Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 5/2004

01-05-2004 | Review Article

Scatter modelling and compensation in emission tomography

Authors: Habib Zaidi, Kenneth F. Koral

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 5/2004

Login to get access

Abstract

In nuclear medicine, clinical assessment and diagnosis are generally based on qualitative assessment of the distribution pattern of radiotracers used. In addition, emission tomography (SPECT and PET) imaging methods offer the possibility of quantitative assessment of tracer concentration in vivo to quantify relevant parameters in clinical and research settings, provided accurate correction for the physical degrading factors (e.g. attenuation, scatter, partial volume effects) hampering their quantitative accuracy are applied. This review addresses the problem of Compton scattering as the dominant photon interaction phenomenon in emission tomography and discusses its impact on both the quality of reconstructed clinical images and the accuracy of quantitative analysis. After a general introduction, there is a section in which scatter modelling in uniform and non-uniform media is described in detail. This is followed by an overview of scatter compensation techniques and evaluation strategies used for the assessment of these correction methods. In the process, emphasis is placed on the clinical impact of image degradation due to Compton scattering. This, in turn, stresses the need for implementation of more accurate algorithms in software supplied by scanner manufacturers, although the choice of a general-purpose algorithm or algorithms may be difficult.
Literature
1.
go back to reference Moore SC, Kijewski MF, Muller SP, Rybicki F, Zimmerman RE. Evaluation of scatter compensation methods by their effects on parameter estimation from SPECT projections. Med Phys 2001; 28:278–287.CrossRefPubMed Moore SC, Kijewski MF, Muller SP, Rybicki F, Zimmerman RE. Evaluation of scatter compensation methods by their effects on parameter estimation from SPECT projections. Med Phys 2001; 28:278–287.CrossRefPubMed
2.
go back to reference Gagnon D, Laperriere L, Pouliott N, deVries DJ, Moore SC. Monte Carlo analysis of camera-induced spectral contamination for different primary energies. Phys Med Biol 1992; 37:1725–1739.CrossRef Gagnon D, Laperriere L, Pouliott N, deVries DJ, Moore SC. Monte Carlo analysis of camera-induced spectral contamination for different primary energies. Phys Med Biol 1992; 37:1725–1739.CrossRef
3.
go back to reference Buvat I, Benali H, Todd-Pokropek A, Di Paola R. Scatter correction in scintigraphy: the state of the art. Eur J Nucl Med 1994; 21:675–694.PubMed Buvat I, Benali H, Todd-Pokropek A, Di Paola R. Scatter correction in scintigraphy: the state of the art. Eur J Nucl Med 1994; 21:675–694.PubMed
4.
go back to reference Bentourkia M, Msaki P, Cadorette J, Lecomte R. Object and detector scatter-function dependence on energy and position in high resolution PET. IEEE Trans Nucl Sci 1995; 42:1162–1167.CrossRef Bentourkia M, Msaki P, Cadorette J, Lecomte R. Object and detector scatter-function dependence on energy and position in high resolution PET. IEEE Trans Nucl Sci 1995; 42:1162–1167.CrossRef
5.
go back to reference Bentourkia M, Lecomte R. Energy dependence of nonstationary scatter subtraction-restoration in high resolution PET. IEEE Trans Med Imaging 1999; 18:66–73.CrossRefPubMed Bentourkia M, Lecomte R. Energy dependence of nonstationary scatter subtraction-restoration in high resolution PET. IEEE Trans Med Imaging 1999; 18:66–73.CrossRefPubMed
6.
go back to reference Evans RD. The atomic nucleus. New York: McGraw-Hill, 1955. Evans RD. The atomic nucleus. New York: McGraw-Hill, 1955.
7.
go back to reference Carlsson GA, Carlsson CA, Berggren KF, Ribberfors R. Calculation of scattering cross sections for increased accuracy in diagnostic radiology. I. Energy broadening of Compton-scattered photons. Med Phys 1982; 9:868–879.CrossRefPubMed Carlsson GA, Carlsson CA, Berggren KF, Ribberfors R. Calculation of scattering cross sections for increased accuracy in diagnostic radiology. I. Energy broadening of Compton-scattered photons. Med Phys 1982; 9:868–879.CrossRefPubMed
8.
go back to reference Hua C-H. Compton imaging system development and performance assessment [PhD thesis]. University of Michigan, USA; 2000. Hua C-H. Compton imaging system development and performance assessment [PhD thesis]. University of Michigan, USA; 2000.
