Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 1/2008

01-01-2008 | Original Article

Peripheral metabolism of (R)-[11C]verapamil in epilepsy patients

Authors: Aiman Abrahim, Gert Luurtsema, Martin Bauer, Rudolf Karch, Mark Lubberink, Ekaterina Pataraia, Christian Joukhadar, Kurt Kletter, Adriaan A. Lammertsma, Christoph Baumgartner, Markus Müller, Oliver Langer

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 1/2008

Login to get access

Abstract

Purpose

(R)-[11C]verapamil is a new PET tracer for P-glycoprotein-mediated transport at the blood-brain barrier. For kinetic analysis of (R)-[11C]verapamil PET data the measurement of a metabolite-corrected arterial input function is required. The aim of this study was to assess peripheral (R)-[11C]verapamil metabolism in patients with temporal lobe epilepsy and compare these data with previously reported data from healthy volunteers.

Methods

Arterial blood samples were collected from eight patients undergoing (R)-[11C]verapamil PET and selected samples were analysed for radiolabelled metabolites of (R)-[11C]verapamil by using an assay that measures polar N-demethylation metabolites by solid-phase extraction and lipophilic N-dealkylation metabolites by HPLC.

Results

Peripheral metabolism of (R)-[11C]verapamil was significantly faster in patients compared to healthy volunteers (AUC of (R)-[11C]verapamil fraction in plasma: 29.4 ± 3.9 min for patients versus 40.8 ± 5.0 min for healthy volunteers; p < 0.0005, Student’s t-test), which resulted in lower (R)-[11C]verapamil plasma concentrations (AUC of (R)-[11C]verapamil concentration, normalised to injected dose per body weight: 25.5 ± 2.1 min for patients and 30.5 ± 5.9 min for healthy volunteers; p = 0.038). Faster metabolism appeared to be mainly due to increased N-demethylation as the polar [11C]metabolite fraction was up to two-fold greater in patients.

