Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 4/2008

01-04-2008 | Original article

Quinolinic acid induced neurodegeneration in the striatum: a combined in vivo and in vitro analysis of receptor changes and microglia activation

Authors: R. M. Moresco, T. Lavazza, S. Belloli, M. Lecchi, A. Pezzola, S. Todde, M. Matarrese, A. Carpinelli, E. Turolla, V. Zimarino, P. Popoli, A. Malgaroli, F. Fazio

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 4/2008

Login to get access

Abstract

Purpose

Huntington’s disease (HD) is a progressive neurodegenerative disorder, which is characterised by prominent neuronal cell loss in the basal ganglia with motor and cognitive disturbances. One of the most well-studied pharmacological models of HD is produced by local injection in the rat brain striatum of the excitotoxin quinolinic acid (QA), which produces many of the distinctive features of this human neurodegenerative disorder. Here, we report a detailed analysis, obtained both in vivo and in vitro of this pharmacological model of HD.

Materials and methods

By combining emission tomography (PET) with autoradiographic and immunocytochemical confocal laser techniques, we quantified in the QA-injected striatum the temporal behavior (from 1 to 60 days from the excitotoxic insult) of neuronal cell density and receptor availability (adenosine A2A and dopamine D2 receptors) together with the degree of microglia activation.

Results

Both approaches showed a loss of adenosine A2A and dopamine D2 receptors paralleled by an increase of microglial activation.

