Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 1/2008

01-01-2008 | Review Article

Multimodality imaging of the HER-kinase axis in cancer

Authors: Weibo Cai, Gang Niu, Xiaoyuan Chen

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 1/2008

Login to get access

Abstract

The human epidermal growth factor receptor (HER) family of receptor tyrosine kinases controls critical pathways involved in epithelial cell differentiation, growth, division, and motility. Alterations and disruptions in the function of the HER-kinase axis can lead to malignancy. Many therapeutic agents targeting the HER-kinase axis are approved for clinical use or are in preclinical/clinical development. The ability to quantitatively image the HER-kinase axis in a noninvasive manner can aid in lesion detection, patient stratification, new drug development/validation, dose optimization, and treatment monitoring. This review summarizes the current status in multimodality imaging of the HER-kinase axis using PET, SPECT, optical, and MR imaging. The targeting ligands used include small-molecule tyrosine kinase inhibitors, peptides, proteins, antibodies, and engineered antibody fragments. EGFR and HER2 imaging have been well documented in the past, and imaging of HER3, HER4, HER heterodimers, and HER-kinase mutants deserves significant research effort in the future. Successful development of new HER-kinase-targeted imaging agents with optimal in vivo stability, targeting efficacy, and desirable pharmacokinetics for clinical translation will enable maximum benefit in cancer patient management.
Literature
1.
go back to reference Lin CR, Chen WS, Kruiger W, Stolarsky LS, Weber W, Evans RM, et al. Expression cloning of human EGF receptor complementary DNA: gene amplification and three related messenger RNA products in A431 cells. Science 1984;224:843–8.PubMed Lin CR, Chen WS, Kruiger W, Stolarsky LS, Weber W, Evans RM, et al. Expression cloning of human EGF receptor complementary DNA: gene amplification and three related messenger RNA products in A431 cells. Science 1984;224:843–8.PubMed
2.
go back to reference Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, et al. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 1984;307:521–7.PubMed Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, et al. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 1984;307:521–7.PubMed
3.
go back to reference Casalini P, Iorio MV, Galmozzi E, Menard S. Role of HER receptors family in development and differentiation. J Cell Physiol 2004;200:343–50.PubMed Casalini P, Iorio MV, Galmozzi E, Menard S. Role of HER receptors family in development and differentiation. J Cell Physiol 2004;200:343–50.PubMed
4.
go back to reference Mass RD. The HER receptor family: a rich target for therapeutic development. Int J Radiat Oncol Biol Phys 2004;58:932–40.PubMed Mass RD. The HER receptor family: a rich target for therapeutic development. Int J Radiat Oncol Biol Phys 2004;58:932–40.PubMed
5.
go back to reference Gross ME, Shazer RL, Agus DB. Targeting the HER-kinase axis in cancer. Semin Oncol 2004;31:9–20.PubMed Gross ME, Shazer RL, Agus DB. Targeting the HER-kinase axis in cancer. Semin Oncol 2004;31:9–20.PubMed
6.
go back to reference Prichard JW, Brass LM. New anatomical and functional imaging methods. Ann Neurol 1992;32:395–400.PubMed Prichard JW, Brass LM. New anatomical and functional imaging methods. Ann Neurol 1992;32:395–400.PubMed
7.
8.
go back to reference Detre JA. Clinical applicability of functional MRI. J Magn Reson Imaging 2006;23:808–15.PubMed Detre JA. Clinical applicability of functional MRI. J Magn Reson Imaging 2006;23:808–15.PubMed
9.
go back to reference Weissleder R, Mahmood U. Molecular imaging. Radiology 2001;219:316–33.PubMed Weissleder R, Mahmood U. Molecular imaging. Radiology 2001;219:316–33.PubMed
10.
go back to reference Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003;17:545–80.PubMed Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003;17:545–80.PubMed
11.
go back to reference Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41:1369–79.PubMed Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41:1369–79.PubMed
12.
go back to reference Even-Sapir E, Lerman H, Lievshitz G, Khafif A, Fliss DM, Schwartz A, et al. Lymphoscintigraphy for sentinel node mapping using a hybrid SPECT/CT system. J Nucl Med 2003;44:1413–20.PubMed Even-Sapir E, Lerman H, Lievshitz G, Khafif A, Fliss DM, Schwartz A, et al. Lymphoscintigraphy for sentinel node mapping using a hybrid SPECT/CT system. J Nucl Med 2003;44:1413–20.PubMed
13.
go back to reference Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 2006;47:1968–76.PubMed Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 2006;47:1968–76.PubMed
14.
go back to reference Cai W, Rao J, Gambhir SS, Chen X. How molecular imaging is speeding up anti-angiogenic drug development. Mol Cancer Ther 2006;5:2624–33.PubMed Cai W, Rao J, Gambhir SS, Chen X. How molecular imaging is speeding up anti-angiogenic drug development. Mol Cancer Ther 2006;5:2624–33.PubMed
15.
go back to reference Arteaga C. Targeting HER1/EGFR: a molecular approach to cancer therapy. Semin Oncol 2003;30:3–14. Arteaga C. Targeting HER1/EGFR: a molecular approach to cancer therapy. Semin Oncol 2003;30:3–14.
16.
go back to reference Sebastian S, Settleman J, Reshkin SJ, Azzariti A, Bellizzi A, Paradiso A. The complexity of targeting EGFR signalling in cancer: from expression to turnover. Biochim Biophys Acta 2006;1766:120–39.PubMed Sebastian S, Settleman J, Reshkin SJ, Azzariti A, Bellizzi A, Paradiso A. The complexity of targeting EGFR signalling in cancer: from expression to turnover. Biochim Biophys Acta 2006;1766:120–39.PubMed
17.
go back to reference Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000;103:211–25.PubMed Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000;103:211–25.PubMed
18.
go back to reference Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 2006;366:2–16.PubMed Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 2006;366:2–16.PubMed
19.
go back to reference Moscatello DK, Holgado-Madruga M, Godwin AK, Ramirez G, Gunn G, Zoltick PW, et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumours. Cancer Res 1995;55:5536–9.PubMed Moscatello DK, Holgado-Madruga M, Godwin AK, Ramirez G, Gunn G, Zoltick PW, et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumours. Cancer Res 1995;55:5536–9.PubMed
20.
go back to reference Moscatello DK, Montgomery RB, Sundareshan P, McDanel H, Wong MY, Wong AJ. Transformational and altered signal transduction by a naturally occurring mutant EGF receptor. Oncogene 1996;13:85–96.PubMed Moscatello DK, Montgomery RB, Sundareshan P, McDanel H, Wong MY, Wong AJ. Transformational and altered signal transduction by a naturally occurring mutant EGF receptor. Oncogene 1996;13:85–96.PubMed
21.
go back to reference Pedersen MW, Meltorn M, Damstrup L, Poulsen HS. The type III epidermal growth factor receptor mutation. Biological significance and potential target for anti-cancer therapy. Ann Oncol 2001;12:745–60.PubMed Pedersen MW, Meltorn M, Damstrup L, Poulsen HS. The type III epidermal growth factor receptor mutation. Biological significance and potential target for anti-cancer therapy. Ann Oncol 2001;12:745–60.PubMed
22.
go back to reference Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350:2129–39.PubMed Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350:2129–39.PubMed
23.
go back to reference Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 2004;305:1163–7.PubMed Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 2004;305:1163–7.PubMed
24.
go back to reference Lohrisch C, Piccart M. An overview of HER2. Semin Oncol 2001;28:3–11.PubMed Lohrisch C, Piccart M. An overview of HER2. Semin Oncol 2001;28:3–11.PubMed
25.
go back to reference Menard S, Casalini P, Campiglio M, Pupa SM, Tagliabue E. Role of HER2/neu in tumour progression and therapy. Cell Mol Life Sci 2004;61:2965–78.PubMed Menard S, Casalini P, Campiglio M, Pupa SM, Tagliabue E. Role of HER2/neu in tumour progression and therapy. Cell Mol Life Sci 2004;61:2965–78.PubMed
26.
go back to reference Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2:127–37.PubMed Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2:127–37.PubMed
27.
go back to reference Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987;235:177–82.PubMed Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987;235:177–82.PubMed
28.
go back to reference Koeppen HK, Wright BD, Burt AD, Quirke P, McNicol AM, Dybdal NO, et al. Overexpression of HER2/neu in solid tumours: an immunohistochemical survey. Histopathology 2001;38:96–104.PubMed Koeppen HK, Wright BD, Burt AD, Quirke P, McNicol AM, Dybdal NO, et al. Overexpression of HER2/neu in solid tumours: an immunohistochemical survey. Histopathology 2001;38:96–104.PubMed
29.
go back to reference Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 1988;54:105–15.PubMed Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 1988;54:105–15.PubMed
30.
go back to reference Guy CT, Cardiff RD, Muller WJ. Activated neu induces rapid tumour progression. J Biol Chem 1996;271:7673–8.PubMed Guy CT, Cardiff RD, Muller WJ. Activated neu induces rapid tumour progression. J Biol Chem 1996;271:7673–8.PubMed
31.
go back to reference Lemoine NR, Staddon S, Dickson C, Barnes DM, Gullick WJ. Absence of activating transmembrane mutations in the c-erbB-2 proto-oncogene in human breast cancer. Oncogene 1990;5:237–9.PubMed Lemoine NR, Staddon S, Dickson C, Barnes DM, Gullick WJ. Absence of activating transmembrane mutations in the c-erbB-2 proto-oncogene in human breast cancer. Oncogene 1990;5:237–9.PubMed
32.
go back to reference Ursini-Siegel J, Schade B, Cardiff RD, Muller WJ. Insights from transgenic mouse models of ERBB2-induced breast cancer. Nat Rev Cancer 2007;7:389–97.PubMed Ursini-Siegel J, Schade B, Cardiff RD, Muller WJ. Insights from transgenic mouse models of ERBB2-induced breast cancer. Nat Rev Cancer 2007;7:389–97.PubMed
33.
go back to reference Gullick WJ. The c-erbB3/HER3 receptor in human cancer. Cancer Surv 1996;27:339–49.PubMed Gullick WJ. The c-erbB3/HER3 receptor in human cancer. Cancer Surv 1996;27:339–49.PubMed
34.
go back to reference Carpenter G. ErbB-4: mechanism of action and biology. Exp Cell Res 2003;284:66–77.PubMed Carpenter G. ErbB-4: mechanism of action and biology. Exp Cell Res 2003;284:66–77.PubMed
35.
go back to reference Ranson M, Sliwkowski MX. Perspectives on anti-HER monoclonal antibodies. Oncology 2002;63 Suppl 1:17–24.PubMed Ranson M, Sliwkowski MX. Perspectives on anti-HER monoclonal antibodies. Oncology 2002;63 Suppl 1:17–24.PubMed
36.
go back to reference Albanell J, Codony J, Rovira A, Mellado B, Gascon P. Mechanism of action of anti-HER2 monoclonal antibodies: scientific update on trastuzumab and 2C4. Adv Exp Med Biol 2003;532:253–68.PubMed Albanell J, Codony J, Rovira A, Mellado B, Gascon P. Mechanism of action of anti-HER2 monoclonal antibodies: scientific update on trastuzumab and 2C4. Adv Exp Med Biol 2003;532:253–68.PubMed
37.
go back to reference Ciardiello F, Damiano V, Bianco R, Bianco C, Fontanini G, De Laurentiis M, et al. Antitumour activity of combined blockade of epidermal growth factor receptor and protein kinase A. J Natl Cancer Inst 1996;88:1770–6.PubMed Ciardiello F, Damiano V, Bianco R, Bianco C, Fontanini G, De Laurentiis M, et al. Antitumour activity of combined blockade of epidermal growth factor receptor and protein kinase A. J Natl Cancer Inst 1996;88:1770–6.PubMed
38.