Conclusions

Faster metabolism of (R)-[11C]verapamil in epilepsy patients may be caused by hepatic cytochrome P450 enzyme induction by antiepileptic drugs. Based on these data caution is warranted when using an averaged arterial input function derived from healthy volunteers for the analysis of patient data. Moreover, our data illustrate how antiepileptic drugs may decrease serum levels of concomitant medication, which may eventually lead to a loss of therapeutic efficacy.
Literature
1.
go back to reference McTavish D, Sorkin EM. Verapamil. An updated review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension. Drugs 1989;38(1):19–76.PubMedCrossRef McTavish D, Sorkin EM. Verapamil. An updated review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension. Drugs 1989;38(1):19–76.PubMedCrossRef
2.
go back to reference Eichelbaum M, Ende M, Remberg G, Schomerus M, Dengler HJ. The metabolism of DL-[14C]verapamil in man. Drug Metab Dispos 1979;7(3):145–8.PubMed Eichelbaum M, Ende M, Remberg G, Schomerus M, Dengler HJ. The metabolism of DL-[14C]verapamil in man. Drug Metab Dispos 1979;7(3):145–8.PubMed
3.
go back to reference Pauli-Magnus C, von Richter O, Burk O, Ziegler A, Mettang T, Eichelbaum M, et al. Characterization of the major metabolites of verapamil as substrates and inhibitors of P-glycoprotein. J Pharmacol Exp Ther 2000;293(2):376–82.PubMed Pauli-Magnus C, von Richter O, Burk O, Ziegler A, Mettang T, Eichelbaum M, et al. Characterization of the major metabolites of verapamil as substrates and inhibitors of P-glycoprotein. J Pharmacol Exp Ther 2000;293(2):376–82.PubMed
4.
go back to reference Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 1999;39:361–98.PubMedCrossRef Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 1999;39:361–98.PubMedCrossRef
5.
go back to reference Hendrikse NH, Schinkel AH, de Vries EG, Fluks E, Van der Graaf WT, Willemsen AT, et al. Complete in vivo reversal of P-glycoprotein pump function in the blood-brain barrier visualized with positron emission tomography. Br J Pharmacol 1998;124(7):1413–8.PubMedCrossRef Hendrikse NH, Schinkel AH, de Vries EG, Fluks E, Van der Graaf WT, Willemsen AT, et al. Complete in vivo reversal of P-glycoprotein pump function in the blood-brain barrier visualized with positron emission tomography. Br J Pharmacol 1998;124(7):1413–8.PubMedCrossRef
6.
go back to reference Syvänen S, Blomquist G, Sprycha M, Urban Hoglund A, Roman M, Eriksson O, et al. Duration and degree of cyclosporin induced P-glycoprotein inhibition in the rat blood-brain barrier can be studied with PET. Neuroimage 2006;32(3):1134–41.PubMedCrossRef Syvänen S, Blomquist G, Sprycha M, Urban Hoglund A, Roman M, Eriksson O, et al. Duration and degree of cyclosporin induced P-glycoprotein inhibition in the rat blood-brain barrier can be studied with PET. Neuroimage 2006;32(3):1134–41.PubMedCrossRef
7.
go back to reference Lee YJ, Maeda J, Kusuhara H, Okauchi T, Inaji M, Nagai Y, et al. In vivo evaluation of P-glycoprotein function at the blood-brain barrier in nonhuman primates using [11C]verapamil. J Pharmacol Exp Ther 2006;316(2):647–53.PubMedCrossRef Lee YJ, Maeda J, Kusuhara H, Okauchi T, Inaji M, Nagai Y, et al. In vivo evaluation of P-glycoprotein function at the blood-brain barrier in nonhuman primates using [11C]verapamil. J Pharmacol Exp Ther 2006;316(2):647–53.PubMedCrossRef
8.
go back to reference Bart J, Willemsen AT, Groen HJ, van der Graaf WT, Wegman TD, Vaalburg W, et al. Quantitative assessment of P-glycoprotein function in the rat blood-brain barrier by distribution volume of [11C]verapamil measured with PET. Neuroimage 2003;20(3):1775–82.PubMedCrossRef Bart J, Willemsen AT, Groen HJ, van der Graaf WT, Wegman TD, Vaalburg W, et al. Quantitative assessment of P-glycoprotein function in the rat blood-brain barrier by distribution volume of [11C]verapamil measured with PET. Neuroimage 2003;20(3):1775–82.PubMedCrossRef