Conclusion

This combined longitudinal analysis of the disease progression, which suggested an impairment of neurotransmission, neuronal integrity and a reversible activation of brain inflammatory processes, might represent a more quantitative approach to compare the differential effects of treatments in slowing down or reversing HD in rodent models with potential applications to human patients.
Literature
2.
go back to reference Cowan CM, Raymond LA. Selective neuronal degeneration in Huntington’s disease. Curr Top Dev Biol 2006;75:25-71.CrossRefPubMed Cowan CM, Raymond LA. Selective neuronal degeneration in Huntington’s disease. Curr Top Dev Biol 2006;75:25-71.CrossRefPubMed
3.
go back to reference Beal MF, Ferrante RJ, Swartz KJ, Kowall NW. Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J Neurosci 1991;11:1649-59.PubMed Beal MF, Ferrante RJ, Swartz KJ, Kowall NW. Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J Neurosci 1991;11:1649-59.PubMed
4.
go back to reference Scattoni ML, Valanzano A, Popoli P, Pezzola A, Reggio R, Calamandrei G. Progressive behavioural changes in the spatial open-field in the quinolinic acid rat model of Huntington’s disease. Behav Brain Res 2004;152:375-83.CrossRefPubMed Scattoni ML, Valanzano A, Popoli P, Pezzola A, Reggio R, Calamandrei G. Progressive behavioural changes in the spatial open-field in the quinolinic acid rat model of Huntington’s disease. Behav Brain Res 2004;152:375-83.CrossRefPubMed
5.
go back to reference Alexi T, Venero JL, Hefti F. Protective effects of neurotrophin-4/5 and transforming growth factor-alpha on striatal neuronal phenotypic degeneration after excitotoxic lesioning with quinolinic acid. Neuroscience 1997;78:73-86.CrossRefPubMed Alexi T, Venero JL, Hefti F. Protective effects of neurotrophin-4/5 and transforming growth factor-alpha on striatal neuronal phenotypic degeneration after excitotoxic lesioning with quinolinic acid. Neuroscience 1997;78:73-86.CrossRefPubMed
6.
go back to reference Levivier M, Holemans S, Togasaki DM, Maloteaux JM, Brotchi J, Przedborski S. Quantitative assessment of quinolinic acid-induced striatal toxicity in rats using radioligand binding assays. Neurol Res 1994;16:194-200.CrossRefPubMed Levivier M, Holemans S, Togasaki DM, Maloteaux JM, Brotchi J, Przedborski S. Quantitative assessment of quinolinic acid-induced striatal toxicity in rats using radioligand binding assays. Neurol Res 1994;16:194-200.CrossRefPubMed
7.
go back to reference Levivier M, Przedborski S. Quinolinic acid-induced lesions of the rat striatum: quantitative autoradiographic binding assessment. Neurol Res 1998;20:46-56.CrossRefPubMed Levivier M, Przedborski S. Quinolinic acid-induced lesions of the rat striatum: quantitative autoradiographic binding assessment. Neurol Res 1998;20:46-56.CrossRefPubMed
8.
go back to reference Popoli P, Betto P, Reggio R, Ricciarello G. Adenosine A2A receptor stimulation enhances striatal extracellular glutamate levels in rats. Eur J Pharmacol 1995;287:215-7.CrossRefPubMed Popoli P, Betto P, Reggio R, Ricciarello G. Adenosine A2A receptor stimulation enhances striatal extracellular glutamate levels in rats. Eur J Pharmacol 1995;287:215-7.CrossRefPubMed
9.
go back to reference Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K, et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 2001;60:161-72.CrossRefPubMed Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K, et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 2001;60:161-72.CrossRefPubMed
10.
go back to reference Ma L, Morton AJ, Nicholson LF. Microglia density decreases with age in a mouse model of Huntington’s disease. Glia 2003;43:274-80.CrossRefPubMed Ma L, Morton AJ, Nicholson LF. Microglia density decreases with age in a mouse model of Huntington’s disease. Glia 2003;43:274-80.CrossRefPubMed
11.
go back to reference Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 2000;123(Pt 11):2321-37.CrossRefPubMed Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 2000;123(Pt 11):2321-37.CrossRefPubMed
12.