9.
go back to reference Zaidi H, Koral KF. Scatter correction strategies in emission tomography. In: Zaidi H, ed. Quantitative analysis in nuclear medicine imaging. New York: Kluwer Academic/Plenum Publishers, 2004. Zaidi H, Koral KF. Scatter correction strategies in emission tomography. In: Zaidi H, ed. Quantitative analysis in nuclear medicine imaging. New York: Kluwer Academic/Plenum Publishers, 2004.
10.
go back to reference de Vries DJ, Moore SC, Zimmerman RE, Mueller SP, Friedland B, Lanza RC. Development and validation of a Monte Carlo simulation of photon transport in an Anger camera. IEEE Trans Med Imaging 1990; 9:430–438.CrossRef de Vries DJ, Moore SC, Zimmerman RE, Mueller SP, Friedland B, Lanza RC. Development and validation of a Monte Carlo simulation of photon transport in an Anger camera. IEEE Trans Med Imaging 1990; 9:430–438.CrossRef
11.
go back to reference de Vries DJ, King MA, Moore SC. Characterization of spectral and spatial distributions of penetration, scatter and lead X-rays in Ga-67 SPECT. IEEE Nuclear Science Symposium, 1998. Conference Record. 1998; 3:1707–1710. de Vries DJ, King MA, Moore SC. Characterization of spectral and spatial distributions of penetration, scatter and lead X-rays in Ga-67 SPECT. IEEE Nuclear Science Symposium, 1998. Conference Record. 1998; 3:1707–1710.
12.
go back to reference Dewaraja YK, Ljungberg M, Koral KF. Characterization of scatter and penetration using Monte Carlo simulation in131I imaging. J Nucl Med 2000; 41:123–130.PubMed Dewaraja YK, Ljungberg M, Koral KF. Characterization of scatter and penetration using Monte Carlo simulation in131I imaging. J Nucl Med 2000; 41:123–130.PubMed
13.
go back to reference Moore S, de Vries D, Penney B, Müller S, Kijewski M. Design of a collimator for imaging In-111. In: Ljungberg M, Strand S-E, King MA, eds. Monte Carlo calculations in nuclear medicine: applications in diagnostic imaging. Bristol: Institute of Physics Publishing; 1998:183–193. Moore S, de Vries D, Penney B, Müller S, Kijewski M. Design of a collimator for imaging In-111. In: Ljungberg M, Strand S-E, King MA, eds. Monte Carlo calculations in nuclear medicine: applications in diagnostic imaging. Bristol: Institute of Physics Publishing; 1998:183–193.
14.
go back to reference King MA, Tsui BM, Pan TS, Glick SJ, Soares EJ. Attenuation compensation for cardiac single-photon emission computed tomographic imaging. Part 2. Attenuation compensation algorithms. J Nucl Cardiol 1996; 3:55–64.PubMed King MA, Tsui BM, Pan TS, Glick SJ, Soares EJ. Attenuation compensation for cardiac single-photon emission computed tomographic imaging. Part 2. Attenuation compensation algorithms. J Nucl Cardiol 1996; 3:55–64.PubMed
15.
go back to reference Zaidi H. Scatter modelling and correction strategies in fully 3-D PET. Nucl Med Commun 2001; 22:1181–1184.PubMed Zaidi H. Scatter modelling and correction strategies in fully 3-D PET. Nucl Med Commun 2001; 22:1181–1184.PubMed
16.
go back to reference Schoder H, Erdi YE, Larson SM, Yeung HW. PET/CT: a new imaging technology in nuclear medicine. Eur J Nucl Med Mol Imaging 2003; 30:1419–1437.CrossRefPubMed Schoder H, Erdi YE, Larson SM, Yeung HW. PET/CT: a new imaging technology in nuclear medicine. Eur J Nucl Med Mol Imaging 2003; 30:1419–1437.CrossRefPubMed
17.
