:2001–10.CrossRef Wang H, Cai W, Chen K, Li ZB, Kashefi A, He L, et al. A new PET tracer specific for vascular endothelial growth factor receptor 2. Eur J Nucl Med Mol Imaging 2007;27:2001–10.CrossRef
20.
go back to reference Cai W, Chen K, Mohamedali KA, Cao Q, Gambhir SS, Rosenblum MG, et al. PET of vascular endothelial growth factor receptor expression. J Nucl Med 2006;47:2048–56.PubMed Cai W, Chen K, Mohamedali KA, Cao Q, Gambhir SS, Rosenblum MG, et al. PET of vascular endothelial growth factor receptor expression. J Nucl Med 2006;47:2048–56.PubMed
21.
go back to reference Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993;362:841–4.PubMedCrossRef Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993;362:841–4.PubMedCrossRef
22.
go back to reference Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 2005;333:328–35.PubMedCrossRef Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 2005;333:328–35.PubMedCrossRef
23.
go back to reference Cai W, Chen X. Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 2008;49:113S–128S.PubMedCrossRef Cai W, Chen X. Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 2008;49:113S–128S.PubMedCrossRef
24.
go back to reference Cai W, Chen X. Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression. Front Biosci 2007;12:4267–79.PubMedCrossRef Cai W, Chen X. Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression. Front Biosci 2007;12:4267–79.PubMedCrossRef
25.
go back to reference Wu Y, Zhang X, Xiong Z, Cheng Z, Fisher DR, Liu S, et al. microPET imaging of glioma integrin avb3 expression using 64Cu-labeled tetrameric RGD peptide. J Nucl Med 2005;46:1707–18.PubMed Wu Y, Zhang X, Xiong Z, Cheng Z, Fisher DR, Liu S, et al. microPET imaging of glioma integrin avb3 expression using 64Cu-labeled tetrameric RGD peptide. J Nucl Med 2005;46:1707–18.PubMed
26.
go back to reference Cai W, Wu Y, Chen K, Cao Q, Tice DA, Chen X. In vitro and in vivo characterization of 64Cu-labeled Abegrin, a humanized monoclonal antibody against integrin avb3. Cancer Res 2006;66:9673–81.PubMedCrossRef Cai W, Wu Y, Chen K, Cao Q, Tice DA, Chen X. In vitro and in vivo characterization of 64Cu-labeled Abegrin, a humanized monoclonal antibody against integrin avb3. Cancer Res 2006;66:9673–81.PubMedCrossRef
27.
go back to reference Cai W, Olafsen T, Zhang X, Cao Q, Gambhir SS, Williams LE, et al. PET imaging of colorectal cancer in xenograft-bearing mice by use of an 18F-labeled T84.66 anti-carcinoembryonic antigen diabody. J Nucl Med 2007;48:304–10.PubMedCrossRef Cai W, Olafsen T, Zhang X, Cao Q, Gambhir SS, Williams LE, et al. PET imaging of colorectal cancer in xenograft-bearing mice by use of an 18F-labeled T84.66 anti-carcinoembryonic antigen diabody. J Nucl Med 2007;48:304–10.PubMedCrossRef
28.
go back to reference Cai W, Chen X. Preparation of peptide conjugated quantum dots for tumour vasculature targeted imaging. Nat Protoc 2008;3:89–96.PubMedCrossRef Cai W, Chen X. Preparation of peptide conjugated quantum dots for tumour vasculature targeted imaging. Nat Protoc 2008;3:89–96.PubMedCrossRef
29.
go back to reference Senior JH. Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carr Syst 1987;3:123–93. Senior JH. Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carr Syst 1987;3:123–93.
30.
go back to reference Husztik E, Lazar G, Parducz A. Electron microscopic study of Kupffer-cell phagocytosis blockade induced by gadolinium chloride. Br J Exp Pathol 1980;61:624–30.PubMed Husztik E, Lazar G, Parducz A. Electron microscopic study of Kupffer-cell phagocytosis blockade induced by gadolinium chloride. Br J Exp Pathol 1980;61:624–30.PubMed
31.
go back to reference Diluzio NR, Wooles WR. Depression of phagocytic activity and immune response by methyl palmitate. Am J Physiol 1964;206:939–43.PubMed Diluzio NR, Wooles WR. Depression of phagocytic activity and immune response by methyl palmitate. Am J Physiol 1964;206:939–43.PubMed
32.
go back to reference Storm G, Belliot SO, Daemen T, Lasic DD. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 1995;17:31–48.CrossRef Storm G, Belliot SO, Daemen T, Lasic DD. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 1995;17:31–48.CrossRef
33.
go back to reference Stolnik S, Illum L, Davis SS. Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 1995;16:195–214.CrossRef Stolnik S, Illum L, Davis SS. Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 1995;16:195–214.CrossRef
34.
go back to reference Vladimir P, Torchilin VST. Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev 1995;16:141–55.CrossRef Vladimir P, Torchilin VST. Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev 1995;16:141–55.CrossRef
35.
36.
go back to reference Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004;25:581–611.PubMedCrossRef Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004;25:581–611.PubMedCrossRef
37.
go back to reference Soo Choi H, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, et al. Renal clearance of quantum dots. Nat Biotechnol 2007;25:1165–70.CrossRef Soo Choi H, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, et al. Renal clearance of quantum dots. Nat Biotechnol 2007;25:1165–70.CrossRef
38.
go back to reference Ballou B, Ernst LA, Andreko S, Harper T, Fitzpatrick JA, Waggoner AS, et al. Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem 2007;18:389–96.PubMedCrossRef Ballou B, Ernst LA, Andreko S, Harper T, Fitzpatrick JA, Waggoner AS, et al. Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem 2007;18:389–96.PubMedCrossRef
39.
go back to reference Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003;300:1434–6.PubMedCrossRef Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003;300:1434–6.PubMedCrossRef
40.
go back to reference Pradhan N, Battaglia DM, Liu Y, Peng X. Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Lett 2007;7:312–7.PubMedCrossRef Pradhan N, Battaglia DM, Liu Y, Peng X. Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Lett 2007;7:312–7.PubMedCrossRef
41.
go back to reference Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003;17:545–80.PubMedCrossRef Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003;17:545–80.PubMedCrossRef
42.
go back to reference Weissleder R, Mahmood U. Molecular imaging. Radiology 2001;219:316–33.PubMed Weissleder R, Mahmood U. Molecular imaging. Radiology 2001;219:316–33.PubMed
43.
go back to reference Bass LA, Wang M, Welch MJ, Anderson CJ. In vivo transchelation of copper-64 from TETA-octreotide to superoxide dismutase in rat liver. Bioconjug Chem 2000;11:527–32.PubMedCrossRef Bass LA, Wang M, Welch MJ, Anderson CJ. In vivo transchelation of copper-64 from TETA-octreotide to superoxide dismutase in rat liver. Bioconjug Chem 2000;11:527–32.PubMedCrossRef
44.
go back to reference Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotechnology 2007;2:47–52.PubMedCrossRef Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotechnology 2007;2:47–52.PubMedCrossRef
Metadata
Title
Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots
Authors
Kai Chen
Zi-Bo Li
Hui Wang
Weibo Cai
Xiaoyuan Chen
Publication date
01-12-2008
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 12/2008
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-008-0860-8

Other articles of this Issue 12/2008

European Journal of Nuclear Medicine and Molecular Imaging 12/2008 Go to the issue