39.
go back to reference Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006;354:567–78.PubMed Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006;354:567–78.PubMed
40.
go back to reference Thienelt CD, Bunn PA Jr, Hanna N, Rosenberg A, Needle MN, Long ME, et al. Multicenter phase I/II study of cetuximab with paclitaxel and carboplatin in untreated patients with stage IV non-small-cell lung cancer. J Clin Oncol 2005;23:8786–93.PubMed Thienelt CD, Bunn PA Jr, Hanna N, Rosenberg A, Needle MN, Long ME, et al. Multicenter phase I/II study of cetuximab with paclitaxel and carboplatin in untreated patients with stage IV non-small-cell lung cancer. J Clin Oncol 2005;23:8786–93.PubMed
41.
go back to reference Xiong HQ, Rosenberg A, LoBuglio A, Schmidt W, Wolff RA, Deutsch J, et al. Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor, in combination with gemcitabine for advanced pancreatic cancer: a multicenter phase II Trial. J Clin Oncol 2004;22:2610–6.PubMed Xiong HQ, Rosenberg A, LoBuglio A, Schmidt W, Wolff RA, Deutsch J, et al. Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor, in combination with gemcitabine for advanced pancreatic cancer: a multicenter phase II Trial. J Clin Oncol 2004;22:2610–6.PubMed
42.
go back to reference Frieze DA, McCune JS. Current status of cetuximab for the treatment of patients with solid tumours. Ann Pharmacother 2006;40:241–50.PubMed Frieze DA, McCune JS. Current status of cetuximab for the treatment of patients with solid tumours. Ann Pharmacother 2006;40:241–50.PubMed
43.
go back to reference Cohenuram M, Saif MW. Panitumumab, the first fully human monoclonal antibody: from the bench to the clinic. Anticancer Drugs 2007;18:7–15.PubMed Cohenuram M, Saif MW. Panitumumab, the first fully human monoclonal antibody: from the bench to the clinic. Anticancer Drugs 2007;18:7–15.PubMed
44.
go back to reference Harries M, Smith I. The development and clinical use of trastuzumab (Herceptin). Endocr Relat Cancer 2002;9:75–85.PubMed Harries M, Smith I. The development and clinical use of trastuzumab (Herceptin). Endocr Relat Cancer 2002;9:75–85.PubMed
45.
go back to reference Agus DB, Gordon MS, Taylor C, Natale RB, Karlan B, Mendelson DS, et al. Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J Clin Oncol 2005;23:2534–43.PubMed Agus DB, Gordon MS, Taylor C, Natale RB, Karlan B, Mendelson DS, et al. Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J Clin Oncol 2005;23:2534–43.PubMed
46.
go back to reference Rowinsky EK, Schwartz GH, Gollob JA, Thompson JA, Vogelzang NJ, Figlin R, et al. Safety, pharmacokinetics, and activity of ABX-EGF, a fully human anti-epidermal growth factor receptor monoclonal antibody in patients with metastatic renal cell cancer. J Clin Oncol 2004;22:3003–15.PubMed Rowinsky EK, Schwartz GH, Gollob JA, Thompson JA, Vogelzang NJ, Figlin R, et al. Safety, pharmacokinetics, and activity of ABX-EGF, a fully human anti-epidermal growth factor receptor monoclonal antibody in patients with metastatic renal cell cancer. J Clin Oncol 2004;22:3003–15.PubMed
47.
go back to reference Crombet T, Osorio M, Cruz T, Roca C, del Castillo R, Mon R, et al. Use of the humanized anti-epidermal growth factor receptor monoclonal antibody h-R3 in combination with radiotherapy in the treatment of locally advanced head and neck cancer patients. J Clin Oncol 2004;22:1646–54.PubMed Crombet T, Osorio M, Cruz T, Roca C, del Castillo R, Mon R, et al. Use of the humanized anti-epidermal growth factor receptor monoclonal antibody h-R3 in combination with radiotherapy in the treatment of locally advanced head and neck cancer patients. J Clin Oncol 2004;22:1646–54.PubMed
48.
go back to reference Vanhoefer U, Tewes M, Rojo F, Dirsch O, Schleucher N, Rosen O, et al. Phase I study of the humanized antiepidermal growth factor receptor monoclonal antibody EMD72000 in patients with advanced solid tumours that express the epidermal growth factor receptor. J Clin Oncol 2004;22:175–84.PubMed Vanhoefer U, Tewes M, Rojo F, Dirsch O, Schleucher N, Rosen O, et al. Phase I study of the humanized antiepidermal growth factor receptor monoclonal antibody EMD72000 in patients with advanced solid tumours that express the epidermal growth factor receptor. J Clin Oncol 2004;22:175–84.PubMed
49.
go back to reference Scott AM, Lee FT, Tebbutt N, Herbertson R, Gill SS, Liu Z, et al. A phase I clinical trial with monoclonal antibody ch806 targeting transitional state and mutant epidermal growth factor receptors. Proc Natl Acad Sci USA 2007;104:4071–6.PubMed Scott AM, Lee FT, Tebbutt N, Herbertson R, Gill SS, Liu Z, et al. A phase I clinical trial with monoclonal antibody ch806 targeting transitional state and mutant epidermal growth factor receptors. Proc Natl Acad Sci USA 2007;104:4071–6.PubMed
50.
go back to reference Seiden MV, Burris HA, Matulonis U, Hall JB, Armstrong DK, Speyer J, et al. A phase II trial of EMD72000 (matuzumab), a humanized anti-EGFR monoclonal antibody, in patients with platinum-resistant ovarian and primary peritoneal malignancies. Gynecol Oncol 2007;104:727–31.PubMed Seiden MV, Burris HA, Matulonis U, Hall JB, Armstrong DK, Speyer J, et al. A phase II trial of EMD72000 (matuzumab), a humanized anti-EGFR monoclonal antibody, in patients with platinum-resistant ovarian and primary peritoneal malignancies. Gynecol Oncol 2007;104:727–31.PubMed
51.
go back to reference Modjtahedi H, Hickish T, Nicolson M, Moore J, Styles J, Eccles S, et al. Phase I trial and tumour localisation of the anti-EGFR monoclonal antibody ICR62 in head and neck or lung cancer. Br J Cancer 1996;73:228–35.PubMed Modjtahedi H, Hickish T, Nicolson M, Moore J, Styles J, Eccles S, et al. Phase I trial and tumour localisation of the anti-EGFR monoclonal antibody ICR62 in head and neck or lung cancer. Br J Cancer 1996;73:228–35.PubMed
52.
go back to reference Repp R, van Ojik HH, Valerius T, Groenewegen G, Wieland G, Oetzel C, et al. Phase I clinical trial of the bispecific antibody MDX-H210 (anti-FcgammaRI x anti-HER-2/neu) in combination with Filgrastim (G-CSF) for treatment of advanced breast cancer. Br J Cancer 2003;89:2234–43.PubMed Repp R, van Ojik HH, Valerius T, Groenewegen G, Wieland G, Oetzel C, et al. Phase I clinical trial of the bispecific antibody MDX-H210 (anti-FcgammaRI x anti-HER-2/neu) in combination with Filgrastim (G-CSF) for treatment of advanced breast cancer. Br J Cancer 2003;89:2234–43.PubMed
53.
go back to reference Arteaga CL, Moulder SL, Yakes FM. HER (erbB) tyrosine kinase inhibitors in the treatment of breast cancer. Semin Oncol 2002;29:4–10.PubMed Arteaga CL, Moulder SL, Yakes FM. HER (erbB) tyrosine kinase inhibitors in the treatment of breast cancer. Semin Oncol 2002;29:4–10.PubMed
54.
go back to reference Herbst RS, Fukuoka M, Baselga J. Gefitinib-a novel targeted approach to treating cancer. Nat Rev Cancer 2004;4:956–65.PubMed Herbst RS, Fukuoka M, Baselga J. Gefitinib-a novel targeted approach to treating cancer. Nat Rev Cancer 2004;4:956–65.PubMed
55.
go back to reference Soulieres D, Senzer NN, Vokes EE, Hidalgo M, Agarwala SS, Siu LL. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol 2004;22:77–85.PubMed Soulieres D, Senzer NN, Vokes EE, Hidalgo M, Agarwala SS, Siu LL. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol 2004;22:77–85.PubMed
56.
go back to reference Spivak-Kroizman T, Rotin D, Pinchasi D, Ullrich A, Schlessinger J, Lax I. Heterodimerization of c-erbB2 with different epidermal growth factor receptor mutants elicits stimulatory or inhibitory responses. J Biol Chem 1992;267:8056–63.PubMed Spivak-Kroizman T, Rotin D, Pinchasi D, Ullrich A, Schlessinger J, Lax I. Heterodimerization of c-erbB2 with different epidermal growth factor receptor mutants elicits stimulatory or inhibitory responses. J Biol Chem 1992;267:8056–63.PubMed
57.
go back to reference Krahn G, Leiter U, Kaskel P, Udart M, Utikal J, Bezold G, et al. Coexpression patterns of EGFR, HER2, HER3 and HER4 in non-melanoma skin cancer. Eur J Cancer 2001;37:251–9.PubMed Krahn G, Leiter U, Kaskel P, Udart M, Utikal J, Bezold G, et al. Coexpression patterns of EGFR, HER2, HER3 and HER4 in non-melanoma skin cancer. Eur J Cancer 2001;37:251–9.PubMed
58.
go back to reference Lackey KE. Lessons from the drug discovery of lapatinib, a dual ErbB1/2 tyrosine kinase inhibitor. Curr Top Med Chem 2006;6:435–60.PubMed Lackey KE. Lessons from the drug discovery of lapatinib, a dual ErbB1/2 tyrosine kinase inhibitor. Curr Top Med Chem 2006;6:435–60.PubMed
59.
go back to reference Slichenmyer WJ, Elliott WL, Fry DW. CI-1033, a pan-erbB tyrosine kinase inhibitor. Semin Oncol 2001;28:80–5.PubMed Slichenmyer WJ, Elliott WL, Fry DW. CI-1033, a pan-erbB tyrosine kinase inhibitor. Semin Oncol 2001;28:80–5.PubMed
60.
go back to reference Campos S, Hamid O, Seiden MV, Oza A, Plante M, Potkul RK, et al. Multicenter, randomized phase II trial of oral CI-1033 for previously treated advanced ovarian cancer. J Clin Oncol 2005;23:5597–604.PubMed Campos S, Hamid O, Seiden MV, Oza A, Plante M, Potkul RK, et al. Multicenter, randomized phase II trial of oral CI-1033 for previously treated advanced ovarian cancer. J Clin Oncol 2005;23:5597–604.PubMed
61.
go back to reference Garland LL, Hidalgo M, Mendelson DS, Ryan DP, Arun BK, Lovalvo JL, et al. A phase I clinical and pharmacokinetic study of oral CI-1033 in combination with docetaxel in patients with advanced solid tumours. Clin Cancer Res 2006;12:4274–82.PubMed Garland LL, Hidalgo M, Mendelson DS, Ryan DP, Arun BK, Lovalvo JL, et al. A phase I clinical and pharmacokinetic study of oral CI-1033 in combination with docetaxel in patients with advanced solid tumours. Clin Cancer Res 2006;12:4274–82.PubMed
62.
go back to reference Simon GR, Garrett CR, Olson SC, Langevin M, Eiseman IA, Mahany JJ, et al. Increased bioavailability of intravenous versus oral CI-1033, a pan erbB tyrosine kinase inhibitor: results of a phase I pharmacokinetic study. Clin Cancer Res 2006;12:4645–51.PubMed Simon GR, Garrett CR, Olson SC, Langevin M, Eiseman IA, Mahany JJ, et al. Increased bioavailability of intravenous versus oral CI-1033, a pan erbB tyrosine kinase inhibitor: results of a phase I pharmacokinetic study. Clin Cancer Res 2006;12:4645–51.PubMed
63.
go back to reference Erlichman C, Hidalgo M, Boni JP, Martins P, Quinn SE, Zacharchuk C, et al. Phase I study of EKB-569, an irreversible inhibitor of the epidermal growth factor receptor, in patients with advanced solid tumours. J Clin Oncol 2006;24:2252–60.PubMed Erlichman C, Hidalgo M, Boni JP, Martins P, Quinn SE, Zacharchuk C, et al. Phase I study of EKB-569, an irreversible inhibitor of the epidermal growth factor receptor, in patients with advanced solid tumours. J Clin Oncol 2006;24:2252–60.PubMed
64.
go back to reference Yoshimura N, Kudoh S, Kimura T, Mitsuoka S, Matsuura K, Hirata K, et al. EKB-569, a new irreversible epidermal growth factor receptor tyrosine kinase inhibitor, with clinical activity in patients with non-small cell lung cancer with acquired resistance to gefitinib. Lung Cancer 2006;51:363–8.PubMed Yoshimura N, Kudoh S, Kimura T, Mitsuoka S, Matsuura K, Hirata K, et al. EKB-569, a new irreversible epidermal growth factor receptor tyrosine kinase inhibitor, with clinical activity in patients with non-small cell lung cancer with acquired resistance to gefitinib. Lung Cancer 2006;51:363–8.PubMed
65.
go back to reference Nowakowski GS, McCollum AK, Ames MM, Mandrekar SJ, Reid JM, Adjei AA, et al. A phase I trial of twice-weekly 17-allylamino-demethoxy-geldanamycin in patients with advanced cancer. Clin Cancer Res 2006;12:6087–93.PubMed Nowakowski GS, McCollum AK, Ames MM, Mandrekar SJ, Reid JM, Adjei AA, et al. A phase I trial of twice-weekly 17-allylamino-demethoxy-geldanamycin in patients with advanced cancer. Clin Cancer Res 2006;12:6087–93.PubMed
66.
go back to reference Hoekstra R, Dumez H, Eskens FA, van der Gaast A, Planting AS, de Heus G, et al. Phase I and pharmacologic study of PKI166, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. Clin Cancer Res 2005;11:6908–15.PubMed Hoekstra R, Dumez H, Eskens FA, van der Gaast A, Planting AS, de Heus G, et al. Phase I and pharmacologic study of PKI166, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. Clin Cancer Res 2005;11:6908–15.PubMed
67.
go back to reference Burris HA 3rd, Hurwitz HI, Dees EC, Dowlati A, Blackwell KL, O’Neil B, et al. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol 2005;23:5305–13.PubMed Burris HA 3rd, Hurwitz HI, Dees EC, Dowlati A, Blackwell KL, O’Neil B, et al. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol 2005;23:5305–13.PubMed
68.
go back to reference Johnston SR, Leary A. Lapatinib: a novel EGFR/HER2 tyrosine kinase inhibitor for cancer. Drugs Today (Barc) 2006;42:441–53. Johnston SR, Leary A. Lapatinib: a novel EGFR/HER2 tyrosine kinase inhibitor for cancer. Drugs Today (Barc) 2006;42:441–53.