go back to reference Guidetti P, Bates GP, Graham RK, Hayden MR, Leavitt BR, MacDonald ME, et al. Elevated brain 3-hydroxykynurenine and quinolinate levels in Huntington disease mice. Neurobiol Dis 2006;23:190-7.CrossRefPubMed Guidetti P, Bates GP, Graham RK, Hayden MR, Leavitt BR, MacDonald ME, et al. Elevated brain 3-hydroxykynurenine and quinolinate levels in Huntington disease mice. Neurobiol Dis 2006;23:190-7.CrossRefPubMed
13.
go back to reference Saito K, Heyes MP. Kynurenine pathway enzymes in brain. Properties of enzymes and regulation of quinolinic acid synthesis. Adv Exp Med Biol 1996;398:485-92.CrossRefPubMed Saito K, Heyes MP. Kynurenine pathway enzymes in brain. Properties of enzymes and regulation of quinolinic acid synthesis. Adv Exp Med Biol 1996;398:485-92.CrossRefPubMed
14.
go back to reference Heyes MP, Achim CL, Wiley CA, Major EO, Saito K, Markey SP. Human microglia convert l-tryptophan into the neurotoxin quinolinic acid. Biochem J 1996;320(Pt 2):595-7.CrossRefPubMedPubMedCentral Heyes MP, Achim CL, Wiley CA, Major EO, Saito K, Markey SP. Human microglia convert l-tryptophan into the neurotoxin quinolinic acid. Biochem J 1996;320(Pt 2):595-7.CrossRefPubMedPubMedCentral
15.
go back to reference Heyes MP. The kynurenine pathway and neurologic disease. Therapeutic strategies. Adv Exp Med Biol 1996;398:125-9.CrossRefPubMed Heyes MP. The kynurenine pathway and neurologic disease. Therapeutic strategies. Adv Exp Med Biol 1996;398:125-9.CrossRefPubMed
16.
go back to reference Guillemin GJ, Brew BJ, Noonan CE, Takikawa O, Cullen KM. Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer’s disease hippocampus. Neuropathol Appl Neurobiol 2005;31:395-404.CrossRefPubMed Guillemin GJ, Brew BJ, Noonan CE, Takikawa O, Cullen KM. Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer’s disease hippocampus. Neuropathol Appl Neurobiol 2005;31:395-404.CrossRefPubMed
17.
go back to reference Guillemin GJ, Meininger V, Brew BJ. Implications for the kynurenine pathway and quinolinic acid in amyotrophic lateral sclerosis. Neurodegener Dis 2005;2:166-76.CrossRefPubMed Guillemin GJ, Meininger V, Brew BJ. Implications for the kynurenine pathway and quinolinic acid in amyotrophic lateral sclerosis. Neurodegener Dis 2005;2:166-76.CrossRefPubMed
18.
go back to reference Guillemin GJ, Smythe G, Takikawa O, Brew BJ. Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 2005;49:15-23.CrossRefPubMed Guillemin GJ, Smythe G, Takikawa O, Brew BJ. Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 2005;49:15-23.CrossRefPubMed
19.
go back to reference Wang J, Maurer L. Positron emission tomography: applications in drug discovery and drug development. Curr Top Med Chem 2005;5:1053-75.CrossRefPubMed Wang J, Maurer L. Positron emission tomography: applications in drug discovery and drug development. Curr Top Med Chem 2005;5:1053-75.CrossRefPubMed
20.
go back to reference Lee CM, Farde L. Using positron emission tomography to facilitate CNS drug development. Trends Pharmacol Sci 2006;27:310-6.CrossRefPubMed Lee CM, Farde L. Using positron emission tomography to facilitate CNS drug development. Trends Pharmacol Sci 2006;27:310-6.CrossRefPubMed
21.
go back to reference Belloli S, Moresco RM, Matarrese M, Biella G, Sanvito F, Simonelli P, et al. Evaluation of three quinoline-carboxamide derivatives as potential radioligands for the in vivo pet imaging of neurodegeneration. Neurochem Int 2004;44:433-40.CrossRefPubMed Belloli S, Moresco RM, Matarrese M, Biella G, Sanvito F, Simonelli P, et al. Evaluation of three quinoline-carboxamide derivatives as potential radioligands for the in vivo pet imaging of neurodegeneration. Neurochem Int 2004;44:433-40.CrossRefPubMed
22.
go back to reference Moresco RM, Todde S, Belloli S, Simonelli P, Panzacchi A, Rigamonti M, et al. In vivo imaging of adenosine A2A receptors in rat and primate brain using [11C]SCH442416. Eur J Nucl Med Mol Imaging 2005;32:405-13.CrossRefPubMed Moresco RM, Todde S, Belloli S, Simonelli P, Panzacchi A, Rigamonti M, et al. In vivo imaging of adenosine A2A receptors in rat and primate brain using [11C]SCH442416. Eur J Nucl Med Mol Imaging 2005;32:405-13.CrossRefPubMed
