Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 6/2008

01-06-2008 | Original Article

Sources of attenuation-correction artefacts in cardiac PET/CT and SPECT/CT

Authors: Sarah J. McQuaid, Brian F. Hutton

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 6/2008

Login to get access

Abstract

Purpose

Respiratory motion during myocardial perfusion imaging can cause artefacts in both positron emission tomography (PET) and single-photon emission computed tomography (SPECT) images when mismatches between emission and transmission datasets arise. In this study, artefacts from different breathing motions were quantified in both modalities to assess key factors in attenuation-correction accuracy.

Methods

Activity maps were generated using the NURBS-based cardiac-torso phantom for different respiratory cycles, which were projected, attenuation-corrected and reconstructed to form PET and SPECT images. Attenuation-correction was performed with maps at mismatched respiratory phases to observe the effect on the left-ventricular myocardium. Myocardial non-uniformity was assessed in terms of the standard deviation in scores obtained from the 17-segment model and changes in uniformity were compared for each mismatch and modality.

Results

Certain types of mismatch led to artefacts and corresponding increases in the myocardial non-uniformity. For each mismatch in PET, the increases in non-uniformity relative to an artefact-free image were as follows: (a) cardiac translation mismatch, 84% ± 11%; (b) liver mismatch, 59% ± 10%, (c) lung mismatch from diaphragm contraction, 28% ± 8%; and (d) lung mismatch from chest-wall motion, 6% ± 7%. The corresponding factors for SPECT were (a) 61% ± 8%, (b) 34% ± 8%, (c) −2% ± 7)% and (d) −4% ± 6%.