69.
go back to reference Montemurro F, Valabrega G, Aglietta M. Lapatinib: a dual inhibitor of EGFR and HER2 tyrosine kinase activity. Expert Opin Biol Ther 2007;7:257–68.PubMed Montemurro F, Valabrega G, Aglietta M. Lapatinib: a dual inhibitor of EGFR and HER2 tyrosine kinase activity. Expert Opin Biol Ther 2007;7:257–68.PubMed
70.
go back to reference Zhang X, Cai W, Cao F, Schreibmann E, Wu Y, Wu JC, et al. 18F-labeled bombesin analogs for targeting GRP receptor-expressing prostate cancer. J Nucl Med 2006;47:492–501.PubMed Zhang X, Cai W, Cao F, Schreibmann E, Wu Y, Wu JC, et al. 18F-labeled bombesin analogs for targeting GRP receptor-expressing prostate cancer. J Nucl Med 2006;47:492–501.PubMed
71.
go back to reference Cai W, Zhang X, Wu Y, Chen X. A thiol-reactive 18F-labeling agent, N-[2-(4-18F-fluorobenzamido)ethyl]maleimide (18F-FBEM), and the synthesis of RGD peptide-based tracer for PET imaging of αvβ3 integrin expression. J Nucl Med 2006;47:1172–80.PubMed Cai W, Zhang X, Wu Y, Chen X. A thiol-reactive 18F-labeling agent, N-[2-(4-18F-fluorobenzamido)ethyl]maleimide (18F-FBEM), and the synthesis of RGD peptide-based tracer for PET imaging of αvβ3 integrin expression. J Nucl Med 2006;47:1172–80.PubMed
72.
go back to reference Hsu AR, Cai W, Veeravagu A, Mohamedali KA, Chen K, Kim S, et al. Multimodality molecular imaging of glioblastoma growth inhibition with vasculature-targeting fusion toxin VEGF121/rGel. J Nucl Med 2007;48:445–54.PubMed Hsu AR, Cai W, Veeravagu A, Mohamedali KA, Chen K, Kim S, et al. Multimodality molecular imaging of glioblastoma growth inhibition with vasculature-targeting fusion toxin VEGF121/rGel. J Nucl Med 2007;48:445–54.PubMed
73.
go back to reference Cai W, Chen K, Mohamedali KA, Cao Q, Gambhir SS, Rosenblum MG, et al. PET of vascular endothelial growth factor receptor expression. J Nucl Med 2006;47:2048–56.PubMed Cai W, Chen K, Mohamedali KA, Cao Q, Gambhir SS, Rosenblum MG, et al. PET of vascular endothelial growth factor receptor expression. J Nucl Med 2006;47:2048–56.PubMed
74.
go back to reference Cai W, Wu Y, Chen K, Cao Q, Tice DA, Chen X. In vitro and in vivo characterization of 64Cu-labeled Abegrin™, a humanized monoclonal antibody against integrin αvβ3. Cancer Res 2006;66:9673–81.PubMed Cai W, Wu Y, Chen K, Cao Q, Tice DA, Chen X. In vitro and in vivo characterization of 64Cu-labeled Abegrin™, a humanized monoclonal antibody against integrin αvβ3. Cancer Res 2006;66:9673–81.PubMed
75.
go back to reference Fredriksson A, Johnstrom P, Thorell JO, von Heijne G, Hassan M, Eksborg S, et al. In vivo evaluation of the biodistribution of 11C-labeled PD153035 in rats without and with neuroblastoma implants. Life Sci 1999;65:165–74.PubMed Fredriksson A, Johnstrom P, Thorell JO, von Heijne G, Hassan M, Eksborg S, et al. In vivo evaluation of the biodistribution of 11C-labeled PD153035 in rats without and with neuroblastoma implants. Life Sci 1999;65:165–74.PubMed
76.
go back to reference Samen E, Thorell JO, Fredriksson A, Stone-Elander S. The tyrosine kinase inhibitor PD153035: implication of labeling position on radiometabolites formed in vitro. Nucl Med Biol 2006;33:1005–11.PubMed Samen E, Thorell JO, Fredriksson A, Stone-Elander S. The tyrosine kinase inhibitor PD153035: implication of labeling position on radiometabolites formed in vitro. Nucl Med Biol 2006;33:1005–11.PubMed
77.
go back to reference Seimbille Y, Phelps ME, Czernin J, Silverman DHS. Fluorine-18 labeling of 6,7-disubstituted anilinoquinazoline derivatives for positron emission tomography (PET) imaging of tyrosine kinase receptors: synthesis of 18F-Iressa and related molecular probes. J Labelled Compd Radiopharm 2005;48:829–43. Seimbille Y, Phelps ME, Czernin J, Silverman DHS. Fluorine-18 labeling of 6,7-disubstituted anilinoquinazoline derivatives for positron emission tomography (PET) imaging of tyrosine kinase receptors: synthesis of 18F-Iressa and related molecular probes. J Labelled Compd Radiopharm 2005;48:829–43.
78.
go back to reference Wang JQ, Gao M, Miller KD, Sledge GW, Zheng QH. Synthesis of [11C]Iressa as a new potential PET cancer imaging agent for epidermal growth factor receptor tyrosine kinase. Bioorg Med Chem Lett 2006;16:4102–6.PubMed Wang JQ, Gao M, Miller KD, Sledge GW, Zheng QH. Synthesis of [11C]Iressa as a new potential PET cancer imaging agent for epidermal growth factor receptor tyrosine kinase. Bioorg Med Chem Lett 2006;16:4102–6.PubMed
79.
go back to reference Bonasera TA, Ortu G, Rozen Y, Krais R, Freedman NM, Chisin R, et al. Potential 18F-labeled biomarkers for epidermal growth factor receptor tyrosine kinase. Nucl Med Biol 2001;28:359–74.PubMed Bonasera TA, Ortu G, Rozen Y, Krais R, Freedman NM, Chisin R, et al. Potential 18F-labeled biomarkers for epidermal growth factor receptor tyrosine kinase. Nucl Med Biol 2001;28:359–74.PubMed
80.
go back to reference Ortu G, Ben-David I, Rozen Y, Freedman NM, Chisin R, Levitzki A, et al. Labeled EGFr-TK irreversible inhibitor (ML03): in vitro and in vivo properties, potential as PET biomarker for cancer and feasibility as anticancer drug. Int J Cancer 2002;101:360–70.PubMed Ortu G, Ben-David I, Rozen Y, Freedman NM, Chisin R, Levitzki A, et al. Labeled EGFr-TK irreversible inhibitor (ML03): in vitro and in vivo properties, potential as PET biomarker for cancer and feasibility as anticancer drug. Int J Cancer 2002;101:360–70.PubMed
81.
go back to reference Ben-David I, Rozen Y, Ortu G, Mishani E. Radiosynthesis of ML03, a novel positron emission tomography biomarker for targeting epidermal growth factor receptor via the labeling synthon: [11C]acryloyl chloride. Appl Radiat Isot 2003;58:209–17.PubMed Ben-David I, Rozen Y, Ortu G, Mishani E. Radiosynthesis of ML03, a novel positron emission tomography biomarker for targeting epidermal growth factor receptor via the labeling synthon: [11C]acryloyl chloride. Appl Radiat Isot 2003;58:209–17.PubMed
82.
go back to reference Mishani E, Abourbeh G, Jacobson O, Dissoki S, Ben Daniel R, Rozen Y, et al. High-affinity epidermal growth factor receptor (EGFR) irreversible inhibitors with diminished chemical reactivities as positron emission tomography (PET)-imaging agent candidates of EGFR overexpressing tumours. J Med Chem 2005;48:5337–48.PubMed Mishani E, Abourbeh G, Jacobson O, Dissoki S, Ben Daniel R, Rozen Y, et al. High-affinity epidermal growth factor receptor (EGFR) irreversible inhibitors with diminished chemical reactivities as positron emission tomography (PET)-imaging agent candidates of EGFR overexpressing tumours. J Med Chem 2005;48:5337–48.PubMed
83.
go back to reference Mishani E, Abourbeh G, Rozen Y, Jacobson O, Laky D, Ben David I, et al. Novel carbon-11 labeled 4-dimethylamino-but-2-enoic acid [4-(phenylamino)-quinazoline-6-yl]-amides: potential PET bioprobes for molecular imaging of EGFR-positive tumours. Nucl Med Biol 2004;31:469–76.PubMed Mishani E, Abourbeh G, Rozen Y, Jacobson O, Laky D, Ben David I, et al. Novel carbon-11 labeled 4-dimethylamino-but-2-enoic acid [4-(phenylamino)-quinazoline-6-yl]-amides: potential PET bioprobes for molecular imaging of EGFR-positive tumours. Nucl Med Biol 2004;31:469–76.PubMed
84.
go back to reference Abourbeh G, Dissoki S, Jacobson O, Litchi A, Ben Daniel R, Laki D, et al. Evaluation of radiolabeled ML04, a putative irreversible inhibitor of epidermal growth factor receptor, as a bioprobe for PET imaging of EGFR-overexpressing tumours. Nucl Med Biol 2007;34:55–70.PubMed Abourbeh G, Dissoki S, Jacobson O, Litchi A, Ben Daniel R, Laki D, et al. Evaluation of radiolabeled ML04, a putative irreversible inhibitor of epidermal growth factor receptor, as a bioprobe for PET imaging of EGFR-overexpressing tumours. Nucl Med Biol 2007;34:55–70.PubMed
85.
go back to reference Shaul M, Abourbeh G, Jacobson O, Rozen Y, Laky D, Levitzki A, et al. Novel iodine-124 labeled EGFR inhibitors as potential PET agents for molecular imaging in cancer. Bioorg Med Chem 2004;12:3421–9.PubMed Shaul M, Abourbeh G, Jacobson O, Rozen Y, Laky D, Levitzki A, et al. Novel iodine-124 labeled EGFR inhibitors as potential PET agents for molecular imaging in cancer. Bioorg Med Chem 2004;12:3421–9.PubMed
86.
go back to reference Pal A, Glekas A, Doubrovin M, Balatoni J, Namavari M, Beresten T, et al. Molecular imaging of EGFR kinase activity in tumours with 124I-labeled small molecular tracer and positron emission tomography. Mol Imaging Biol 2006;8:262–77.PubMed Pal A, Glekas A, Doubrovin M, Balatoni J, Namavari M, Beresten T, et al. Molecular imaging of EGFR kinase activity in tumours with 124I-labeled small molecular tracer and positron emission tomography. Mol Imaging Biol 2006;8:262–77.PubMed
87.
go back to reference Ciardiello F. Epidermal growth factor receptor tyrosine kinase inhibitors as anticancer agents. Drugs 2000;60 Suppl 1:25–32.PubMed Ciardiello F. Epidermal growth factor receptor tyrosine kinase inhibitors as anticancer agents. Drugs 2000;60 Suppl 1:25–32.PubMed
88.
go back to reference Cohen S. The epidermal growth factor (EGF). Cancer 1983;51:1787–91.PubMed Cohen S. The epidermal growth factor (EGF). Cancer 1983;51:1787–91.PubMed
89.
go back to reference Carlsson J, Gedda L, Gronvik C, Hartman T, Lindstrom A, Lindstrom P, et al. Strategy for boron neutron capture therapy against tumour cells with over-expression of the epidermal growth factor-receptor. Int J Radiat Oncol Biol Phys 1994;30:105–15.PubMed Carlsson J, Gedda L, Gronvik C, Hartman T, Lindstrom A, Lindstrom P, et al. Strategy for boron neutron capture therapy against tumour cells with over-expression of the epidermal growth factor-receptor. Int J Radiat Oncol Biol Phys 1994;30:105–15.PubMed
90.
go back to reference Zhao Q, Tolmachev V, Carlsson J, Lundqvist H, Sundin J, Janson JC, et al. Effects of dextranation on the pharmacokinetics of short peptides. A PET study on mEGF. Bioconjug Chem 1999;10:938–46.PubMed Zhao Q, Tolmachev V, Carlsson J, Lundqvist H, Sundin J, Janson JC, et al. Effects of dextranation on the pharmacokinetics of short peptides. A PET study on mEGF. Bioconjug Chem 1999;10:938–46.PubMed
91.
go back to reference Velikyan I, Sundberg AL, Lindhe O, Hoglund AU, Eriksson O, Werner E, et al. Preparation and evaluation of 68Ga-DOTA-hEGF for visualization of EGFR expression in malignant tumours. J Nucl Med 2005;46:1881–8.PubMed Velikyan I, Sundberg AL, Lindhe O, Hoglund AU, Eriksson O, Werner E, et al. Preparation and evaluation of 68Ga-DOTA-hEGF for visualization of EGFR expression in malignant tumours. J Nucl Med 2005;46:1881–8.PubMed
92.
go back to reference Verel I, Visser GW, van Dongen GA. The promise of immuno-PET in radioimmunotherapy. J Nucl Med 2005;46 Suppl 1:164S–71S.PubMed Verel I, Visser GW, van Dongen GA. The promise of immuno-PET in radioimmunotherapy. J Nucl Med 2005;46 Suppl 1:164S–71S.PubMed
93.
go back to reference Perk LR, Visser GW, Vosjan MJ, Stigter-van Walsum M, Tijink BM, Leemans CR, et al. 89Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals 90Y and 177Lu in tumour-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med 2005;46:1898–906.PubMed Perk LR, Visser GW, Vosjan MJ, Stigter-van Walsum M, Tijink BM, Leemans CR, et al. 89Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals 90Y and 177Lu in tumour-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med 2005;46:1898–906.PubMed
94.
go back to reference Cai W, Chen K, He L, Cao Q, Koong A, Chen X. Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur J Nucl Med Mol Imaging 2007;34:850–8.PubMed Cai W, Chen K, He L, Cao Q, Koong A, Chen X. Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur J Nucl Med Mol Imaging 2007;34:850–8.PubMed
95.
go back to reference Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005;23:1126–36.PubMed Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005;23:1126–36.PubMed
96.
go back to reference Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 2005;23:1137–46.PubMed Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 2005;23:1137–46.PubMed
97.
go back to reference Gansow OA. Newer approaches to the radiolabeling of monoclonal antibodies by use of metal chelates. Int J Rad Appl Instrum B 1991;18:369–81.PubMed Gansow OA. Newer approaches to the radiolabeling of monoclonal antibodies by use of metal chelates. Int J Rad Appl Instrum B 1991;18:369–81.PubMed
98.
