Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 5/2007

01-05-2007 | Original Article

Quantification of adenosine A2A receptors in the human brain using [11C]TMSX and positron emission tomography

Authors: Mika Naganawa, Yuichi Kimura, Masahiro Mishina, Yoshitsugu Manabe, Kunihiro Chihara, Keiichi Oda, Kenji Ishii, Kiichi Ishiwata

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 5/2007

Login to get access

Abstract

Purpose

[7-methyl-11C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([11C]TMSX) is a positron-emitting adenosine A2A receptor (A2AR) antagonist for visualisation of A2AR distribution by positron emission tomography (PET). The aims of this paper were to use a kinetic model to analyse the behaviour of [11C]TMSX in the brain and to examine the applicability of the Logan plot. We also studied the applicability of a simplified Logan plot by omitting metabolite correction and arterial blood sampling.

Methods

The centrum semiovale was used as a reference region on the basis of a post-mortem study showing that it has a negligibly low density of A2ARs. Compartmental analysis was performed in five normal subjects. Parametric images of A2AR binding potential (BP) were also generated using a Logan plot with or without metabolite correction and with or without arterial blood sampling. To omit arterial blood sampling, we applied a method to extract the plasma-related information using independent component analysis (EPICA).

Results

The estimated K 1/k 2 was confirmed to be common in the centrum semiovale and main cortices. The three-compartment model was well fitted to the other regions using the fixed value of K 1/k 2 estimated from the centrum semiovale. The estimated BPs using the Logan plot matched those derived from compartment analysis. Without the metabolite correction, the estimate of BP underestimated the true value by 5%. The estimated BPs agreed regardless of arterial blood sampling.