23.
go back to reference Araujo DM, Cherry SR, Tatsukawa KJ, Toyokuni T, Kornblum HI. Deficits in striatal dopamine D(2) receptors and energy metabolism detected by in vivo microPET imaging in a rat model of Huntington’s disease. Exp Neurol 2000;166:287-97.CrossRefPubMed Araujo DM, Cherry SR, Tatsukawa KJ, Toyokuni T, Kornblum HI. Deficits in striatal dopamine D(2) receptors and energy metabolism detected by in vivo microPET imaging in a rat model of Huntington’s disease. Exp Neurol 2000;166:287-97.CrossRefPubMed
24.
go back to reference Topper R, Gehrmann J, Schwarz M, Block F, Noth J, Kreutzberg GW. Remote microglial activation in the quinolinic acid model of Huntington’s disease. Exp Neurol 1993;123:271-83.CrossRefPubMed Topper R, Gehrmann J, Schwarz M, Block F, Noth J, Kreutzberg GW. Remote microglial activation in the quinolinic acid model of Huntington’s disease. Exp Neurol 1993;123:271-83.CrossRefPubMed
25.
go back to reference Matarrese M, Moresco RM, Cappelli A, Anzini M, Vomero S, Simonelli P, et al. Labeling and evaluation of N-[11C]methylated quinoline-2-carboxamides as potential radioligands for visualization of peripheral benzodiazepine receptors. J Med Chem 2001;44:579-85.CrossRefPubMed Matarrese M, Moresco RM, Cappelli A, Anzini M, Vomero S, Simonelli P, et al. Labeling and evaluation of N-[11C]methylated quinoline-2-carboxamides as potential radioligands for visualization of peripheral benzodiazepine receptors. J Med Chem 2001;44:579-85.CrossRefPubMed
26.
go back to reference Moresco RM, Pietra L, Henin M, Panzacchi A, Locatelli M, Bonaldi L, et al. Fluvoxamine treatment and D(2) receptors: a pet study on OCD drug-naive patients. Neuropsychopharmacology 2007;32:197-205.CrossRefPubMed Moresco RM, Pietra L, Henin M, Panzacchi A, Locatelli M, Bonaldi L, et al. Fluvoxamine treatment and D(2) receptors: a pet study on OCD drug-naive patients. Neuropsychopharmacology 2007;32:197-205.CrossRefPubMed
27.
go back to reference Todde S, Moresco RM, Simonelli P, Baraldi PG, Cacciari B, Spalluto G, et al. Design, radiosynthesis, and biodistribution of a new potent and selective ligand for in vivo imaging of the adenosine A(2A) receptor system using positron emission tomography. J Med Chem 2000;43:4359-62.CrossRefPubMed Todde S, Moresco RM, Simonelli P, Baraldi PG, Cacciari B, Spalluto G, et al. Design, radiosynthesis, and biodistribution of a new potent and selective ligand for in vivo imaging of the adenosine A(2A) receptor system using positron emission tomography. J Med Chem 2000;43:4359-62.CrossRefPubMed
28.
go back to reference Gordon RJ, Tattersfield AS, Vazey EM, Kells AP, McGregor AL, Hughes SM, et al. Temporal profile of subventricular zone progenitor cell migration following quinolinic acid-induced striatal cell loss. Neuroscience 2007;146:1704-18.CrossRefPubMed Gordon RJ, Tattersfield AS, Vazey EM, Kells AP, McGregor AL, Hughes SM, et al. Temporal profile of subventricular zone progenitor cell migration following quinolinic acid-induced striatal cell loss. Neuroscience 2007;146:1704-18.CrossRefPubMed
29.
go back to reference Tattersfield AS, Croon RJ, Liu YW, Kells AP, Faull RL, Connor B. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington’s disease. Neuroscience 2004;127:319-32.CrossRefPubMed Tattersfield AS, Croon RJ, Liu YW, Kells AP, Faull RL, Connor B. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington’s disease. Neuroscience 2004;127:319-32.CrossRefPubMed
30.
go back to reference Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 4th ed. New York: Academic; 1998. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 4th ed. New York: Academic; 1998.
31.
go back to reference Moresco RM, Loc’h C, Ottaviani M, Guibert B, Leviel V, Maziere M, et al. Effects of dopamine on the in vivo binding of dopamine D2 receptor radioligands in rat striatum. Nucl Med Biol 1999;26:91-8.CrossRefPubMed Moresco RM, Loc’h C, Ottaviani M, Guibert B, Leviel V, Maziere M, et al. Effects of dopamine on the in vivo binding of dopamine D2 receptor radioligands in rat striatum. Nucl Med Biol 1999;26:91-8.CrossRefPubMed