Conclusions

Attenuation-correction artefacts were seen in PET and SPECT images, with PET being more severely affected. The most severe artefacts were produced from mismatches in cardiac and liver position, whereas lung mismatches were less critical. Both cardiac and liver positions must, therefore, be correctly matched during attenuation correction.
Literature
1.
go back to reference Chin BB, Nakamoto Y, Kraitchman DL, Marshall L, Wahl R. PET-CT evaluation of 2-deoxy-2-[18F]fluoro-d-glucose myocardial uptake: effect of respiratory motion. Mol Imaging Biol. 2003;5:57–64.PubMedCrossRef Chin BB, Nakamoto Y, Kraitchman DL, Marshall L, Wahl R. PET-CT evaluation of 2-deoxy-2-[18F]fluoro-d-glucose myocardial uptake: effect of respiratory motion. Mol Imaging Biol. 2003;5:57–64.PubMedCrossRef
2.
go back to reference Osman MM, Cohade C, Nakamoto Y, Wahl RL. Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT. Eur J Nucl Med Mol Imaging. 2003;30:603–6.PubMedCrossRef Osman MM, Cohade C, Nakamoto Y, Wahl RL. Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT. Eur J Nucl Med Mol Imaging. 2003;30:603–6.PubMedCrossRef
3.
go back to reference Goerres GW, Burger C, Kamel E, Seifert B, Kaim AH, Buck A, et al. Respiration-induced attenuation artifact at PET/CT: technical considerations. Radiology. 2003;226:906–10.PubMedCrossRef Goerres GW, Burger C, Kamel E, Seifert B, Kaim AH, Buck A, et al. Respiration-induced attenuation artifact at PET/CT: technical considerations. Radiology. 2003;226:906–10.PubMedCrossRef
4.
go back to reference Folks RD, Hainer J, Di Carli MF, Garcia EV. Development of normal limits for rubidium-82 PET myocardial perfusion using CT-based attenuation correction. J Nucl Cardiol 2006;13:S5.CrossRef Folks RD, Hainer J, Di Carli MF, Garcia EV. Development of normal limits for rubidium-82 PET myocardial perfusion using CT-based attenuation correction. J Nucl Cardiol 2006;13:S5.CrossRef
5.
go back to reference McCord ME, Bacharach SL, Bonow RO, Dilsizian V, Cuocolo A, Freedman N. Misalignment between PET transmission and emission scans: its effect on myocardial imaging. J Nucl Med. 1992;33:1209–14.PubMed McCord ME, Bacharach SL, Bonow RO, Dilsizian V, Cuocolo A, Freedman N. Misalignment between PET transmission and emission scans: its effect on myocardial imaging. J Nucl Med. 1992;33:1209–14.PubMed
6.
go back to reference Fitzpatrick GM, Wells RG. Simulation study of respiratory-induced errors in cardiac positron emission tomography/computed tomography. Med Phys. 2006;33:2888–95.PubMedCrossRef Fitzpatrick GM, Wells RG. Simulation study of respiratory-induced errors in cardiac positron emission tomography/computed tomography. Med Phys. 2006;33:2888–95.PubMedCrossRef
7.
go back to reference Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: a definitive analysis of causes, consequences, and corrections. J Nucl Med. 2007;48:1112–21.PubMedCrossRef Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: a definitive analysis of causes, consequences, and corrections. J Nucl Med. 2007;48:1112–21.PubMedCrossRef
8.
go back to reference Loghin C, Sdringola S, Gould KL. Common artifacts in PET myocardial perfusion images due to attenuation-emission misregistration: clinical significance, causes, and solutions. J Nucl Med. 2004;45:1029–39.PubMed Loghin C, Sdringola S, Gould KL. Common artifacts in PET myocardial perfusion images due to attenuation-emission misregistration: clinical significance, causes, and solutions. J Nucl Med. 2004;45:1029–39.PubMed
9.
go back to reference Le Meunier L, Maass-Moreno R, Carrasquillo JA, Dieckmann W, Bacharach SL. PET/CT imaging: effect of respiratory motion on apparent myocardial uptake J Nucl Cardiol. 2006;13:821–30.PubMedCrossRef Le Meunier L, Maass-Moreno R, Carrasquillo JA, Dieckmann W, Bacharach SL. PET/CT imaging: effect of respiratory motion on apparent myocardial uptake J Nucl Cardiol. 2006;13:821–30.PubMedCrossRef
10.
go back to reference Martinez-Moller A, Souvatzoglou M, Navab N, Schwaiger M, Nekolla SG. Artifacts from misaligned CT in cardiac perfusion PET/CT studies: frequency, effects, and potential solutions. J Nucl Med. 2007;48:188–93.PubMed Martinez-Moller A, Souvatzoglou M, Navab N, Schwaiger M, Nekolla SG. Artifacts from misaligned CT in cardiac perfusion PET/CT studies: frequency, effects, and potential solutions. J Nucl Med. 2007;48:188–93.PubMed
11.
go back to reference Cook R, Carnes G, Ting-Yim L, Wells RG. 4D CT for respiratory gated attenuation corrections in canine cardiac PET imaging. In: IEEE Nuclear Science Symposium Conference Record, NSS-MIC 2005, pp 2408–12. Cook R, Carnes G, Ting-Yim L, Wells RG. 4D CT for respiratory gated attenuation corrections in canine cardiac PET imaging. In: IEEE Nuclear Science Symposium Conference Record, NSS-MIC 2005, pp 2408–12.
12.
go back to reference Matsunari I, Boning G, Ziegler SI, Kosa I, Nekolla SG, Ficaro EP, et al. Effects of misalignment between transmission and emission scans on attenuation-corrected cardiac SPECT. J Nucl Med. 1998;39:411–6.PubMed Matsunari I, Boning G, Ziegler SI, Kosa I, Nekolla SG, Ficaro EP, et al. Effects of misalignment between transmission and emission scans on attenuation-corrected cardiac SPECT. J Nucl Med. 1998;39:411–6.PubMed
13.