go back to reference Adam LE, Karp JS, Brix G. Investigation of scattered radiation in 3D whole-body positron emission tomography using Monte Carlo simulations. Phys Med Biol 1999; 44:2879–2895.CrossRefPubMed Adam LE, Karp JS, Brix G. Investigation of scattered radiation in 3D whole-body positron emission tomography using Monte Carlo simulations. Phys Med Biol 1999; 44:2879–2895.CrossRefPubMed
18.
go back to reference Jaszczak RJ, Greer KL, Floyd CE, Harris CC, Coleman RE. Improved SPECT quantification using compensation for scattered photons. J Nucl Med 1984; 25:893–900.PubMed Jaszczak RJ, Greer KL, Floyd CE, Harris CC, Coleman RE. Improved SPECT quantification using compensation for scattered photons. J Nucl Med 1984; 25:893–900.PubMed
19.
go back to reference Pan TS, King MA, Luo DS, Dahlberg ST, Villegas BJ. Estimation of attenuation maps from scatter and photopeak window single photon-emission computed tomographic images of technetium 99m-labeled sestamibi. J Nucl Cardiol 1997; 4:42–51.PubMed Pan TS, King MA, Luo DS, Dahlberg ST, Villegas BJ. Estimation of attenuation maps from scatter and photopeak window single photon-emission computed tomographic images of technetium 99m-labeled sestamibi. J Nucl Cardiol 1997; 4:42–51.PubMed
20.
go back to reference Floyd CE, Jaszczak RJ, Greer KL, Coleman RE. Inverse Monte Carlo as a unified reconstruction algorithm for ECT. J Nucl Med 1986; 27:1577–1585.PubMed Floyd CE, Jaszczak RJ, Greer KL, Coleman RE. Inverse Monte Carlo as a unified reconstruction algorithm for ECT. J Nucl Med 1986; 27:1577–1585.PubMed
21.
go back to reference Buvat I, Lazaro D, Breton V. Fully 3D Monte Carlo reconstruction in SPECT: proof of concept and is that worthwhile? Conference proceedings of the VIIth International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 29 June-4 July 2003, Saint-Malo, France. Available on CD-ROM. Buvat I, Lazaro D, Breton V. Fully 3D Monte Carlo reconstruction in SPECT: proof of concept and is that worthwhile? Conference proceedings of the VIIth International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 29 June-4 July 2003, Saint-Malo, France. Available on CD-ROM.
22.
go back to reference Ljungberg M. The Monte Carlo method applied in other areas of SPECT imaging. In: Ljungberg M, Strand S-E, King MA, eds. Monte Carlo calculations in nuclear medicine: applications in diagnostic imaging. Bristol: Institute of Physics Publishing; 1998:207–220. Ljungberg M. The Monte Carlo method applied in other areas of SPECT imaging. In: Ljungberg M, Strand S-E, King MA, eds. Monte Carlo calculations in nuclear medicine: applications in diagnostic imaging. Bristol: Institute of Physics Publishing; 1998:207–220.
23.
go back to reference Kojima A, Matsumoto M, Takahashi M, Uehara S. Effect of energy resolution on scatter fraction in scintigraphic imaging: Monte Carlo study. Med Phys 1993; 20:1107–1113.CrossRefPubMed Kojima A, Matsumoto M, Takahashi M, Uehara S. Effect of energy resolution on scatter fraction in scintigraphic imaging: Monte Carlo study. Med Phys 1993; 20:1107–1113.CrossRefPubMed
24.
go back to reference Floyd CE, Jaszczak RJ, Harris CC, Coleman RE. Energy and spatial distribution of multiple order Compton scatter in SPECT: a Monte Carlo investigation. Phys Med Biol 1984; 29:1217–1230.CrossRefPubMed Floyd CE, Jaszczak RJ, Harris CC, Coleman RE. Energy and spatial distribution of multiple order Compton scatter in SPECT: a Monte Carlo investigation. Phys Med Biol 1984; 29:1217–1230.CrossRefPubMed
25.