go back to reference Peremans K, Cornelissen B, Van Den Bossche B, Audenaert K, Van de Wiele C. A review of small animal imaging planar and pinhole spect gamma camera imaging. Vet Radiol Ultrasound 2005;46:162–70.PubMed Peremans K, Cornelissen B, Van Den Bossche B, Audenaert K, Van de Wiele C. A review of small animal imaging planar and pinhole spect gamma camera imaging. Vet Radiol Ultrasound 2005;46:162–70.PubMed
99.
go back to reference Mease RC, Lambert C. Newer methods of labeling diagnostic agents with Tc-99m. Semin Nucl Med 2001;31:278–85.PubMed Mease RC, Lambert C. Newer methods of labeling diagnostic agents with Tc-99m. Semin Nucl Med 2001;31:278–85.PubMed
100.
go back to reference Banerjee S, Pillai MR, Ramamoorthy N. Evolution of Tc-99m in diagnostic radiopharmaceuticals. Semin Nucl Med 2001;31:260–77.PubMed Banerjee S, Pillai MR, Ramamoorthy N. Evolution of Tc-99m in diagnostic radiopharmaceuticals. Semin Nucl Med 2001;31:260–77.PubMed
101.
go back to reference Subramanian R, Meares CF. Bifunctional chelating agents for radiometal-labeled monoclonal antibodies. Cancer Treat Res 1990;51:183–99.PubMed Subramanian R, Meares CF. Bifunctional chelating agents for radiometal-labeled monoclonal antibodies. Cancer Treat Res 1990;51:183–99.PubMed
102.
go back to reference Schatten C, Pateisky N, Vavra N, Ehrenbock P, Angelberger P, Sivolapenko G, et al. Lymphoscintigraphy with 123I-labelled epidermal growth factor. Lancet 1991;337:395–6.PubMed Schatten C, Pateisky N, Vavra N, Ehrenbock P, Angelberger P, Sivolapenko G, et al. Lymphoscintigraphy with 123I-labelled epidermal growth factor. Lancet 1991;337:395–6.PubMed
103.
go back to reference Pateisky N, Schatten C, Vavra N, Ehrebock P, Angelberger P, Barrada M, et al. Lymphoscintigraphy using epidermal growth factor as tumour-seeking agent in uterine cervical cancer. Wien Klin Wochenschr 1991;103:654–6.PubMed Pateisky N, Schatten C, Vavra N, Ehrebock P, Angelberger P, Barrada M, et al. Lymphoscintigraphy using epidermal growth factor as tumour-seeking agent in uterine cervical cancer. Wien Klin Wochenschr 1991;103:654–6.PubMed
104.
go back to reference Holmberg A, Marquez M, Westlin JE, Nilsson S. Labeling of polypeptides with technetium-99m using a dextran spacer. Cancer Res 1995;55:5710s–3s.PubMed Holmberg A, Marquez M, Westlin JE, Nilsson S. Labeling of polypeptides with technetium-99m using a dextran spacer. Cancer Res 1995;55:5710s–3s.PubMed
105.
go back to reference Yang W, Barth RF, Leveille R, Adams DM, Ciesielski M, Fenstermaker RA, et al. Evaluation of systemically administered radiolabeled epidermal growth factor as a brain tumour targeting agent. J Neurooncol 2001;55:19–28.PubMed Yang W, Barth RF, Leveille R, Adams DM, Ciesielski M, Fenstermaker RA, et al. Evaluation of systemically administered radiolabeled epidermal growth factor as a brain tumour targeting agent. J Neurooncol 2001;55:19–28.PubMed
106.
go back to reference Cornelissen B, Kersemans V, Burvenich I, Oltenfreiter R, Vanderheyden JL, Boerman O, et al. Synthesis, biodistribution and effects of farnesyltransferase inhibitor therapy on tumour uptake in mice of 99mTc labelled epidermal growth factor. Nucl Med Commun 2005;26:147–53.PubMed Cornelissen B, Kersemans V, Burvenich I, Oltenfreiter R, Vanderheyden JL, Boerman O, et al. Synthesis, biodistribution and effects of farnesyltransferase inhibitor therapy on tumour uptake in mice of 99mTc labelled epidermal growth factor. Nucl Med Commun 2005;26:147–53.PubMed
107.
go back to reference Babaei MH, Almqvist Y, Orlova A, Shafii M, Kairemo K, Tolmachev V. [99mTc] HYNIC-hEGF, a potential agent for imaging of EGF receptors in vivo: preparation and pre-clinical evaluation. Oncol Rep 2005;13:1169–75.PubMed Babaei MH, Almqvist Y, Orlova A, Shafii M, Kairemo K, Tolmachev V. [99mTc] HYNIC-hEGF, a potential agent for imaging of EGF receptors in vivo: preparation and pre-clinical evaluation. Oncol Rep 2005;13:1169–75.PubMed
108.
go back to reference Capala J, Barth RF, Bailey MQ, Fenstermaker RA, Marek MJ, Rhodes BA. Radiolabeling of epidermal growth factor with 99mTc and in vivo localization following intracerebral injection into normal and glioma-bearing rats. Bioconjug Chem 1997;8:289–95.PubMed Capala J, Barth RF, Bailey MQ, Fenstermaker RA, Marek MJ, Rhodes BA. Radiolabeling of epidermal growth factor with 99mTc and in vivo localization following intracerebral injection into normal and glioma-bearing rats. Bioconjug Chem 1997;8:289–95.PubMed
109.
go back to reference Vinter-Jensen L, Frokiaer J, Jorgensen PE, Marqversen J, Rehling M, Dajani EZ, et al. Tissue distribution of 131I-labelled epidermal growth factor in the pig visualized by dynamic scintigraphy. J Endocrinol 1995;144:5–12.PubMed Vinter-Jensen L, Frokiaer J, Jorgensen PE, Marqversen J, Rehling M, Dajani EZ, et al. Tissue distribution of 131I-labelled epidermal growth factor in the pig visualized by dynamic scintigraphy. J Endocrinol 1995;144:5–12.PubMed
110.
go back to reference Cuartero-Plaza A, Martinez-Miralles E, Rosell R, Vadell-Nadal C, Farre M, Real FX. Radiolocalization of squamous lung carcinoma with 131I-labeled epidermal growth factor. Clin Cancer Res 1996;2:13–20.PubMed Cuartero-Plaza A, Martinez-Miralles E, Rosell R, Vadell-Nadal C, Farre M, Real FX. Radiolocalization of squamous lung carcinoma with 131I-labeled epidermal growth factor. Clin Cancer Res 1996;2:13–20.PubMed
111.
go back to reference Yang W, Barth RF, Adams DM, Soloway AH. Intratumoural delivery of boronated epidermal growth factor for neutron capture therapy of brain tumours. Cancer Res 1997;57:4333–9.PubMed Yang W, Barth RF, Adams DM, Soloway AH. Intratumoural delivery of boronated epidermal growth factor for neutron capture therapy of brain tumours. Cancer Res 1997;57:4333–9.PubMed
112.
go back to reference Kurihara A, Deguchi Y, Pardridge WM. Epidermal growth factor radiopharmaceuticals: 111In chelation, conjugation to a blood-brain barrier delivery vector via a biotin-polyethylene linker, pharmacokinetics, and in vivo imaging of experimental brain tumours. Bioconjug Chem 1999;10:502–11.PubMed Kurihara A, Deguchi Y, Pardridge WM. Epidermal growth factor radiopharmaceuticals: 111In chelation, conjugation to a blood-brain barrier delivery vector via a biotin-polyethylene linker, pharmacokinetics, and in vivo imaging of experimental brain tumours. Bioconjug Chem 1999;10:502–11.PubMed
113.
go back to reference Wang J, Chen P, Su ZF, Vallis K, Sandhu J, Cameron R, et al. Amplified delivery of indium-111 to EGFR-positive human breast cancer cells. Nucl Med Biol 2001;28:895–902.PubMed Wang J, Chen P, Su ZF, Vallis K, Sandhu J, Cameron R, et al. Amplified delivery of indium-111 to EGFR-positive human breast cancer cells. Nucl Med Biol 2001;28:895–902.PubMed
114.
go back to reference Tolmachev V, Orlova A, Wei Q, Bruskin A, Carlsson J, Gedda L. Comparative biodistribution of potential anti-glioblastoma conjugates [111In]DTPA-hEGF and [111In]Bz-DTPA-hEGF in normal mice. Cancer Biother Radiopharm 2004;19:491–501.PubMed Tolmachev V, Orlova A, Wei Q, Bruskin A, Carlsson J, Gedda L. Comparative biodistribution of potential anti-glioblastoma conjugates [111In]DTPA-hEGF and [111In]Bz-DTPA-hEGF in normal mice. Cancer Biother Radiopharm 2004;19:491–501.PubMed
115.
go back to reference Reilly RM, Kiarash R, Cameron RG, Porlier N, Sandhu J, Hill RP, et al. 111In-labeled EGF is selectively radiotoxic to human breast cancer cells overexpressing EGFR. J Nucl Med 2000;41:429–38.PubMed Reilly RM, Kiarash R, Cameron RG, Porlier N, Sandhu J, Hill RP, et al. 111In-labeled EGF is selectively radiotoxic to human breast cancer cells overexpressing EGFR. J Nucl Med 2000;41:429–38.PubMed
116.
go back to reference Reilly RM, Gariepy J. Factors influencing the sensitivity of tumour imaging with a receptor-binding radiopharmaceutical. J Nucl Med 1998;39:1036–43.PubMed Reilly RM, Gariepy J. Factors influencing the sensitivity of tumour imaging with a receptor-binding radiopharmaceutical. J Nucl Med 1998;39:1036–43.PubMed
117.
go back to reference Chen P, Mrkobrada M, Vallis KA, Cameron R, Sandhu J, Hendler A, et al. Comparative antiproliferative effects of 111In-DTPA-hEGF, chemotherapeutic agents and gamma-radiation on EGFR-positive breast cancer cells. Nucl Med Biol 2002;29:693–9.PubMed Chen P, Mrkobrada M, Vallis KA, Cameron R, Sandhu J, Hendler A, et al. Comparative antiproliferative effects of 111In-DTPA-hEGF, chemotherapeutic agents and gamma-radiation on EGFR-positive breast cancer cells. Nucl Med Biol 2002;29:693–9.PubMed
118.
go back to reference Chen P, Cameron R, Wang J, Vallis KA, Reilly RM. Antitumour effects and normal tissue toxicity of 111In-labeled epidermal growth factor administered to athymic mice bearing epidermal growth factor receptor-positive human breast cancer xenografts. J Nucl Med 2003;44:1469–78.PubMed Chen P, Cameron R, Wang J, Vallis KA, Reilly RM. Antitumour effects and normal tissue toxicity of 111In-labeled epidermal growth factor administered to athymic mice bearing epidermal growth factor receptor-positive human breast cancer xenografts. J Nucl Med 2003;44:1469–78.PubMed
119.
go back to reference Reilly RM, Scollard DA, Wang J, Mondal H, Chen P, Henderson LA, et al. A kit formulated under good manufacturing practices for labeling human epidermal growth factor with 111In for radiotherapeutic applications. J Nucl Med 2004;45:701–8.PubMed Reilly RM, Scollard DA, Wang J, Mondal H, Chen P, Henderson LA, et al. A kit formulated under good manufacturing practices for labeling human epidermal growth factor with 111In for radiotherapeutic applications. J Nucl Med 2004;45:701–8.PubMed
120.
go back to reference Reilly RM, Chen P, Wang J, Scollard D, Cameron R, Vallis KA. Preclinical pharmacokinetic, biodistribution, toxicology, and dosimetry studies of 111In-DTPA-human epidermal growth factor: an Auger electron-emitting radiotherapeutic agent for epidermal growth factor receptor-positive breast cancer. J Nucl Med 2006;47:1023–31.PubMed Reilly RM, Chen P, Wang J, Scollard D, Cameron R, Vallis KA. Preclinical pharmacokinetic, biodistribution, toxicology, and dosimetry studies of 111In-DTPA-human epidermal growth factor: an Auger electron-emitting radiotherapeutic agent for epidermal growth factor receptor-positive breast cancer. J Nucl Med 2006;47:1023–31.PubMed
121.
go back to reference Fernandez A, Spitzer E, Perez R, Boehmer FD, Eckert K, Zschiesche W, et al. A new monoclonal antibody for detection of EGF-receptors in Western blots and paraffin-embedded tissue sections. J Cell Biochem 1992;49:157–65.PubMed Fernandez A, Spitzer E, Perez R, Boehmer FD, Eckert K, Zschiesche W, et al. A new monoclonal antibody for detection of EGF-receptors in Western blots and paraffin-embedded tissue sections. J Cell Biochem 1992;49:157–65.PubMed
122.
go back to reference Ramos-Suzarte M, Rodriguez N, Oliva JP, Iznaga-Escobar N, Perera A, Morales A, et al. 99mTc-labeled antihuman epidermal growth factor receptor antibody in patients with tumours of epithelial origin: part III. Clinical trials safety and diagnostic efficacy. J Nucl Med 1999;40:768–75.PubMed Ramos-Suzarte M, Rodriguez N, Oliva JP, Iznaga-Escobar N, Perera A, Morales A, et al. 99mTc-labeled antihuman epidermal growth factor receptor antibody in patients with tumours of epithelial origin: part III. Clinical trials safety and diagnostic efficacy. J Nucl Med 1999;40:768–75.PubMed
123.