32.
go back to reference Ishiwata K, Ogi N, Hayakawa N, Umegaki H, Nagaoka T, Oda K, et al. Positron emission tomography and ex vivo and in vitro autoradiography studies on dopamine D2-like receptor degeneration in the quinolinic acid-lesioned rat striatum: comparison of [11C]raclopride, [11C]nemonapride and [11C]N-methylspiperone. Nucl Med Biol 2002;29:307-16.CrossRefPubMed Ishiwata K, Ogi N, Hayakawa N, Umegaki H, Nagaoka T, Oda K, et al. Positron emission tomography and ex vivo and in vitro autoradiography studies on dopamine D2-like receptor degeneration in the quinolinic acid-lesioned rat striatum: comparison of [11C]raclopride, [11C]nemonapride and [11C]N-methylspiperone. Nucl Med Biol 2002;29:307-16.CrossRefPubMed
33.
go back to reference Rosin DL, Hettinger BD, Lee A, Linden J. Anatomy of adenosine A2A receptors in brain: morphological substrates for integration of striatal function. Neurology 2003;61:S12-8.CrossRefPubMed Rosin DL, Hettinger BD, Lee A, Linden J. Anatomy of adenosine A2A receptors in brain: morphological substrates for integration of striatal function. Neurology 2003;61:S12-8.CrossRefPubMed
34.
go back to reference Kalda A, Yu L, Oztas E, Chen JF. Novel neuroprotection by caffeine and adenosine A(2A) receptor antagonists in animal models of Parkinson’s disease. J Neurol Sci 2006;248:9-15.CrossRefPubMed Kalda A, Yu L, Oztas E, Chen JF. Novel neuroprotection by caffeine and adenosine A(2A) receptor antagonists in animal models of Parkinson’s disease. J Neurol Sci 2006;248:9-15.CrossRefPubMed
35.
go back to reference Huang QY, Wei C, Yu L, Coelho JE, Shen HY, Kalda A, et al. Adenosine A2A receptors in bone marrow-derived cells but not in forebrain neurons are important contributors to 3-nitropropionic acid-induced striatal damage as revealed by cell-type-selective inactivation. J Neurosci 2006;26:11371-8.CrossRefPubMed Huang QY, Wei C, Yu L, Coelho JE, Shen HY, Kalda A, et al. Adenosine A2A receptors in bone marrow-derived cells but not in forebrain neurons are important contributors to 3-nitropropionic acid-induced striatal damage as revealed by cell-type-selective inactivation. J Neurosci 2006;26:11371-8.CrossRefPubMed
36.
go back to reference Heese K, Fiebich BL, Bauer J, Otten U. Nerve growth factor (NGF) expression in rat microglia is induced by adenosine A2A-receptors. Neurosci Lett 1997;231:83-6.CrossRefPubMed Heese K, Fiebich BL, Bauer J, Otten U. Nerve growth factor (NGF) expression in rat microglia is induced by adenosine A2A-receptors. Neurosci Lett 1997;231:83-6.CrossRefPubMed
37.
go back to reference Bal A, Bachelot T, Savasta M, Manier M, Verna JM, Benabid AL, et al. Evidence for dopamine D2 receptor mRNA expression by striatal astrocytes in culture: in situ hybridization and polymerase chain reaction studies. Brain Res Mol Brain Res 1994;23:204-12.CrossRefPubMed Bal A, Bachelot T, Savasta M, Manier M, Verna JM, Benabid AL, et al. Evidence for dopamine D2 receptor mRNA expression by striatal astrocytes in culture: in situ hybridization and polymerase chain reaction studies. Brain Res Mol Brain Res 1994;23:204-12.CrossRefPubMed
38.
go back to reference Khan ZU, Koulen P, Rubinstein M, Grandy DK, Goldman-Rakic PS. An astroglia-linked dopamine D2-receptor action in prefrontal cortex. Proc Natl Acad Sci U S A 2001;98:1964-9.CrossRefPubMedPubMedCentral Khan ZU, Koulen P, Rubinstein M, Grandy DK, Goldman-Rakic PS. An astroglia-linked dopamine D2-receptor action in prefrontal cortex. Proc Natl Acad Sci U S A 2001;98:1964-9.CrossRefPubMedPubMedCentral
39.
go back to reference Nishino H, Kumazaki M, Fukuda A, Fujimoto I, Shimano Y, Hida H, et al. Acute 3-nitropropionic acid intoxication induces striatal astrocytic cell death and dysfunction of the blood-brain barrier: involvement of dopamine toxicity. Neurosci Res 1997;27:343-55.CrossRefPubMed Nishino H, Kumazaki M, Fukuda A, Fujimoto I, Shimano Y, Hida H, et al. Acute 3-nitropropionic acid intoxication induces striatal astrocytic cell death and dysfunction of the blood-brain barrier: involvement of dopamine toxicity. Neurosci Res 1997;27:343-55.CrossRefPubMed