go back to reference Ljungberg M, Strand SE. Scatter and attenuation correction in SPECT using density maps and Monte Carlo simulated scatter functions. J Nucl Med 1990; 31:1560–1567.PubMed Ljungberg M, Strand SE. Scatter and attenuation correction in SPECT using density maps and Monte Carlo simulated scatter functions. J Nucl Med 1990; 31:1560–1567.PubMed
26.
go back to reference Barney JS, Rogers JG, Harrop R, Hoverath H. Object shape dependent scatter simulations for PET. IEEE Trans Nucl Sci 1991; 38:719–725.CrossRef Barney JS, Rogers JG, Harrop R, Hoverath H. Object shape dependent scatter simulations for PET. IEEE Trans Nucl Sci 1991; 38:719–725.CrossRef
27.
go back to reference Frey EC, Tsui BMW. Parameterization of the scatter response function in SPECT imaging using Monte Carlo simulation. IEEE Trans Nucl Sci 1990; 37:1308–1315.CrossRef Frey EC, Tsui BMW. Parameterization of the scatter response function in SPECT imaging using Monte Carlo simulation. IEEE Trans Nucl Sci 1990; 37:1308–1315.CrossRef
28.
go back to reference Zaidi H. Reconstruction-based estimation of the scatter component in positron emission tomography. Ann Nucl Med Sci 2001; 14:161–171. Zaidi H. Reconstruction-based estimation of the scatter component in positron emission tomography. Ann Nucl Med Sci 2001; 14:161–171.
29.
go back to reference Zaidi H, Scheurer AH, Morel C. An object-oriented Monte Carlo simulator for 3D positron tomographs. Comput Methods Prog Biomed 1999; 58:133–145.CrossRef Zaidi H, Scheurer AH, Morel C. An object-oriented Monte Carlo simulator for 3D positron tomographs. Comput Methods Prog Biomed 1999; 58:133–145.CrossRef
30.
go back to reference Riauka TA, Hooper HR, Gortel ZW. Experimental and numerical investigation of the 3D SPECT photon detection kernel for non-uniform attenuating media. Phys Med Biol 1996; 41:1167–1189.CrossRefPubMed Riauka TA, Hooper HR, Gortel ZW. Experimental and numerical investigation of the 3D SPECT photon detection kernel for non-uniform attenuating media. Phys Med Biol 1996; 41:1167–1189.CrossRefPubMed
31.
go back to reference Jonsson C, Larsson SA. A spatially varying Compton scatter correction for SPECT utilizing the integral Klein-Nishina cross section. Phys Med Biol 2001; 46:1767–1783.PubMed Jonsson C, Larsson SA. A spatially varying Compton scatter correction for SPECT utilizing the integral Klein-Nishina cross section. Phys Med Biol 2001; 46:1767–1783.PubMed
32.
go back to reference Watson CC, Newport D, Casey ME, deKemp A, Beanlands RS, Schmand M. Evaluation of simulation-based scatter correction for 3-D PET cardiac imaging. IEEE Trans Nucl Sci 1997; 44:90–97. Watson CC, Newport D, Casey ME, deKemp A, Beanlands RS, Schmand M. Evaluation of simulation-based scatter correction for 3-D PET cardiac imaging. IEEE Trans Nucl Sci 1997; 44:90–97.
33.
go back to reference Levin CS, Dahlbom M, Hoffman EJ. A Monte Carlo correction for the effect of Compton scattering in 3-D PET brain imaging. IEEE Trans Nucl Sci 1995; 42:1181–1188. Levin CS, Dahlbom M, Hoffman EJ. A Monte Carlo correction for the effect of Compton scattering in 3-D PET brain imaging. IEEE Trans Nucl Sci 1995; 42:1181–1188.