9.
go back to reference Sasongko L, Link JM, Muzi M, Mankoff DA, Yang X, Collier AC, et al. Imaging P-glycoprotein transport activity at the human blood-brain barrier with positron emission tomography. Clin Pharmacol Ther 2005;77(6):503–14.PubMedCrossRef Sasongko L, Link JM, Muzi M, Mankoff DA, Yang X, Collier AC, et al. Imaging P-glycoprotein transport activity at the human blood-brain barrier with positron emission tomography. Clin Pharmacol Ther 2005;77(6):503–14.PubMedCrossRef
10.
go back to reference Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT, et al. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 2005;57 2:176–9.CrossRef Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT, et al. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 2005;57 2:176–9.CrossRef
11.
go back to reference Brunner M, Langer O, Sunder-Plassmann R, Dobrozemsky G, Müller U, Wadsak W, et al. Influence of functional haplotypes in the drug transporter gene ABCB1 on central nervous system drug distribution in humans. Clin Pharmacol Ther 2005;78(2):182–90.PubMedCrossRef Brunner M, Langer O, Sunder-Plassmann R, Dobrozemsky G, Müller U, Wadsak W, et al. Influence of functional haplotypes in the drug transporter gene ABCB1 on central nervous system drug distribution in humans. Clin Pharmacol Ther 2005;78(2):182–90.PubMedCrossRef
12.
go back to reference Toornvliet R, van Berckel BN, Luurtsema G, Lubberink M, Geldof AA, Bosch TM, et al. Effect of age on functional P-glycoprotein in the blood-brain barrier measured by use of (R)-[(11)C]verapamil and positron emission tomography. Clin Pharmacol Ther 2006;79(6):540–8.PubMedCrossRef Toornvliet R, van Berckel BN, Luurtsema G, Lubberink M, Geldof AA, Bosch TM, et al. Effect of age on functional P-glycoprotein in the blood-brain barrier measured by use of (R)-[(11)C]verapamil and positron emission tomography. Clin Pharmacol Ther 2006;79(6):540–8.PubMedCrossRef
13.
go back to reference Takano A, Kusuhara H, Suhara T, Ieiri I, Morimoto T, Lee YJ, et al. Evaluation of in vivo P-glycoprotein function at the blood-brain barrier among MDR1 gene polymorphisms by using 11C-verapamil. J Nucl Med 2006;47(9):1427–33.PubMed Takano A, Kusuhara H, Suhara T, Ieiri I, Morimoto T, Lee YJ, et al. Evaluation of in vivo P-glycoprotein function at the blood-brain barrier among MDR1 gene polymorphisms by using 11C-verapamil. J Nucl Med 2006;47(9):1427–33.PubMed
14.
go back to reference Elsinga PH, Franssen EJ, Hendrikse NH, Fluks L, Weemaes AM, van der Graaf WT, et al. Carbon-11-labeled daunorubicin and verapamil for probing P-glycoprotein in tumors with PET. J Nucl Med 1996;37(9):1571–5.PubMed Elsinga PH, Franssen EJ, Hendrikse NH, Fluks L, Weemaes AM, van der Graaf WT, et al. Carbon-11-labeled daunorubicin and verapamil for probing P-glycoprotein in tumors with PET. J Nucl Med 1996;37(9):1571–5.PubMed
15.
go back to reference Luurtsema G, Molthoff CF, Windhorst AD, Smit JW, Keizer H, Boellaard R, et al. (R)- and (S)-[11C]verapamil as PET-tracers for measuring P-glycoprotein function: in vitro and in vivo evaluation. Nucl Med Biol 2003;30(7):747–51.PubMedCrossRef Luurtsema G, Molthoff CF, Windhorst AD, Smit JW, Keizer H, Boellaard R, et al. (R)- and (S)-[11C]verapamil as PET-tracers for measuring P-glycoprotein function: in vitro and in vivo evaluation. Nucl Med Biol 2003;30(7):747–51.PubMedCrossRef
16.
go back to reference Lubberink M, Luurtsema G, van Berckel BN, Boellaard R, Toornvliet R, Windhorst AD, et al. Evaluation of tracer kinetic models for quantification of P-glycoprotein function using (R)-[(11)C]verapamil and PET. J Cereb Blood Flow Metab 2007;27(2):424–33.PubMedCrossRef Lubberink M, Luurtsema G, van Berckel BN, Boellaard R, Toornvliet R, Windhorst AD, et al. Evaluation of tracer kinetic models for quantification of P-glycoprotein function using (R)-[(11)C]verapamil and PET. J Cereb Blood Flow Metab 2007;27(2):424–33.PubMedCrossRef