go back to reference Mishra AK, Panwar P, Hosono M, Chuttani K, Mishra P, Sharma RK, et al. A new bifunctional chelating agent conjugated with monoclonal antibody and labelled with technetium-99m for targeted scintigraphy: 6-(4-isothiocyanatobenzyl)-5,7-dioxo-1,11-(carboxymethyl)-1,4,8,11-tetraaz acyclotridecane. J Drug Target 2004;12:559–67.PubMed Mishra AK, Panwar P, Hosono M, Chuttani K, Mishra P, Sharma RK, et al. A new bifunctional chelating agent conjugated with monoclonal antibody and labelled with technetium-99m for targeted scintigraphy: 6-(4-isothiocyanatobenzyl)-5,7-dioxo-1,11-(carboxymethyl)-1,4,8,11-tetraaz acyclotridecane. J Drug Target 2004;12:559–67.PubMed
124.
go back to reference Pnwar P, Iznaga-Escobar N, Mishra P, Srivastava V, Sharma RK, Chandra R, et al. Radiolabeling and biological evaluation of DOTA-Ph-Al derivative conjugated to anti-EGFR antibody ior egf/r3 for targeted tumour imaging and therapy. Cancer Biol Ther 2005;4:854–60.PubMedCrossRef Pnwar P, Iznaga-Escobar N, Mishra P, Srivastava V, Sharma RK, Chandra R, et al. Radiolabeling and biological evaluation of DOTA-Ph-Al derivative conjugated to anti-EGFR antibody ior egf/r3 for targeted tumour imaging and therapy. Cancer Biol Ther 2005;4:854–60.PubMedCrossRef
125.
go back to reference Takasu S, Takahashi T, Okamoto S, Oriuchi N, Nakayashiki N, Okamoto K, et al. Radioimmunoscintigraphy of intracranial glioma xenograft with a technetium-99m-labeled mouse monoclonal antibody specifically recognizing type III mutant epidermal growth factor receptor. J Neurooncol 2003;63:247–56.PubMed Takasu S, Takahashi T, Okamoto S, Oriuchi N, Nakayashiki N, Okamoto K, et al. Radioimmunoscintigraphy of intracranial glioma xenograft with a technetium-99m-labeled mouse monoclonal antibody specifically recognizing type III mutant epidermal growth factor receptor. J Neurooncol 2003;63:247–56.PubMed
126.
go back to reference Scopinaro F, De Vincentis G, Banci M, Schillaci O, Di Loreto M, Danieli R, et al. In vivo study of a technetium labelled anti-EGFr MoAB. Anticancer Res 1997;17:1761–5.PubMed Scopinaro F, De Vincentis G, Banci M, Schillaci O, Di Loreto M, Danieli R, et al. In vivo study of a technetium labelled anti-EGFr MoAB. Anticancer Res 1997;17:1761–5.PubMed
127.
go back to reference Schechter NR, Yang DJ, Azhdarinia A, Kohanim S, Wendt R 3rd, Oh CS, et al. Assessment of epidermal growth factor receptor with 99mTc-ethylenedicysteine-C225 monoclonal antibody. Anticancer Drugs 2003;14:49–56.PubMed Schechter NR, Yang DJ, Azhdarinia A, Kohanim S, Wendt R 3rd, Oh CS, et al. Assessment of epidermal growth factor receptor with 99mTc-ethylenedicysteine-C225 monoclonal antibody. Anticancer Drugs 2003;14:49–56.PubMed
128.
go back to reference Goldenberg A, Masui H, Divgi C, Kamrath H, Pentlow K, Mendelsohn J. Imaging of human tumour xenografts with an indium-111-labeled anti-epidermal growth factor receptor monoclonal antibody. J Natl Cancer Inst 1989;81:1616–25.PubMed Goldenberg A, Masui H, Divgi C, Kamrath H, Pentlow K, Mendelsohn J. Imaging of human tumour xenografts with an indium-111-labeled anti-epidermal growth factor receptor monoclonal antibody. J Natl Cancer Inst 1989;81:1616–25.PubMed
129.
go back to reference Vokes EE, Chu E. Anti-EGFR therapies: clinical experience in colorectal, lung, and head and neck cancers. Oncology (Williston Park) 2006;20:15–25. Vokes EE, Chu E. Anti-EGFR therapies: clinical experience in colorectal, lung, and head and neck cancers. Oncology (Williston Park) 2006;20:15–25.
130.
go back to reference Divgi CR, Welt S, Kris M, Real FX, Yeh SD, Gralla R, et al. Phase I and imaging trial of indium 111-labeled anti-epidermal growth factor receptor monoclonal antibody 225 in patients with squamous cell lung carcinoma. J Natl Cancer Inst 1991;83:97–104.PubMed Divgi CR, Welt S, Kris M, Real FX, Yeh SD, Gralla R, et al. Phase I and imaging trial of indium 111-labeled anti-epidermal growth factor receptor monoclonal antibody 225 in patients with squamous cell lung carcinoma. J Natl Cancer Inst 1991;83:97–104.PubMed
131.
go back to reference Dadparvar S, Krishna L, Miyamoto C, Brady LW, Brown SJ, Bender H, et al. Indium-111-labeled anti-EGFr-425 scintigraphy in the detection of malignant gliomas. Cancer 1994;73:884–9.PubMed Dadparvar S, Krishna L, Miyamoto C, Brady LW, Brown SJ, Bender H, et al. Indium-111-labeled anti-EGFr-425 scintigraphy in the detection of malignant gliomas. Cancer 1994;73:884–9.PubMed
132.
go back to reference Takahashi H, Herlyn D, Atkinson B, Powe J, Rodeck U, Alavi A, et al. Radioimmunodetection of human glioma xenografts by monoclonal antibody to epidermal growth factor receptor. Cancer Res 1987;47:3847–50.PubMed Takahashi H, Herlyn D, Atkinson B, Powe J, Rodeck U, Alavi A, et al. Radioimmunodetection of human glioma xenografts by monoclonal antibody to epidermal growth factor receptor. Cancer Res 1987;47:3847–50.PubMed
133.
go back to reference Reilly RM, Kiarash R, Sandhu J, Lee YW, Cameron RG, Hendler A, et al. A comparison of EGF and MAb 528 labeled with 111In for imaging human breast cancer. J Nucl Med 2000;41:903–11.PubMed Reilly RM, Kiarash R, Sandhu J, Lee YW, Cameron RG, Hendler A, et al. A comparison of EGF and MAb 528 labeled with 111In for imaging human breast cancer. J Nucl Med 2000;41:903–11.PubMed
134.
go back to reference Chatziioannou AF. Instrumentation for molecular imaging in preclinical research: Micro-PET and Micro-SPECT. Proc Am Thorac Soc 2005;2:533–6, 510–11.PubMed Chatziioannou AF. Instrumentation for molecular imaging in preclinical research: Micro-PET and Micro-SPECT. Proc Am Thorac Soc 2005;2:533–6, 510–11.PubMed
135.
go back to reference Berman DS, Kiat H, Van Train K, Friedman JD, Wang FP, Germano G. Dual-isotope myocardial perfusion SPECT with rest thallium-201 and stress Tc-99m sestamibi. Cardiol Clin 1994;12:261–70.PubMed Berman DS, Kiat H, Van Train K, Friedman JD, Wang FP, Germano G. Dual-isotope myocardial perfusion SPECT with rest thallium-201 and stress Tc-99m sestamibi. Cardiol Clin 1994;12:261–70.PubMed
136.
go back to reference Ke S, Wen X, Gurfinkel M, Charnsangavej C, Wallace S, Sevick-Muraca EM, et al. Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Res 2003;63:7870–5.PubMed Ke S, Wen X, Gurfinkel M, Charnsangavej C, Wallace S, Sevick-Muraca EM, et al. Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Res 2003;63:7870–5.PubMed
137.
go back to reference Sako Y, Ichinose J, Morimatsu M, Ohta K, Uyemura T. Optical bioimaging: from living tissue to a single molecule: single-molecule visualization of cell signaling processes of epidermal growth factor receptor. J Pharmacol Sci 2003;93:253–8.PubMed Sako Y, Ichinose J, Morimatsu M, Ohta K, Uyemura T. Optical bioimaging: from living tissue to a single molecule: single-molecule visualization of cell signaling processes of epidermal growth factor receptor. J Pharmacol Sci 2003;93:253–8.PubMed
138.
go back to reference Thorne RG, Hrabetova S, Nicholson C. Diffusion of epidermal growth factor in rat brain extracellular space measured by integrative optical imaging. J Neurophysiol 2004;92:3471–81.PubMed Thorne RG, Hrabetova S, Nicholson C. Diffusion of epidermal growth factor in rat brain extracellular space measured by integrative optical imaging. J Neurophysiol 2004;92:3471–81.PubMed
139.
go back to reference Kovar JL, Volcheck WM, Chen J, Simpson MA. Purification method directly influences effectiveness of an epidermal growth factor-coupled targeting agent for noninvasive tumour detection in mice. Anal Biochem 2007;361:47–54.PubMed Kovar JL, Volcheck WM, Chen J, Simpson MA. Purification method directly influences effectiveness of an epidermal growth factor-coupled targeting agent for noninvasive tumour detection in mice. Anal Biochem 2007;361:47–54.PubMed
140.
go back to reference Licha K, Riefke B, Ntziachristos V, Becker A, Chance B, Semmler W. Hydrophilic cyanine dyes as contrast agents for near-infrared tumour imaging: synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem Photobiol 2000;72:392–8.PubMed Licha K, Riefke B, Ntziachristos V, Becker A, Chance B, Semmler W. Hydrophilic cyanine dyes as contrast agents for near-infrared tumour imaging: synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem Photobiol 2000;72:392–8.PubMed
141.
go back to reference Wu Y, Cai W, Chen X. Near-infrared fluorescence imaging of tumour integrin αvβ3 expression with Cy7-labeled RGD multimers. Mol Imaging Biol 2006;8:226–36.PubMed Wu Y, Cai W, Chen X. Near-infrared fluorescence imaging of tumour integrin αvβ3 expression with Cy7-labeled RGD multimers. Mol Imaging Biol 2006;8:226–36.PubMed
142.
go back to reference Hsu ER, Anslyn EV, Dharmawardhane S, Alizadeh-Naderi R, Aaron JS, Sokolov KV, et al. A far-red fluorescent contrast agent to image epidermal growth factor receptor expression. Photochem Photobiol 2004;79:272–9.PubMed Hsu ER, Anslyn EV, Dharmawardhane S, Alizadeh-Naderi R, Aaron JS, Sokolov KV, et al. A far-red fluorescent contrast agent to image epidermal growth factor receptor expression. Photochem Photobiol 2004;79:272–9.PubMed
143.
go back to reference Nida DL, Rahman MS, Carlson KD, Richards-Kortum R, Follen M. Fluorescent nanocrystals for use in early cervical cancer detection. Gynecol Oncol 2005;99:S89–94.PubMed Nida DL, Rahman MS, Carlson KD, Richards-Kortum R, Follen M. Fluorescent nanocrystals for use in early cervical cancer detection. Gynecol Oncol 2005;99:S89–94.PubMed
144.
go back to reference Rahman M, Abd-El-Barr M, Mack V, Tkaczyk T, Sokolov K, Richards-Kortum R, et al. Optical imaging of cervical pre-cancers with structured illumination: an integrated approach. Gynecol Oncol 2005;99:S112–5.PubMed Rahman M, Abd-El-Barr M, Mack V, Tkaczyk T, Sokolov K, Richards-Kortum R, et al. Optical imaging of cervical pre-cancers with structured illumination: an integrated approach. Gynecol Oncol 2005;99:S112–5.PubMed
145.
go back to reference Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 2003;63:1999–2004.PubMed Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 2003;63:1999–2004.PubMed
146.
go back to reference El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 2005;5:829–34.PubMed El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 2005;5:829–34.PubMed
147.
go back to reference Contag CH, Bachmann MH. Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 2002;4:235–60.PubMed Contag CH, Bachmann MH. Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 2002;4:235–60.PubMed
148.
go back to reference Negrin RS, Contag CH. In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease. Nat Rev Immunol 2006;6:484–90.PubMed Negrin RS, Contag CH. In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease. Nat Rev Immunol 2006;6:484–90.PubMed
149.
go back to reference Liang Q, Yamamoto M, Curiel DT, Herschman HR. Noninvasive imaging of transcriptionally restricted transgene expression following intratumoural injection of an adenovirus in which the COX-2 promoter drives a reporter gene. Mol Imaging Biol 2004;6:395–404.PubMed Liang Q, Yamamoto M, Curiel DT, Herschman HR. Noninvasive imaging of transcriptionally restricted transgene expression following intratumoural injection of an adenovirus in which the COX-2 promoter drives a reporter gene. Mol Imaging Biol 2004;6:395–404.PubMed
150.
go back to reference Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, et al. Peptide-labeled near-infrared quantum dots for imaging tumour vasculature in living subjects. Nano Lett 2006;6:669–76.PubMed Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, et al. Peptide-labeled near-infrared quantum dots for imaging tumour vasculature in living subjects. Nano Lett 2006;6:669–76.PubMed
151.
go back to reference Cai W, Chen X. Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression. Front Biosci 2007;12:4267–79.PubMed Cai W, Chen X. Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression. Front Biosci 2007;12:4267–79.PubMed
152.
go back to reference Cai W, Gambhir SS, Chen X. Multimodality tumour imaging targeting integrin αvβ3. Biotechniques 2005;39:S6–S17.CrossRef Cai W, Gambhir SS, Chen X. Multimodality tumour imaging targeting integrin αvβ3. Biotechniques 2005;39:S6–S17.CrossRef
153.