40.
go back to reference Gebicke-Haerter PJ, Christoffel F, Timmer J, Northoff H, Berger M, Van Calker D. Both adenosine A1- and A2-receptors are required to stimulate microglial proliferation. Neurochem Int 1996;29:37-42.CrossRefPubMed Gebicke-Haerter PJ, Christoffel F, Timmer J, Northoff H, Berger M, Van Calker D. Both adenosine A1- and A2-receptors are required to stimulate microglial proliferation. Neurochem Int 1996;29:37-42.CrossRefPubMed
41.
go back to reference Ryu JK, Choi HB, McLarnon JG. Peripheral benzodiazepine receptor ligand PK11195 reduces microglial activation and neuronal death in quinolinic acid-injected rat striatum. Neurobiol Dis 2005;20:550-61.CrossRefPubMed Ryu JK, Choi HB, McLarnon JG. Peripheral benzodiazepine receptor ligand PK11195 reduces microglial activation and neuronal death in quinolinic acid-injected rat striatum. Neurobiol Dis 2005;20:550-61.CrossRefPubMed
42.
go back to reference Dihne M, Block F, Korr H, Topper R. Time course of glial proliferation and glial apoptosis following excitotoxic CNS injury. Brain Res 2001;902:178-89.CrossRefPubMed Dihne M, Block F, Korr H, Topper R. Time course of glial proliferation and glial apoptosis following excitotoxic CNS injury. Brain Res 2001;902:178-89.CrossRefPubMed
43.
go back to reference Venneti S, Lopresti BJ, Wiley CA. The peripheral benzodiazepine receptor (Translocator protein 18kDa) in microglia: from pathology to imaging. Prog Neurobiol 2006;80:308-22.CrossRefPubMedPubMedCentral Venneti S, Lopresti BJ, Wiley CA. The peripheral benzodiazepine receptor (Translocator protein 18kDa) in microglia: from pathology to imaging. Prog Neurobiol 2006;80:308-22.CrossRefPubMedPubMedCentral
44.
go back to reference Rojas S, Martin A, Arranz MJ, Pareto D, Purroy J, Verdaguer E, et al. Imaging brain inflammation with [(11)C]PK11195 by PET and induction of the peripheral-type benzodiazepine receptor after transient focal ischemia in rats. J Cereb Blood Flow Metab 2007;27:1975-86.CrossRefPubMed Rojas S, Martin A, Arranz MJ, Pareto D, Purroy J, Verdaguer E, et al. Imaging brain inflammation with [(11)C]PK11195 by PET and induction of the peripheral-type benzodiazepine receptor after transient focal ischemia in rats. J Cereb Blood Flow Metab 2007;27:1975-86.CrossRefPubMed
45.
go back to reference Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, et al. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 2006;66:1638-43.CrossRefPubMed Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, et al. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 2006;66:1638-43.CrossRefPubMed
46.
go back to reference Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007;8:57-69.CrossRefPubMed Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007;8:57-69.CrossRefPubMed
47.
go back to reference Guidetti P, Luthi-Carter RE, Augood SJ, Schwarcz R. Neostriatal and cortical quinolinate levels are increased in early grade Huntington’s disease. Neurobiol Dis 2004;17:455-61.CrossRefPubMed Guidetti P, Luthi-Carter RE, Augood SJ, Schwarcz R. Neostriatal and cortical quinolinate levels are increased in early grade Huntington’s disease. Neurobiol Dis 2004;17:455-61.CrossRefPubMed
49.
go back to reference Giorgini F, Guidetti P, Nguyen Q, Bennett SC, Muchowski PJ. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet 2005;37:526-31.CrossRefPubMedPubMedCentral Giorgini F, Guidetti P, Nguyen Q, Bennett SC, Muchowski PJ. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet 2005;37:526-31.CrossRefPubMedPubMedCentral
Metadata
Title
Quinolinic acid induced neurodegeneration in the striatum: a combined in vivo and in vitro analysis of receptor changes and microglia activation
Authors
R. M. Moresco
T. Lavazza
S. Belloli
M. Lecchi
A. Pezzola
S. Todde
M. Matarrese
A. Carpinelli
E. Turolla
V. Zimarino
P. Popoli
A. Malgaroli
F. Fazio
Publication date
01-04-2008
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 4/2008
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-007-0651-7

Other articles of this Issue 4/2008

European Journal of Nuclear Medicine and Molecular Imaging 4/2008 Go to the issue