17.
go back to reference Franssen EJ, Luurtsema G, Lammertsma AA. Imaging P-glycoprotein at the human blood-brain barrier. Clin Pharmacol Ther 2006;80(3):302–303, author reply 303–4. Franssen EJ, Luurtsema G, Lammertsma AA. Imaging P-glycoprotein at the human blood-brain barrier. Clin Pharmacol Ther 2006;80(3):302–303, author reply 303–4.
18.
go back to reference Luurtsema G, Molthoff CF, Schuit RC, Windhorst AD, Lammertsma AA, Franssen EJ. Evaluation of (R)-[11C]verapamil as PET tracer of P-glycoprotein function in the blood-brain barrier: kinetics and metabolism in the rat. Nucl Med Biol 2005;32(1):87–93.PubMedCrossRef Luurtsema G, Molthoff CF, Schuit RC, Windhorst AD, Lammertsma AA, Franssen EJ. Evaluation of (R)-[11C]verapamil as PET tracer of P-glycoprotein function in the blood-brain barrier: kinetics and metabolism in the rat. Nucl Med Biol 2005;32(1):87–93.PubMedCrossRef
19.
go back to reference Busse D, Cosme J, Beaune P, Kroemer HK, Eichelbaum M. Cytochromes of the P450 2C subfamily are the major enzymes involved in the O-demethylation of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol 1995;353(1):116–21.PubMedCrossRef Busse D, Cosme J, Beaune P, Kroemer HK, Eichelbaum M. Cytochromes of the P450 2C subfamily are the major enzymes involved in the O-demethylation of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol 1995;353(1):116–21.PubMedCrossRef
20.
go back to reference Kroemer HK, Gautier JC, Beaune P, Henderson C, Wolf CR, Eichelbaum M. Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol 1993;348(3):332–7. Kroemer HK, Gautier JC, Beaune P, Henderson C, Wolf CR, Eichelbaum M. Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol 1993;348(3):332–7.
21.
go back to reference Thummel KE, Wilkinson GR. In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol 1998;38:389–430.CrossRef Thummel KE, Wilkinson GR. In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol 1998;38:389–430.CrossRef
22.
go back to reference Langer O, Bauer M, Hammers A, Karch R, Pataraia E, Koepp MJ, et al. Pharmacoresistance in epilepsy: a pilot PET study with the P-glycoprotein substrate R-[11C]verapamil. Epilepsia 2007;48(9):1774–84. DOI 10.1111/j.1528-1167.2007.01116.x. Langer O, Bauer M, Hammers A, Karch R, Pataraia E, Koepp MJ, et al. Pharmacoresistance in epilepsy: a pilot PET study with the P-glycoprotein substrate R-[11C]verapamil. Epilepsia 2007;48(9):1774–84. DOI 10.​1111/​j.​1528-1167.​2007.​01116.​x.
23.
go back to reference Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: interactions between antiepileptic drugs and other drugs. Lancet Neurol 2003;2(8):473–81.PubMedCrossRef Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: interactions between antiepileptic drugs and other drugs. Lancet Neurol 2003;2(8):473–81.PubMedCrossRef
24.
go back to reference Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: general features and interactions between antiepileptic drugs. Lancet Neurol 2003;2(6):347–56.PubMedCrossRef Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: general features and interactions between antiepileptic drugs. Lancet Neurol 2003;2(6):347–56.PubMedCrossRef
25.
go back to reference Perucca E. Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol 2006;61(3):246–55.PubMedCrossRef Perucca E. Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol 2006;61(3):246–55.PubMedCrossRef
26.
go back to reference Luurtsema G, Windhorst AD, Mooijer MPJ, Herscheid JDM, Lammertsma AA, Franssen EJF. Fully automated high yield synthesis of (R)- and (S)-[C-11]verapamil for measuring P-glycoprotein function with positron emission tomography. J Labelled Compd Rad 2002;45(14):1199–207.CrossRef Luurtsema G, Windhorst AD, Mooijer MPJ, Herscheid JDM, Lammertsma AA, Franssen EJF. Fully automated high yield synthesis of (R)- and (S)-[C-11]verapamil for measuring P-glycoprotein function with positron emission tomography. J Labelled Compd Rad 2002;45(14):1199–207.CrossRef