go back to reference Taroni P, Danesini G, Torricelli A, Pifferi A, Spinelli L, Cubeddu R. Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm. J Biomed Opt 2004;9:464–73.PubMed Taroni P, Danesini G, Torricelli A, Pifferi A, Spinelli L, Cubeddu R. Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm. J Biomed Opt 2004;9:464–73.PubMed
154.
go back to reference Intes X. Time-domain optical mammography SoftScan: initial results. Acad Radiol 2005;12:934–47.PubMed Intes X. Time-domain optical mammography SoftScan: initial results. Acad Radiol 2005;12:934–47.PubMed
155.
go back to reference Winter PM, Caruthers SD, Wickline SA, Lanza GM. Molecular imaging by MRI. Curr Cardiol Rep 2006;8:65–9.PubMed Winter PM, Caruthers SD, Wickline SA, Lanza GM. Molecular imaging by MRI. Curr Cardiol Rep 2006;8:65–9.PubMed
156.
go back to reference Sosnovik DE, Weissleder R. Emerging concepts in molecular MRI. Curr Opin Biotechnol 2007;18:4–10.PubMed Sosnovik DE, Weissleder R. Emerging concepts in molecular MRI. Curr Opin Biotechnol 2007;18:4–10.PubMed
157.
go back to reference Suwa T, Ozawa S, Ueda M, Ando N, Kitajima M. Magnetic resonance imaging of esophageal squamous cell carcinoma using magnetite particles coated with anti-epidermal growth factor receptor antibody. Int J Cancer 1998;75:626–34.PubMed Suwa T, Ozawa S, Ueda M, Ando N, Kitajima M. Magnetic resonance imaging of esophageal squamous cell carcinoma using magnetite particles coated with anti-epidermal growth factor receptor antibody. Int J Cancer 1998;75:626–34.PubMed
158.
go back to reference Bakir MA, Eccles S, Babich JW, Aftab N, Styles J, Dean CJ, et al. c-erbB2 protein overexpression in breast cancer as a target for PET using iodine-124-labeled monoclonal antibodies. J Nucl Med 1992;33:2154–60.PubMed Bakir MA, Eccles S, Babich JW, Aftab N, Styles J, Dean CJ, et al. c-erbB2 protein overexpression in breast cancer as a target for PET using iodine-124-labeled monoclonal antibodies. J Nucl Med 1992;33:2154–60.PubMed
159.
go back to reference Garmestani K, Milenic DE, Plascjak PS, Brechbiel MW. A new and convenient method for purification of 86Y using a Sr(II) selective resin and comparison of biodistribution of 86Y and 111In labeled Herceptin. Nucl Med Biol 2002;29:599–606.PubMed Garmestani K, Milenic DE, Plascjak PS, Brechbiel MW. A new and convenient method for purification of 86Y using a Sr(II) selective resin and comparison of biodistribution of 86Y and 111In labeled Herceptin. Nucl Med Biol 2002;29:599–606.PubMed
160.
go back to reference Palm S, Enmon RM, Jr., Matei C, Kolbert KS, Xu S, Zanzonico PB, et al. Pharmacokinetics and biodistribution of 86Y-trastuzumab for 90Y dosimetry in an ovarian carcinoma model: correlative microPET and MRI. J Nucl Med 2003;44:1148–55.PubMed Palm S, Enmon RM, Jr., Matei C, Kolbert KS, Xu S, Zanzonico PB, et al. Pharmacokinetics and biodistribution of 86Y-trastuzumab for 90Y dosimetry in an ovarian carcinoma model: correlative microPET and MRI. J Nucl Med 2003;44:1148–55.PubMed
161.
go back to reference Bruskin A, Sivaev I, Persson M, Lundqvist H, Carlsson J, Sjoberg S, et al. Radiobromination of monoclonal antibody using potassium [76Br] (4 isothiocyanatobenzyl-ammonio)-bromo-decahydro-closo-dodecaborate (Bromo-DABI). Nucl Med Biol 2004;31:205–11.PubMed Bruskin A, Sivaev I, Persson M, Lundqvist H, Carlsson J, Sjoberg S, et al. Radiobromination of monoclonal antibody using potassium [76Br] (4 isothiocyanatobenzyl-ammonio)-bromo-decahydro-closo-dodecaborate (Bromo-DABI). Nucl Med Biol 2004;31:205–11.PubMed
162.
go back to reference Winberg KJ, Persson M, Malmstrom PU, Sjoberg S, Tolmachev V. Radiobromination of anti-HER2/neu/ErbB-2 monoclonal antibody using the p-isothiocyanatobenzene derivative of the [76Br]undecahydro-bromo-7,8-dicarba-nido-undecaborate(1-) ion. Nucl Med Biol 2004;31:425–33.PubMed Winberg KJ, Persson M, Malmstrom PU, Sjoberg S, Tolmachev V. Radiobromination of anti-HER2/neu/ErbB-2 monoclonal antibody using the p-isothiocyanatobenzene derivative of the [76Br]undecahydro-bromo-7,8-dicarba-nido-undecaborate(1-) ion. Nucl Med Biol 2004;31:425–33.PubMed
163.
go back to reference Mume E, Orlova A, Malmstrom PU, Lundqvist H, Sjoberg S, Tolmachev V. Radiobromination of humanized anti-HER2 monoclonal antibody trastuzumab using N-succinimidyl 5-bromo-3-pyridinecarboxylate, a potential label for immunoPET. Nucl Med Biol 2005;32:613–22.PubMed Mume E, Orlova A, Malmstrom PU, Lundqvist H, Sjoberg S, Tolmachev V. Radiobromination of humanized anti-HER2 monoclonal antibody trastuzumab using N-succinimidyl 5-bromo-3-pyridinecarboxylate, a potential label for immunoPET. Nucl Med Biol 2005;32:613–22.PubMed
164.
go back to reference Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumour vascular permeability and the EPR effect in macromolecular therapeutics. A review. J Control Release 2000;65:271–84.PubMed Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumour vascular permeability and the EPR effect in macromolecular therapeutics. A review. J Control Release 2000;65:271–84.PubMed
165.
go back to reference Tanaka T, Shiramoto S, Miyashita M, Fujishima Y, Kaneo Y. Tumour targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME). Int J Pharm 2004;277:39–61.PubMed Tanaka T, Shiramoto S, Miyashita M, Fujishima Y, Kaneo Y. Tumour targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME). Int J Pharm 2004;277:39–61.PubMed
166.
go back to reference Kim SJ, Park Y, Hong HJ. Antibody engineering for the development of therapeutic antibodies. Mol Cells 2005;20:17–29.PubMed Kim SJ, Park Y, Hong HJ. Antibody engineering for the development of therapeutic antibodies. Mol Cells 2005;20:17–29.PubMed
167.
go back to reference Maynard J, Georgiou G. Antibody engineering. Annu Rev Biomed Eng 2000;2:339–76.PubMed Maynard J, Georgiou G. Antibody engineering. Annu Rev Biomed Eng 2000;2:339–76.PubMed
168.
go back to reference Smith-Jones PM, Solit DB, Akhurst T, Afroze F, Rosen N, Larson SM. Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol 2004;22:701–6.PubMed Smith-Jones PM, Solit DB, Akhurst T, Afroze F, Rosen N, Larson SM. Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol 2004;22:701–6.PubMed
169.
go back to reference Drysdale MJ, Brough PA, Massey A, Jensen MR, Schoepfer J. Targeting Hsp90 for the treatment of cancer. Curr Opin Drug Discov Devel 2006;9:483–95.PubMed Drysdale MJ, Brough PA, Massey A, Jensen MR, Schoepfer J. Targeting Hsp90 for the treatment of cancer. Curr Opin Drug Discov Devel 2006;9:483–95.PubMed
170.
go back to reference Solit DB, Zheng FF, Drobnjak M, Munster PN, Higgins B, Verbel D, et al. 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin Cancer Res 2002;8:986–93.PubMed Solit DB, Zheng FF, Drobnjak M, Munster PN, Higgins B, Verbel D, et al. 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin Cancer Res 2002;8:986–93.PubMed
171.
go back to reference Citri A, Kochupurakkal BS, Yarden Y. The Achilles heel of ErbB-2/HER2: regulation by the Hsp90 chaperone machine and potential for pharmacological intervention. Cell Cycle 2004;3:51–60.PubMed Citri A, Kochupurakkal BS, Yarden Y. The Achilles heel of ErbB-2/HER2: regulation by the Hsp90 chaperone machine and potential for pharmacological intervention. Cell Cycle 2004;3:51–60.PubMed
172.
go back to reference Smith-Jones PM, Solit D, Afroze F, Rosen N, Larson SM. Early tumour response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET. J Nucl Med 2006;47:793–6.PubMed Smith-Jones PM, Solit D, Afroze F, Rosen N, Larson SM. Early tumour response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET. J Nucl Med 2006;47:793–6.PubMed
173.
go back to reference Olafsen T, Kenanova VE, Sundaresan G, Anderson AL, Crow D, Yazaki PJ, et al. Optimizing radiolabeled engineered anti-p185HER2 antibody fragments for in vivo imaging. Cancer Res 2005;65:5907–16.PubMed Olafsen T, Kenanova VE, Sundaresan G, Anderson AL, Crow D, Yazaki PJ, et al. Optimizing radiolabeled engineered anti-p185HER2 antibody fragments for in vivo imaging. Cancer Res 2005;65:5907–16.PubMed
174.
go back to reference Gonzalez Trotter DE, Manjeshwar RM, Doss M, Shaller C, Robinson MK, Tandon R, et al. Quantitation of small-animal 124I activity distributions using a clinical PET/CT scanner. J Nucl Med 2004;45:1237–44.PubMed Gonzalez Trotter DE, Manjeshwar RM, Doss M, Shaller C, Robinson MK, Tandon R, et al. Quantitation of small-animal 124I activity distributions using a clinical PET/CT scanner. J Nucl Med 2004;45:1237–44.PubMed
175.
go back to reference Robinson MK, Doss M, Shaller C, Narayanan D, Marks JD, Adler LP, et al. Quantitative immuno-positron emission tomography imaging of HER2-positive tumour xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res 2005;65:1471–8.PubMed Robinson MK, Doss M, Shaller C, Narayanan D, Marks JD, Adler LP, et al. Quantitative immuno-positron emission tomography imaging of HER2-positive tumour xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res 2005;65:1471–8.PubMed
176.
go back to reference Williams LE, Liu A, Wu AM, Odom-Maryon T, Chai A, Raubitschek AA, et al. Figures of merit (FOMs) for imaging and therapy using monoclonal antibodies. Med Phys 1995;22:2025–7.PubMed Williams LE, Liu A, Wu AM, Odom-Maryon T, Chai A, Raubitschek AA, et al. Figures of merit (FOMs) for imaging and therapy using monoclonal antibodies. Med Phys 1995;22:2025–7.PubMed
177.
go back to reference Williams LE, Wu AM, Yazaki PJ, Liu A, Raubitschek AA, Shively JE, et al. Numerical selection of optimal tumour imaging agents with application to engineered antibodies. Cancer Biother Radiopharm 2001;16:25–35.PubMed Williams LE, Wu AM, Yazaki PJ, Liu A, Raubitschek AA, Shively JE, et al. Numerical selection of optimal tumour imaging agents with application to engineered antibodies. Cancer Biother Radiopharm 2001;16:25–35.PubMed
178.
go back to reference Cai W, Olafsen T, Zhang X, Cao Q, Gambhir SS, Williams LE, et al. PET imaging of colorectal cancer in xenograft-bearing mice by use of an 18F-labeled T84.66 anti-carcinoembryonic antigen diabody. J Nucl Med 2007;48:304–10.PubMed Cai W, Olafsen T, Zhang X, Cao Q, Gambhir SS, Williams LE, et al. PET imaging of colorectal cancer in xenograft-bearing mice by use of an 18F-labeled T84.66 anti-carcinoembryonic antigen diabody. J Nucl Med 2007;48:304–10.PubMed
179.
go back to reference Shively JE. 18F labeling for immuno-PET: where speed and contrast meet. J Nucl Med 2007;48:170–2.PubMed Shively JE. 18F labeling for immuno-PET: where speed and contrast meet. J Nucl Med 2007;48:170–2.PubMed
180.
go back to reference Wikman M, Steffen AC, Gunneriusson E, Tolmachev V, Adams GP, Carlsson J, et al. Selection and characterization of HER2/neu-binding affibody ligands. Protein Eng Des Sel 2004;17:455–62.PubMed Wikman M, Steffen AC, Gunneriusson E, Tolmachev V, Adams GP, Carlsson J, et al. Selection and characterization of HER2/neu-binding affibody ligands. Protein Eng Des Sel 2004;17:455–62.PubMed
181.
go back to reference Steffen AC, Wikman M, Tolmachev V, Adams GP, Nilsson FY, Stahl S, et al. In vitro characterization of a bivalent anti-HER-2 affibody with potential for radionuclide-based diagnostics. Cancer Biother Radiopharm 2005;20:239–48.PubMed Steffen AC, Wikman M, Tolmachev V, Adams GP, Nilsson FY, Stahl S, et al. In vitro characterization of a bivalent anti-HER-2 affibody with potential for radionuclide-based diagnostics. Cancer Biother Radiopharm 2005;20:239–48.PubMed
182.
go back to reference Tran T, Orlova A, Sivaev I, Sandstrom M, Tolmachev V. Comparison of benzoate- and dodecaborate-based linkers for attachment of radioiodine to HER2-targeting affibody ligand. Int J Mol Med 2007;19:485–93.PubMed Tran T, Orlova A, Sivaev I, Sandstrom M, Tolmachev V. Comparison of benzoate- and dodecaborate-based linkers for attachment of radioiodine to HER2-targeting affibody ligand. Int J Mol Med 2007;19:485–93.PubMed
183.