go back to reference King MA, Tsui BMW, Pan TS. Attenuation compensation for cardiac single-photon emission computed tomographic imaging: part 1. Impact of attenuation and methods of estimating attenuation maps. J Nucl Cardiol. 1995;2:513–24.PubMedCrossRef King MA, Tsui BMW, Pan TS. Attenuation compensation for cardiac single-photon emission computed tomographic imaging: part 1. Impact of attenuation and methods of estimating attenuation maps. J Nucl Cardiol. 1995;2:513–24.PubMedCrossRef
14.
go back to reference Hendel RC, Corbett JR, Cullom SJ, DePuey EG, Garcia EV, Bateman TM. The value and practice of attenuation correction for myocardial perfusion SPECT imaging: a joint position statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine. J Nucl Cardiol. 2002;9:135–43.PubMedCrossRef Hendel RC, Corbett JR, Cullom SJ, DePuey EG, Garcia EV, Bateman TM. The value and practice of attenuation correction for myocardial perfusion SPECT imaging: a joint position statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine. J Nucl Cardiol. 2002;9:135–43.PubMedCrossRef
15.
go back to reference Singh B, Bateman TM, Case JA, Heller G. Attenuation artifact, attenuation correction, and the future of myocardial perfusion SPECT. J Nucl Cardiol. 2007;14:153–64.PubMedCrossRef Singh B, Bateman TM, Case JA, Heller G. Attenuation artifact, attenuation correction, and the future of myocardial perfusion SPECT. J Nucl Cardiol. 2007;14:153–64.PubMedCrossRef
16.
go back to reference Pitman AG, Kalff V, Van Every B, Risa B, Barnden LR, Kelly MJ. Effect of mechanically simulated diaphragmatic respiratory motion on myocardial SPECT processed with and without attenuation correction. J Nucl Med. 2002;43:1259–67.PubMed Pitman AG, Kalff V, Van Every B, Risa B, Barnden LR, Kelly MJ. Effect of mechanically simulated diaphragmatic respiratory motion on myocardial SPECT processed with and without attenuation correction. J Nucl Med. 2002;43:1259–67.PubMed
17.
go back to reference Goetze S, Wahl RL. Prevalence of misregistration between SPECT and CT for attenuation-corrected myocardial perfusion SPECT. J Nucl Cardiol. 2007;14:200–6.PubMedCrossRef Goetze S, Wahl RL. Prevalence of misregistration between SPECT and CT for attenuation-corrected myocardial perfusion SPECT. J Nucl Cardiol. 2007;14:200–6.PubMedCrossRef
18.
go back to reference Wang Y, Riederer SJ, Ehman RL. Respiratory motion of the heart: kinematics and the implications for the spatial resolution in coronary imaging. Magn Reson Med. 1995;33:713–9.PubMedCrossRef Wang Y, Riederer SJ, Ehman RL. Respiratory motion of the heart: kinematics and the implications for the spatial resolution in coronary imaging. Magn Reson Med. 1995;33:713–9.PubMedCrossRef
19.
go back to reference McLeish K, Hill DLG, Atkinson D, Blackall JM, Razavi R. A study of the motion and deformation of the heart due to respiration. IEEE Trans Med Imag 2002;21:1142–50.CrossRef McLeish K, Hill DLG, Atkinson D, Blackall JM, Razavi R. A study of the motion and deformation of the heart due to respiration. IEEE Trans Med Imag 2002;21:1142–50.CrossRef
20.
go back to reference Danias PG, Stuber M, Botnar RM, Kissinger KV, Edelman RR, Manning WJ. Relationship between motion of coronary arteries and diaphragm during free breathing: lessons from real-time MR imaging. Am J Roentgenol. 1999;172:1061–5. Danias PG, Stuber M, Botnar RM, Kissinger KV, Edelman RR, Manning WJ. Relationship between motion of coronary arteries and diaphragm during free breathing: lessons from real-time MR imaging. Am J Roentgenol. 1999;172:1061–5.
21.
go back to reference Martin SJ, Dey J, King MA, Hutton BF. Segmenting and tracking diaphragm and heart regions in gated-CT datasets as an aid to developing a predictive model for respiratory motion-correction. In: IEEE Nuclear Science Symposium Conference Record, NSS-MIC 2007, pp 2680-5. Martin SJ, Dey J, King MA, Hutton BF. Segmenting and tracking diaphragm and heart regions in gated-CT datasets as an aid to developing a predictive model for respiratory motion-correction. In: IEEE Nuclear Science Symposium Conference Record, NSS-MIC 2007, pp 2680-5.
22.
go back to reference Segars WP, Lalush DS, Tsui BMW. Modeling respiratory mechanics in the MCAT and spline-based MCAT phantoms. IEEE Trans Nucl Sci. 2001;48:89–97.CrossRef Segars WP, Lalush DS, Tsui BMW. Modeling respiratory mechanics in the MCAT and spline-based MCAT phantoms. IEEE Trans Nucl Sci. 2001;48:89–97.CrossRef
23.
go back to reference Ackerman MJ. The Visible Human Project. Proceedings of the IEEE 1998;86:504–11.CrossRef Ackerman MJ. The Visible Human Project. Proceedings of the IEEE 1998;86:504–11.CrossRef
24.
go back to reference Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag. 1994;13:601–9.CrossRef Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag. 1994;13:601–9.CrossRef
25.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539–42.PubMedCrossRef Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539–42.PubMedCrossRef
26.
go back to reference Meikle SR, Dahlbom M, Cherry SR. Attenuation correction using count-limited transmission data in positron emission tomography. J Nucl Med. 1993;34:143–50.PubMed Meikle SR, Dahlbom M, Cherry SR. Attenuation correction using count-limited transmission data in positron emission tomography. J Nucl Med. 1993;34:143–50.PubMed
Metadata
Title
Sources of attenuation-correction artefacts in cardiac PET/CT and SPECT/CT
Authors
Sarah J. McQuaid
Brian F. Hutton
Publication date
01-06-2008
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 6/2008
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-008-0718-0

Other articles of this Issue 6/2008

European Journal of Nuclear Medicine and Molecular Imaging 6/2008 Go to the issue