27.
go back to reference Anderson GD. A mechanistic approach to antiepileptic drug interactions. Ann Pharmacother 1998;32(5):554–63.PubMedCrossRef Anderson GD. A mechanistic approach to antiepileptic drug interactions. Ann Pharmacother 1998;32(5):554–63.PubMedCrossRef
28.
go back to reference Macphee GJ, McInnes GT, Thompson GG, Brodie MJ. Verapamil potentiates carbamazepine neurotoxicity: a clinically important inhibitory interaction. Lancet 1986;1(8483):700–3.PubMedCrossRef Macphee GJ, McInnes GT, Thompson GG, Brodie MJ. Verapamil potentiates carbamazepine neurotoxicity: a clinically important inhibitory interaction. Lancet 1986;1(8483):700–3.PubMedCrossRef
29.
go back to reference Hsiao P, Sasongko L, Link JM, Mankoff DA, Muzi M, Collier AC, et al. Verapamil P-glycoprotein transport across the rat blood-brain barrier: cyclosporine, a concentration inhibition analysis, and comparison with human data. J Pharmacol Exp Ther 2006;317(2):704–10.PubMedCrossRef Hsiao P, Sasongko L, Link JM, Mankoff DA, Muzi M, Collier AC, et al. Verapamil P-glycoprotein transport across the rat blood-brain barrier: cyclosporine, a concentration inhibition analysis, and comparison with human data. J Pharmacol Exp Ther 2006;317(2):704–10.PubMedCrossRef
30.
go back to reference Sisodiya SM, Bates SE. Treatment of drug resistance in epilepsy: one step at a time. Lancet Neurol 2006;5(5):380–1.PubMedCrossRef Sisodiya SM, Bates SE. Treatment of drug resistance in epilepsy: one step at a time. Lancet Neurol 2006;5(5):380–1.PubMedCrossRef
31.
32.
go back to reference Summers MA, Moore JL, McAuley JW. Use of verapamil as a potential P-glycoprotein inhibitor in a patient with refractory epilepsy. Ann Pharmacother 2004;38(10):1631–4.PubMedCrossRef Summers MA, Moore JL, McAuley JW. Use of verapamil as a potential P-glycoprotein inhibitor in a patient with refractory epilepsy. Ann Pharmacother 2004;38(10):1631–4.PubMedCrossRef
33.
go back to reference Iannetti P, Spalice A, Parisi P. Calcium-channel blocker verapamil administration in prolonged and refractory status epilepticus. Epilepsia 2005;46(6):967–9.PubMedCrossRef Iannetti P, Spalice A, Parisi P. Calcium-channel blocker verapamil administration in prolonged and refractory status epilepticus. Epilepsia 2005;46(6):967–9.PubMedCrossRef
34.
go back to reference Barbarash RA, Bauman JL, Fischer JH, Kondos GT, Batenhorst RL. Near-total reduction in verapamil bioavailability by rifampin. Electrocardiographic correlates. Chest 1988;94(5):954–9.PubMedCrossRef Barbarash RA, Bauman JL, Fischer JH, Kondos GT, Batenhorst RL. Near-total reduction in verapamil bioavailability by rifampin. Electrocardiographic correlates. Chest 1988;94(5):954–9.PubMedCrossRef
35.
go back to reference Rutledge DR, Pieper JA, Mirvis DM. Effects of chronic phenobarbital on verapamil disposition in humans. J Pharmacol Exp Ther 1988;246(1):7–13.PubMed Rutledge DR, Pieper JA, Mirvis DM. Effects of chronic phenobarbital on verapamil disposition in humans. J Pharmacol Exp Ther 1988;246(1):7–13.PubMed
Metadata
Title
Peripheral metabolism of (R)-[11C]verapamil in epilepsy patients
Authors
Aiman Abrahim
Gert Luurtsema
Martin Bauer
Rudolf Karch
Mark Lubberink
Ekaterina Pataraia
Christian Joukhadar
Kurt Kletter
Adriaan A. Lammertsma
Christoph Baumgartner
Markus Müller
Oliver Langer
Publication date
01-01-2008
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 1/2008
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-007-0556-5

Other articles of this Issue 1/2008

European Journal of Nuclear Medicine and Molecular Imaging 1/2008 Go to the issue