go back to reference Mume E, Orlova A, Larsson B, Nilsson AS, Nilsson FY, Sjoberg S, et al. Evaluation of ((4-hydroxyphenyl)ethyl)maleimide for site-specific radiobromination of anti-HER2 affibody. Bioconjug Chem 2005;16:1547–55.PubMed Mume E, Orlova A, Larsson B, Nilsson AS, Nilsson FY, Sjoberg S, et al. Evaluation of ((4-hydroxyphenyl)ethyl)maleimide for site-specific radiobromination of anti-HER2 affibody. Bioconjug Chem 2005;16:1547–55.PubMed
184.
go back to reference Saga T, Endo K, Akiyama T, Sakahara H, Koizumi M, Watanabe Y, et al. Scintigraphic detection of overexpressed c-erbB-2 protooncogene products by a class-switched murine anti-c-erbB-2 protein monoclonal antibody. Cancer Res 1991;51:990–4.PubMed Saga T, Endo K, Akiyama T, Sakahara H, Koizumi M, Watanabe Y, et al. Scintigraphic detection of overexpressed c-erbB-2 protooncogene products by a class-switched murine anti-c-erbB-2 protein monoclonal antibody. Cancer Res 1991;51:990–4.PubMed
185.
go back to reference Allan SM, Dean C, Fernando I, Eccles S, Styles J, McCready VR, et al. Radioimmunolocalisation in breast cancer using the gene product of c-erbB2 as the target antigen. Br J Cancer 1993;67:706–12.PubMed Allan SM, Dean C, Fernando I, Eccles S, Styles J, McCready VR, et al. Radioimmunolocalisation in breast cancer using the gene product of c-erbB2 as the target antigen. Br J Cancer 1993;67:706–12.PubMed
186.
go back to reference Meenakshi A, Kumar RS, Ganesh V, Kumar NS. Preliminary study on radioimmunodiagnosis of experimental tumour models using technetium-99m-labeled anti-C-erbB-2 monoclonal antibody. Tumouri 2002;88:507–12. Meenakshi A, Kumar RS, Ganesh V, Kumar NS. Preliminary study on radioimmunodiagnosis of experimental tumour models using technetium-99m-labeled anti-C-erbB-2 monoclonal antibody. Tumouri 2002;88:507–12.
187.
go back to reference Perik PJ, Lub-De Hooge MN, Gietema JA, van der Graaf WT, de Korte MA, Jonkman S, et al. Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol 2006;24:2276–82.PubMed Perik PJ, Lub-De Hooge MN, Gietema JA, van der Graaf WT, de Korte MA, Jonkman S, et al. Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol 2006;24:2276–82.PubMed
188.
go back to reference Blend MJ, Stastny JJ, Swanson SM, Brechbiel MW. Labeling anti-HER2/neu monoclonal antibodies with 111In and 90Y using a bifunctional DTPA chelating agent. Cancer Biother Radiopharm 2003;18:355–63.PubMed Blend MJ, Stastny JJ, Swanson SM, Brechbiel MW. Labeling anti-HER2/neu monoclonal antibodies with 111In and 90Y using a bifunctional DTPA chelating agent. Cancer Biother Radiopharm 2003;18:355–63.PubMed
189.
go back to reference Persson M, Tolmachev V, Andersson K, Gedda L, Sandstrom M, Carlsson J. [177Lu]pertuzumab: experimental studies on targeting of HER-2 positive tumour cells. Eur J Nucl Med Mol Imaging 2005;32:1457–62.PubMed Persson M, Tolmachev V, Andersson K, Gedda L, Sandstrom M, Carlsson J. [177Lu]pertuzumab: experimental studies on targeting of HER-2 positive tumour cells. Eur J Nucl Med Mol Imaging 2005;32:1457–62.PubMed
190.
go back to reference Tang Y, Scollard D, Chen P, Wang J, Holloway C, Reilly RM. Imaging of HER2/neu expression in BT-474 human breast cancer xenografts in athymic mice using [99mTc]-HYNIC-trastuzumab (Herceptin) Fab fragments. Nucl Med Commun 2005;26:427–32.PubMed Tang Y, Scollard D, Chen P, Wang J, Holloway C, Reilly RM. Imaging of HER2/neu expression in BT-474 human breast cancer xenografts in athymic mice using [99mTc]-HYNIC-trastuzumab (Herceptin) Fab fragments. Nucl Med Commun 2005;26:427–32.PubMed
191.
go back to reference Tang Y, Wang J, Scollard DA, Mondal H, Holloway C, Kahn HJ, et al. Imaging of HER2/neu-positive BT-474 human breast cancer xenografts in athymic mice using 111In-trastuzumab (Herceptin) Fab fragments. Nucl Med Biol 2005;32:51–8.PubMed Tang Y, Wang J, Scollard DA, Mondal H, Holloway C, Kahn HJ, et al. Imaging of HER2/neu-positive BT-474 human breast cancer xenografts in athymic mice using 111In-trastuzumab (Herceptin) Fab fragments. Nucl Med Biol 2005;32:51–8.PubMed
192.
go back to reference Tolmachev V, Orlova A, Nilsson FY, Feldwisch J, Wennborg A, Abrahmsen L. Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 2007;7:555–68.PubMed Tolmachev V, Orlova A, Nilsson FY, Feldwisch J, Wennborg A, Abrahmsen L. Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 2007;7:555–68.PubMed
193.
go back to reference Orlova A, Nilsson FY, Wikman M, Widstrom C, Stahl S, Carlsson J, et al. Comparative in vivo evaluation of technetium and iodine labels on an anti-HER2 affibody for single-photon imaging of HER2 expression in tumours. J Nucl Med 2006;47:512–9.PubMed Orlova A, Nilsson FY, Wikman M, Widstrom C, Stahl S, Carlsson J, et al. Comparative in vivo evaluation of technetium and iodine labels on an anti-HER2 affibody for single-photon imaging of HER2 expression in tumours. J Nucl Med 2006;47:512–9.PubMed
194.
go back to reference Orlova A, Magnusson M, Eriksson TL, Nilsson M, Larsson B, Hoiden-Guthenberg I, et al. Tumour imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 2006;66:4339–48.PubMed Orlova A, Magnusson M, Eriksson TL, Nilsson M, Larsson B, Hoiden-Guthenberg I, et al. Tumour imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 2006;66:4339–48.PubMed
195.
go back to reference Fields GB, Noble RL. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 1990;35:161–214.PubMedCrossRef Fields GB, Noble RL. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 1990;35:161–214.PubMedCrossRef
196.
go back to reference Engfeldt T, Orlova A, Tran T, Bruskin A, Widstrom C, Karlstrom AE, et al. Imaging of HER2-expressing tumours using a synthetic affibody molecule containing the 99mTc-chelating mercaptoacetyl-glycyl-glycyl-glycyl (MAG3) sequence. Eur J Nucl Med Mol Imaging 2007;34:722–33.PubMed Engfeldt T, Orlova A, Tran T, Bruskin A, Widstrom C, Karlstrom AE, et al. Imaging of HER2-expressing tumours using a synthetic affibody molecule containing the 99mTc-chelating mercaptoacetyl-glycyl-glycyl-glycyl (MAG3) sequence. Eur J Nucl Med Mol Imaging 2007;34:722–33.PubMed
197.
go back to reference Tran T, Engfeldt T, Orlova A, Widstrom C, Bruskin A, Tolmachev V, et al. In vivo evaluation of cysteine-based chelators for attachment of 99mTc to tumour-targeting affibody molecules. Bioconjug Chem 2007;18:549–58.PubMed Tran T, Engfeldt T, Orlova A, Widstrom C, Bruskin A, Tolmachev V, et al. In vivo evaluation of cysteine-based chelators for attachment of 99mTc to tumour-targeting affibody molecules. Bioconjug Chem 2007;18:549–58.PubMed
198.
go back to reference Tolmachev V, Nilsson FY, Widstrom C, Andersson K, Rosik D, Gedda L, et al. 111In-benzyl-DTPA-ZHER2:342, an affibody-based conjugate for in vivo imaging of HER2 expression in malignant tumours. J Nucl Med 2006;47:846–53.PubMed Tolmachev V, Nilsson FY, Widstrom C, Andersson K, Rosik D, Gedda L, et al. 111In-benzyl-DTPA-ZHER2:342, an affibody-based conjugate for in vivo imaging of HER2 expression in malignant tumours. J Nucl Med 2006;47:846–53.PubMed
199.
go back to reference Orlova A, Tolmachev V, Pehrson R, Lindborg M, Tran T, Sandstrom M, et al. Synthetic affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumours. Cancer Res 2007;67:2178–86.PubMed Orlova A, Tolmachev V, Pehrson R, Lindborg M, Tran T, Sandstrom M, et al. Synthetic affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumours. Cancer Res 2007;67:2178–86.PubMed
200.
go back to reference Fortin MA, Orlova A, Malmstrom PU, Tolmachev V. Labelling chemistry and characterization of [90Y/177Lu]-DOTA-ZHER2:342-3 affibody molecule, a candidate agent for locoregional treatment of urinary bladder carcinoma. Int J Mol Med 2007;19:285–91.PubMed Fortin MA, Orlova A, Malmstrom PU, Tolmachev V. Labelling chemistry and characterization of [90Y/177Lu]-DOTA-ZHER2:342-3 affibody molecule, a candidate agent for locoregional treatment of urinary bladder carcinoma. Int J Mol Med 2007;19:285–91.PubMed
201.
go back to reference Steffen AC, Almqvist Y, Chyan MK, Lundqvist H, Tolmachev V, Wilbur DS, et al. Biodistribution of 211At labeled HER-2 binding affibody molecules in mice. Oncol Rep 2007;17:1141–7.PubMed Steffen AC, Almqvist Y, Chyan MK, Lundqvist H, Tolmachev V, Wilbur DS, et al. Biodistribution of 211At labeled HER-2 binding affibody molecules in mice. Oncol Rep 2007;17:1141–7.PubMed
202.
go back to reference Tolmachev V, Orlova A, Pehrson R, Galli J, Baastrup B, Andersson K, et al. Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific affibody molecule. Cancer Res 2007;67:2773–82.PubMed Tolmachev V, Orlova A, Pehrson R, Galli J, Baastrup B, Andersson K, et al. Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific affibody molecule. Cancer Res 2007;67:2773–82.PubMed
203.
go back to reference Cherry SR, Shao Y, Silverman RW, Meadors K, Siegel S, Chatziioannou A, et al. MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci 1997;44:1161–6. Cherry SR, Shao Y, Silverman RW, Meadors K, Siegel S, Chatziioannou A, et al. MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci 1997;44:1161–6.
204.
go back to reference Chatziioannou AF, Cherry SR, Shao Y, Silverman RW, Meadors K, Farquhar TH, et al. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 1999;40:1164–75.PubMed Chatziioannou AF, Cherry SR, Shao Y, Silverman RW, Meadors K, Farquhar TH, et al. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 1999;40:1164–75.PubMed
205.
go back to reference Tochon-Danguy HJ, Sachinidis JI, Egan GF, Chan JG, Berlangieri SU, McKay WJ, et al. Positron emission tomography: radioisotope and radiopharmaceutical production. Australas Phys Eng Sci Med 1999;22:136–44.PubMed Tochon-Danguy HJ, Sachinidis JI, Egan GF, Chan JG, Berlangieri SU, McKay WJ, et al. Positron emission tomography: radioisotope and radiopharmaceutical production. Australas Phys Eng Sci Med 1999;22:136–44.PubMed
206.
go back to reference Nagy P, Jenei A, Kirsch AK, Szollosi J, Damjanovich S, Jovin TM. Activation-dependent clustering of the erbB2 receptor tyrosine kinase detected by scanning near-field optical microscopy. J Cell Sci 1999;112 Pt 11:1733–41.PubMed Nagy P, Jenei A, Kirsch AK, Szollosi J, Damjanovich S, Jovin TM. Activation-dependent clustering of the erbB2 receptor tyrosine kinase detected by scanning near-field optical microscopy. J Cell Sci 1999;112 Pt 11:1733–41.PubMed
207.
go back to reference Thomas TP, Myaing MT, Ye JY, Candido K, Kotlyar A, Beals J, et al. Detection and analysis of tumour fluorescence using a two-photon optical fiber probe. Biophys J 2004;86:3959–65.PubMed Thomas TP, Myaing MT, Ye JY, Candido K, Kotlyar A, Beals J, et al. Detection and analysis of tumour fluorescence using a two-photon optical fiber probe. Biophys J 2004;86:3959–65.PubMed
208.
go back to reference Hilger I, Leistner Y, Berndt A, Fritsche C, Haas KM, Kosmehl H, et al. Near-infrared fluorescence imaging of HER-2 protein over-expression in tumour cells. Eur Radiol 2004;14:1124–9.PubMed Hilger I, Leistner Y, Berndt A, Fritsche C, Haas KM, Kosmehl H, et al. Near-infrared fluorescence imaging of HER-2 protein over-expression in tumour cells. Eur Radiol 2004;14:1124–9.PubMed
209.
go back to reference Montet X, Ntziachristos V, Grimm J, Weissleder R. Tomographic fluorescence mapping of tumour targets. Cancer Res 2005;65:6330–6.PubMed Montet X, Ntziachristos V, Grimm J, Weissleder R. Tomographic fluorescence mapping of tumour targets. Cancer Res 2005;65:6330–6.PubMed
210.
go back to reference Miyawaki A, Sawano A, Kogure T. Lighting up cells: labelling proteins with fluorophores. Nat Cell Biol 2003;Suppl:S1–7.PubMed Miyawaki A, Sawano A, Kogure T. Lighting up cells: labelling proteins with fluorophores. Nat Cell Biol 2003;Suppl:S1–7.PubMed
211.
go back to reference Giepmans BN, Adams SR, Ellisman MH, Tsien RY. The fluorescent toolbox for assessing protein location and function. Science 2006;312:217–24.PubMed Giepmans BN, Adams SR, Ellisman MH, Tsien RY. The fluorescent toolbox for assessing protein location and function. Science 2006;312:217–24.PubMed
212.
go back to reference Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science 1998;281:2013–6.PubMed Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science 1998;281:2013–6.PubMed
213.
go back to reference Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998;281:2016–8.PubMed Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998;281:2016–8.PubMed
214.
go back to reference Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005;307:538–44.PubMed Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005;307:538–44.PubMed
215.
go back to reference Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005;4:435–46.PubMed Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005;4:435–46.PubMed
216.
go back to reference Li ZB, Cai W, Chen X. Semiconductor quantum dots for in vivo imaging. J Nanosci Nanotechnol 2007;7:2567–81.PubMed Li ZB, Cai W, Chen X. Semiconductor quantum dots for in vivo imaging. J Nanosci Nanotechnol 2007;7:2567–81.PubMed
217.
go back to reference Cai W, Hsu AR, Li ZB, Chen X. Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Res Lett 2007;2:265–81. Cai W, Hsu AR, Li ZB, Chen X. Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Res Lett 2007;2:265–81.