Conclusion

A three-compartment model with a reference region, the centrum semiovale, describes the kinetic behaviour of [11C]TMSX PET images. A2ARs in the human brain can be visualised as a BP image using [11C]TMSX PET without arterial blood sampling.
Literature
1.
go back to reference Fredholm BB, Ijzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 2001;53:527–52.PubMed Fredholm BB, Ijzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 2001;53:527–52.PubMed
2.
go back to reference Svenningsson P, Hall H, Sedvall G, Fredholm BB. Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse 1997;27:322–35.CrossRefPubMed Svenningsson P, Hall H, Sedvall G, Fredholm BB. Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse 1997;27:322–35.CrossRefPubMed
3.
go back to reference Ishiwata K, Noguchi J, Wakabayashi S, Shimada J, Ogi N, Nariai T, et al. 11C-labeled KF18446: a potential central nervous system adenosine A2a receptor ligand. J Nucl Med 2000;41:345–54.PubMed Ishiwata K, Noguchi J, Wakabayashi S, Shimada J, Ogi N, Nariai T, et al. 11C-labeled KF18446: a potential central nervous system adenosine A2a receptor ligand. J Nucl Med 2000;41:345–54.PubMed
4.
go back to reference Ishiwata K, Wang WF, Kimura Y, Kawamura K, Ishii K. Preclinical studies on [11C]TMSX for mapping adenosine A2A receptors by positron emission tomography. Ann Nucl Med 2003;17:205–11.CrossRefPubMed Ishiwata K, Wang WF, Kimura Y, Kawamura K, Ishii K. Preclinical studies on [11C]TMSX for mapping adenosine A2A receptors by positron emission tomography. Ann Nucl Med 2003;17:205–11.CrossRefPubMed
5.
go back to reference Ishiwata K, Mishina M, Kimura Y, Oda K, Sasaki T, Ishii K. First visualization of adenosine A2A receptors in the human brain by positron emission tomography with [11C]TMSX. Synapse 2005;55:133–6.CrossRefPubMed Ishiwata K, Mishina M, Kimura Y, Oda K, Sasaki T, Ishii K. First visualization of adenosine A2A receptors in the human brain by positron emission tomography with [11C]TMSX. Synapse 2005;55:133–6.CrossRefPubMed
6.
go back to reference Ishiwata K, Kawamura K, Kimura Y, Oda K, Ishii K. Potential of an adenosine A2A receptor antagonist [11C]TMSX for myocardial imaging by positron emission tomography: a first human study. Ann Nucl Med 2003;17:457–62.CrossRefPubMed Ishiwata K, Kawamura K, Kimura Y, Oda K, Ishii K. Potential of an adenosine A2A receptor antagonist [11C]TMSX for myocardial imaging by positron emission tomography: a first human study. Ann Nucl Med 2003;17:457–62.CrossRefPubMed
7.
go back to reference Ishiwata K, Mizuno M, Kimura Y, Kawamura K, Oda K, Sasaki T, et al. Potential of [11C]TMSX for the evaluation of adenosine A2A receptors in the skeletal muscle by positron emission tomography. Nucl Med Biol 2004;31:949–56.CrossRefPubMed Ishiwata K, Mizuno M, Kimura Y, Kawamura K, Oda K, Sasaki T, et al. Potential of [11C]TMSX for the evaluation of adenosine A2A receptors in the skeletal muscle by positron emission tomography. Nucl Med Biol 2004;31:949–56.CrossRefPubMed
8.
go back to reference Mizuno M, Kimura Y, Tokizawa K, Ishii K, Oda K, Sasaki T, et al. Greater adenosine A2A receptor densities in cardiac and skeletal muscle in endurance trained men: a [11C]TMSX PET study. Nucl Med Biol 2005;32:831–6.CrossRefPubMed Mizuno M, Kimura Y, Tokizawa K, Ishii K, Oda K, Sasaki T, et al. Greater adenosine A2A receptor densities in cardiac and skeletal muscle in endurance trained men: a [11C]TMSX PET study. Nucl Med Biol 2005;32:831–6.CrossRefPubMed
9.
go back to reference Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 1990;10:740–7.CrossRefPubMed Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 1990;10:740–7.CrossRefPubMed
10.
go back to reference Logan J. Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol 2000;27:661–70.CrossRefPubMed Logan J. Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol 2000;27:661–70.CrossRefPubMed
11.
go back to reference Watabe H, Channing MA, Der MG, Adams R, Jagoda E, Herscovitch P, et al. Kinetic analysis of the 5-HT2A ligand [11C]MDL 100,907. J Cereb Blood Flow Metab 2000;20:899–909.CrossRefPubMed Watabe H, Channing MA, Der MG, Adams R, Jagoda E, Herscovitch P, et al. Kinetic analysis of the 5-HT2A ligand [11C]MDL 100,907. J Cereb Blood Flow Metab 2000;20:899–909.CrossRefPubMed
12.
go back to reference Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage 1996;4:153–8.CrossRefPubMed Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage 1996;4:153–8.CrossRefPubMed
13.
go back to reference Kimura Y, Ishii K, Fukumitsu N, Oda K, Sasaki T, Kawamura K, et al. Quantitative analysis of adenosine A1 receptors in human brain using positron emission tomography and [1-methyl-11C]8-dicyclopropylmethl-1-methyl-3-propylxanthine. Nucl Med Biol 2004;31:975–81.CrossRefPubMed Kimura Y, Ishii K, Fukumitsu N, Oda K, Sasaki T, Kawamura K, et al. Quantitative analysis of adenosine A1 receptors in human brain using positron emission tomography and [1-methyl-11C]8-dicyclopropylmethl-1-methyl-3-propylxanthine. Nucl Med Biol 2004;31:975–81.CrossRefPubMed
14.
go back to reference Coleman T, Branch MA. Nonlinear least-square. Optimization toolbox user's guide. Natick, MA: MathWorks Inc.; 1999; p. 3–11. Coleman T, Branch MA. Nonlinear least-square. Optimization toolbox user's guide. Natick, MA: MathWorks Inc.; 1999; p. 3–11.
15.
go back to reference William HP, Saul AT, William TV, Brian PF. 15.2 fitting data to a straight line. Numerical recipes in C: the art of scientific computing. 2nd ed. New York: Cambridge University Press; 1992; p. 661–6. William HP, Saul AT, William TV, Brian PF. 15.2 fitting data to a straight line. Numerical recipes in C: the art of scientific computing. 2nd ed. New York: Cambridge University Press; 1992; p. 661–6.
16.
go back to reference Naganawa M, Kimura Y, Ishii K, Oda K, Ishiwata K, Matani A. Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis. IEEE Trans Biomed Eng 2005;51:201–10.CrossRef Naganawa M, Kimura Y, Ishii K, Oda K, Ishiwata K, Matani A. Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis. IEEE Trans Biomed Eng 2005;51:201–10.CrossRef
17.
go back to reference Naganawa M, Kimura Y, Nariai T, Ishii K, Oda K, Manabe Y, et al. Omission of serial arterial blood sampling in neuroreceptor imaging with independent component analysis. NeuroImage 2005;26:885–90.CrossRefPubMed Naganawa M, Kimura Y, Nariai T, Ishii K, Oda K, Manabe Y, et al. Omission of serial arterial blood sampling in neuroreceptor imaging with independent component analysis. NeuroImage 2005;26:885–90.CrossRefPubMed
18.
go back to reference Comon P. Independent component analysis, a new concept? Signal Process 1994;36:287–314.CrossRef Comon P. Independent component analysis, a new concept? Signal Process 1994;36:287–314.CrossRef
19.
go back to reference Hyvärinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 1999;10:626–34.CrossRefPubMed Hyvärinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 1999;10:626–34.CrossRefPubMed
20.
go back to reference Naganawa M, Matani A, Kimura Y. Extraction of vessel-related information from PET images without continuous blood sampling using modified independent component analysis. Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2001:2744–7. Naganawa M, Matani A, Kimura Y. Extraction of vessel-related information from PET images without continuous blood sampling using modified independent component analysis. Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2001:2744–7.
21.
go back to reference Meyer JH, Ichise M. Modeling of receptor ligand data in PET and SPECT imaging: a review of major approaches. J Neuroimaging 2001;11:30–9.CrossRefPubMed Meyer JH, Ichise M. Modeling of receptor ligand data in PET and SPECT imaging: a review of major approaches. J Neuroimaging 2001;11:30–9.CrossRefPubMed
22.
go back to reference Koeppe RA, Holthoff VA, Frey KA, Kilbourn MR, Kuhl DE. Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab 1991;11:735–44.CrossRefPubMed Koeppe RA, Holthoff VA, Frey KA, Kilbourn MR, Kuhl DE. Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab 1991;11:735–44.CrossRefPubMed
23.
go back to reference Kropholler MA, Boellard R, Schuitemaker A, Berckel BNM, Luurtsema G, Windhorst AD, et al. Development of a tracer kinetic plasma input model for (R)-[11C]PK11195 brain studies. J Cereb Blood Flow Metab 2005;25:842–51.CrossRefPubMed Kropholler MA, Boellard R, Schuitemaker A, Berckel BNM, Luurtsema G, Windhorst AD, et al. Development of a tracer kinetic plasma input model for (R)-[11C]PK11195 brain studies. J Cereb Blood Flow Metab 2005;25:842–51.CrossRefPubMed
24.
go back to reference Cunha RA, Johansson B, Constantino MD, Sebastiao AM, Fredholm BB. Evidence for high-affinity binding sites for the adenosine A2A receptor agonist [3H] CGS 21680 in the rat hippocampus and cerebral cortex that are different from striatal A2A receptors. Naunyn Schmiedebergs Arch Pharmacol 1996;353:261–71.CrossRefPubMed Cunha RA, Johansson B, Constantino MD, Sebastiao AM, Fredholm BB. Evidence for high-affinity binding sites for the adenosine A2A receptor agonist [3H] CGS 21680 in the rat hippocampus and cerebral cortex that are different from striatal A2A receptors. Naunyn Schmiedebergs Arch Pharmacol 1996;353:261–71.CrossRefPubMed
25.
go back to reference Lindstrom K, Ongini E, Fredholm BB. The selective adenosine A2A receptor antagonist SCH 58261 discriminates between two different binding sites for [3H]-CGS 21680 in the rat brain. Naunyn Schmiedebergs Arch Pharmacol 1996;354:539–41.CrossRefPubMed Lindstrom K, Ongini E, Fredholm BB. The selective adenosine A2A receptor antagonist SCH 58261 discriminates between two different binding sites for [3H]-CGS 21680 in the rat brain. Naunyn Schmiedebergs Arch Pharmacol 1996;354:539–41.CrossRefPubMed
26.
go back to reference Ishiwata K, Ogi N, Shimada J, Nonaka H, Tanaka A, Suzuki F, et al. Further characterization of a CNS adenosine A2a receptor ligand [11C]KF18446 with in vitro autoradiography and in vivo tissue uptake. Ann Nucl Med 2000;14:81–9.CrossRefPubMed Ishiwata K, Ogi N, Shimada J, Nonaka H, Tanaka A, Suzuki F, et al. Further characterization of a CNS adenosine A2a receptor ligand [11C]KF18446 with in vitro autoradiography and in vivo tissue uptake. Ann Nucl Med 2000;14:81–9.CrossRefPubMed
27.
go back to reference Fredholm BB, Svenningsson P. Adenosine–dopamine interactions: development of a concept and some comments on therapeutic possibilities. Neurology 2003;61:S5–S9.CrossRefPubMed Fredholm BB, Svenningsson P. Adenosine–dopamine interactions: development of a concept and some comments on therapeutic possibilities. Neurology 2003;61:S5–S9.CrossRefPubMed
28.
go back to reference Bara-Jimenez W, Sherzai A, Dimitrova T, Favit A, Bibbiani F, Gillespie M, et al. Adenosine A2A receptor antagonist treatment of Parkinson’s disease. Neurology 2003;61:293–6.CrossRefPubMed Bara-Jimenez W, Sherzai A, Dimitrova T, Favit A, Bibbiani F, Gillespie M, et al. Adenosine A2A receptor antagonist treatment of Parkinson’s disease. Neurology 2003;61:293–6.CrossRefPubMed
Metadata
Title
Quantification of adenosine A2A receptors in the human brain using [11C]TMSX and positron emission tomography
Authors
Mika Naganawa
Yuichi Kimura
Masahiro Mishina
Yoshitsugu Manabe
Kunihiro Chihara
Keiichi Oda
Kenji Ishii
Kiichi Ishiwata
Publication date
01-05-2007
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 5/2007
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-006-0294-0

Other articles of this Issue 5/2007

European Journal of Nuclear Medicine and Molecular Imaging 5/2007 Go to the issue