218.
go back to reference Li-Shishido S, Watanabe TM, Tada H, Higuchi H, Ohuchi N. Reduction in nonfluorescence state of quantum dots on an immunofluorescence staining. Biochem Biophys Res Commun 2006;351:7–13.PubMed Li-Shishido S, Watanabe TM, Tada H, Higuchi H, Ohuchi N. Reduction in nonfluorescence state of quantum dots on an immunofluorescence staining. Biochem Biophys Res Commun 2006;351:7–13.PubMed
219.
go back to reference Yu WW, Chang E, Falkner JC, Zhang J, Al-Somali AM, Sayes CM, et al. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc 2007;129:2871–9.PubMed Yu WW, Chang E, Falkner JC, Zhang J, Al-Somali AM, Sayes CM, et al. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc 2007;129:2871–9.PubMed
220.
go back to reference Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003;21:41–6.PubMed Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003;21:41–6.PubMed
221.
go back to reference Tada H, Higuchi H, Wanatabe TM, Ohuchi N. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumours of mice. Cancer Res 2007;67:1138–44.PubMed Tada H, Higuchi H, Wanatabe TM, Ohuchi N. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumours of mice. Cancer Res 2007;67:1138–44.PubMed
222.
go back to reference Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806–11.PubMed Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806–11.PubMed
223.
go back to reference Stevenson M. Therapeutic potential of RNA interference. N Engl J Med 2004;351:1772–7.PubMed Stevenson M. Therapeutic potential of RNA interference. N Engl J Med 2004;351:1772–7.PubMed
224.
go back to reference Mello CC, Conte D Jr. Revealing the world of RNA interference. Nature 2004;431:338–42.PubMed Mello CC, Conte D Jr. Revealing the world of RNA interference. Nature 2004;431:338–42.PubMed
225.
go back to reference Tan WB, Jiang S, Zhang Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 2007;28:1565–71.PubMed Tan WB, Jiang S, Zhang Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 2007;28:1565–71.PubMed
226.
go back to reference Payne BP, Venugopalan V, Mikic BB, Nishioka NS. Optoacoustic determination of optical attenuation depth using interferometric detection. J Biomed Opt 2003;8:264–72.PubMed Payne BP, Venugopalan V, Mikic BB, Nishioka NS. Optoacoustic determination of optical attenuation depth using interferometric detection. J Biomed Opt 2003;8:264–72.PubMed
227.
go back to reference Copland JA, Eghtedari M, Popov VL, Kotov N, Mamedova N, Motamedi M, et al. Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumours using optoacoustic tomography. Mol Imaging Biol 2004;6:341–9.PubMed Copland JA, Eghtedari M, Popov VL, Kotov N, Mamedova N, Motamedi M, et al. Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumours using optoacoustic tomography. Mol Imaging Biol 2004;6:341–9.PubMed
228.
go back to reference Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ, et al. Metal nanoshells. Ann Biomed Eng 2006;34:15–22.PubMed Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ, et al. Metal nanoshells. Ann Biomed Eng 2006;34:15–22.PubMed
229.
go back to reference Loo C, Hirsch L, Lee MH, Chang E, West J, Halas N, et al. Gold nanoshell bioconjugates for molecular imaging in living cells. Opt Lett 2005;30:1012–4.PubMed Loo C, Hirsch L, Lee MH, Chang E, West J, Halas N, et al. Gold nanoshell bioconjugates for molecular imaging in living cells. Opt Lett 2005;30:1012–4.PubMed
230.
go back to reference Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005;5:709–11.PubMed Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005;5:709–11.PubMed
231.
go back to reference Chen J, Wang D, Xi J, Au L, Siekkinen A, Warsen A, et al. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 2007;7:1318–22.PubMed Chen J, Wang D, Xi J, Au L, Siekkinen A, Warsen A, et al. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 2007;7:1318–22.PubMed
232.
go back to reference Artemov D, Mori N, Okollie B, Bhujwalla ZM. MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn Reson Med 2003;49:403–8.PubMed Artemov D, Mori N, Okollie B, Bhujwalla ZM. MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn Reson Med 2003;49:403–8.PubMed
233.
go back to reference Artemov D, Mori N, Ravi R, Bhujwalla ZM. Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res 2003;63:2723–7.PubMed Artemov D, Mori N, Ravi R, Bhujwalla ZM. Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res 2003;63:2723–7.PubMed
234.
go back to reference Funovics MA, Kapeller B, Hoeller C, Su HS, Kunstfeld R, Puig S, et al. MR imaging of the her2/neu and 9.2.27 tumour antigens using immunospecific contrast agents. Magn Reson Imaging 2004;22:843–50.PubMed Funovics MA, Kapeller B, Hoeller C, Su HS, Kunstfeld R, Puig S, et al. MR imaging of the her2/neu and 9.2.27 tumour antigens using immunospecific contrast agents. Magn Reson Imaging 2004;22:843–50.PubMed
235.
go back to reference Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 2005;127:5732–3.PubMed Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 2005;127:5732–3.PubMed
236.
go back to reference Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 2007;13:95–9.PubMed Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 2007;13:95–9.PubMed
237.
go back to reference Daldrup-Link HE, Meier R, Rudelius M, Piontek G, Piert M, Metz S, et al. In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumours with magnetic resonance imaging. Eur Radiol 2005;15:4–13.PubMed Daldrup-Link HE, Meier R, Rudelius M, Piontek G, Piert M, Metz S, et al. In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumours with magnetic resonance imaging. Eur Radiol 2005;15:4–13.PubMed
238.
go back to reference Liu G, He J, Dou S, Gupta S, Rusckowski M, Hnatowich DJ. Further investigations of morpholino pretargeting in mice—establishing quantitative relations in tumour. Eur J Nucl Med Mol Imaging 2005;32:1115–23.PubMed Liu G, He J, Dou S, Gupta S, Rusckowski M, Hnatowich DJ. Further investigations of morpholino pretargeting in mice—establishing quantitative relations in tumour. Eur J Nucl Med Mol Imaging 2005;32:1115–23.PubMed
239.
go back to reference Paganelli G, Chinol M. Radioimmunotherapy: is avidin-biotin pretargeting the preferred choice among pretargeting methods? Eur J Nucl Med Mol Imaging 2003;30:773–6.PubMedCrossRef Paganelli G, Chinol M. Radioimmunotherapy: is avidin-biotin pretargeting the preferred choice among pretargeting methods? Eur J Nucl Med Mol Imaging 2003;30:773–6.PubMedCrossRef
240.
go back to reference Sharkey RM, Cardillo TM, Rossi EA, Chang CH, Karacay H, McBride WJ, et al. Signal amplification in molecular imaging by pretargeting a multivalent, bispecific antibody. Nat Med 2005;11:1250–5.PubMed Sharkey RM, Cardillo TM, Rossi EA, Chang CH, Karacay H, McBride WJ, et al. Signal amplification in molecular imaging by pretargeting a multivalent, bispecific antibody. Nat Med 2005;11:1250–5.PubMed
241.
go back to reference Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med 2001;42:1S–93S.PubMed Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med 2001;42:1S–93S.PubMed
242.
go back to reference Perkins AC, Frier M. Radionuclide imaging in drug development. Curr Pharm Des 2004;10:2907–21.PubMed Perkins AC, Frier M. Radionuclide imaging in drug development. Curr Pharm Des 2004;10:2907–21.PubMed
243.
go back to reference Haberkorn U, Altmann A. Radionuclide imaging in the post-genomic era. J Cell Biochem Suppl 2002;39:1–10.PubMed Haberkorn U, Altmann A. Radionuclide imaging in the post-genomic era. J Cell Biochem Suppl 2002;39:1–10.PubMed
244.
go back to reference Spencer SS, Theodore WH, Berkovic SF. Clinical applications: MRI, SPECT, and PET. Magn Reson Imaging 1995;13:1119–24.PubMed Spencer SS, Theodore WH, Berkovic SF. Clinical applications: MRI, SPECT, and PET. Magn Reson Imaging 1995;13:1119–24.PubMed
245.
go back to reference Sokolov K, Nida D, Descour M, Lacy A, Levy M, Hall B, et al. Molecular optical imaging of therapeutic targets of cancer. Adv Cancer Res 2007;96:299–344.PubMed Sokolov K, Nida D, Descour M, Lacy A, Levy M, Hall B, et al. Molecular optical imaging of therapeutic targets of cancer. Adv Cancer Res 2007;96:299–344.PubMed
246.
go back to reference Shao Y, Cherry SR, Farahani K, Meadors K, Siegel S, Silverman RW, et al. Simultaneous PET and MR imaging. Phys Med Biol 1997;42:1965–70.PubMed Shao Y, Cherry SR, Farahani K, Meadors K, Siegel S, Silverman RW, et al. Simultaneous PET and MR imaging. Phys Med Biol 1997;42:1965–70.PubMed
247.
go back to reference Townsend DW, Beyer T. A combined PET/CT scanner: the path to true image fusion. Br J Radiol 2002;75 Spec No:S24–30.PubMed Townsend DW, Beyer T. A combined PET/CT scanner: the path to true image fusion. Br J Radiol 2002;75 Spec No:S24–30.PubMed
248.
go back to reference Parra HS, Cavina R, Latteri F, Zucali PA, Campagnoli E, Morenghi E, et al. Analysis of epidermal growth factor receptor expression as a predictive factor for response to gefitinib (‘Iressa’, ZD1839) in non-small-cell lung cancer. Br J Cancer 2004;91:208–12.PubMed Parra HS, Cavina R, Latteri F, Zucali PA, Campagnoli E, Morenghi E, et al. Analysis of epidermal growth factor receptor expression as a predictive factor for response to gefitinib (‘Iressa’, ZD1839) in non-small-cell lung cancer. Br J Cancer 2004;91:208–12.PubMed
249.
go back to reference Han SW, Hwang PG, Chung DH, Kim DW, Im SA, Kim YT, et al. Epidermal growth factor receptor (EGFR) downstream molecules as response predictive markers for gefitinib (Iressa, ZD1839) in chemotherapy-resistant non-small cell lung cancer. Int J Cancer 2005;113:109–15.PubMed Han SW, Hwang PG, Chung DH, Kim DW, Im SA, Kim YT, et al. Epidermal growth factor receptor (EGFR) downstream molecules as response predictive markers for gefitinib (Iressa, ZD1839) in chemotherapy-resistant non-small cell lung cancer. Int J Cancer 2005;113:109–15.PubMed
250.
go back to reference Cappuzzo F, Gregorc V, Rossi E, Cancellieri A, Magrini E, Paties CT, et al. Gefitinib in pretreated non-small-cell lung cancer (NSCLC): analysis of efficacy and correlation with HER2 and epidermal growth factor receptor expression in locally advanced or metastatic NSCLC. J Clin Oncol 2003;21:2658–63.PubMed Cappuzzo F, Gregorc V, Rossi E, Cancellieri A, Magrini E, Paties CT, et al. Gefitinib in pretreated non-small-cell lung cancer (NSCLC): analysis of efficacy and correlation with HER2 and epidermal growth factor receptor expression in locally advanced or metastatic NSCLC. J Clin Oncol 2003;21:2658–63.PubMed
251.
go back to reference Nahta R, Esteva FJ. HER-2-targeted therapy: lessons learned and future directions. Clin Cancer Res 2003;9:5078–84.PubMed Nahta R, Esteva FJ. HER-2-targeted therapy: lessons learned and future directions. Clin Cancer Res 2003;9:5078–84.PubMed
252.
go back to reference Cai W, Ebrahimnejad A, Chen K, Cao Q, Li ZB, Tice DA, et al. Quantitative radioimmunoPET imaging of EphA2 in tumour-bearing mice. Eur J Nucl Med Mol Imaging 2007. DOI 10.1007/s00259-007-0503-5. Cai W, Ebrahimnejad A, Chen K, Cao Q, Li ZB, Tice DA, et al. Quantitative radioimmunoPET imaging of EphA2 in tumour-bearing mice. Eur J Nucl Med Mol Imaging 2007. DOI 10.​1007/​s00259-007-0503-5.
Metadata
Title
Multimodality imaging of the HER-kinase axis in cancer
Authors
Weibo Cai
Gang Niu
Xiaoyuan Chen
Publication date
01-01-2008
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 1/2008
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-007-0560-9

Other articles of this Issue 1/2008

European Journal of Nuclear Medicine and Molecular Imaging 1/2008 Go to the issue