34.
go back to reference Holdsworth CH, Levin CS, Janecek M, Dahlbom M, Hoffman EJ. Performance analysis of an improved 3-D PET Monte Carlo simulation and scatter correction. IEEE Trans Nucl Sci 2002; 49:83–89.CrossRef Holdsworth CH, Levin CS, Janecek M, Dahlbom M, Hoffman EJ. Performance analysis of an improved 3-D PET Monte Carlo simulation and scatter correction. IEEE Trans Nucl Sci 2002; 49:83–89.CrossRef
35.
go back to reference Beekman FJ, de Jong HW, van Geloven S. Efficient fully 3-D iterative SPECT reconstruction with Monte Carlo-based scatter compensation. IEEE Trans Med Imaging 2002; 21:867–877.CrossRefPubMed Beekman FJ, de Jong HW, van Geloven S. Efficient fully 3-D iterative SPECT reconstruction with Monte Carlo-based scatter compensation. IEEE Trans Med Imaging 2002; 21:867–877.CrossRefPubMed
36.
go back to reference Frey EC, Tsui BMW. A practical method for incorporating scatter in a projector-backprojector for accurate scatter compensation in SPECT. IEEE Trans Nucl Sci 1993; 40:1107–1116.CrossRef Frey EC, Tsui BMW. A practical method for incorporating scatter in a projector-backprojector for accurate scatter compensation in SPECT. IEEE Trans Nucl Sci 1993; 40:1107–1116.CrossRef
37.
go back to reference Beekman FJ, Kamphuis C, Frey EC. Scatter compensation methods in 3D iterative SPECT reconstruction: a simulation study. Phys Med Biol 1997; 42:1619–1632.PubMed Beekman FJ, Kamphuis C, Frey EC. Scatter compensation methods in 3D iterative SPECT reconstruction: a simulation study. Phys Med Biol 1997; 42:1619–1632.PubMed
38.
go back to reference Frey EC, Tsui BMW. Modeling the scatter response function in inhomogeneous scattering media for SPECT. IEEE Trans Nucl Sci 1994; 41:1585–1593.CrossRef Frey EC, Tsui BMW. Modeling the scatter response function in inhomogeneous scattering media for SPECT. IEEE Trans Nucl Sci 1994; 41:1585–1593.CrossRef
39.
go back to reference Beekman FJ, den Harder JM, Viergever MA, van Rijk PP. SPECT scatter modelling in non-uniform attenuating objects. Phys Med Biol 1997; 42:1133–1142.PubMed Beekman FJ, den Harder JM, Viergever MA, van Rijk PP. SPECT scatter modelling in non-uniform attenuating objects. Phys Med Biol 1997; 42:1133–1142.PubMed
40.
go back to reference Kadrmas DJ, Frey EC, Karimi SS, Tsui BM. Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction. Phys Med Biol 1998; 43:857–873. Kadrmas DJ, Frey EC, Karimi SS, Tsui BM. Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction. Phys Med Biol 1998; 43:857–873.
41.
go back to reference Wells RG, Celler A, Harrop R. Analytical calculation of photon distributions in SPECT projections. IEEE Trans Nucl Sci 1998; 45:3202–3214.CrossRef Wells RG, Celler A, Harrop R. Analytical calculation of photon distributions in SPECT projections. IEEE Trans Nucl Sci 1998; 45:3202–3214.CrossRef
42.
go back to reference Frey EC, Tsui BMW. A new method for modeling the spatially-variant, object-dependent scatter response function in SPECT. IEEE Nuclear Science Symposium, 1996. Conference Record 2:1082–1086. Frey EC, Tsui BMW. A new method for modeling the spatially-variant, object-dependent scatter response function in SPECT. IEEE Nuclear Science Symposium, 1996. Conference Record 2:1082–1086.
43.
go back to reference Beekman FJ, de Jong HW, Slijpen ET. Efficient SPECT scatter calculation in non-uniform media using correlated Monte Carlo simulation. Phys Med Biol 1999; 44:N183–N192.PubMed Beekman FJ, de Jong HW, Slijpen ET. Efficient SPECT scatter calculation in non-uniform media using correlated Monte Carlo simulation. Phys Med Biol 1999; 44:N183–N192.PubMed
44.
go back to reference de Jong HW, Beekman FJ. Rapid SPECT simulation of downscatter in non-uniform media. Phys Med Biol 2001; 46:621–635.PubMed de Jong HW, Beekman FJ. Rapid SPECT simulation of downscatter in non-uniform media. Phys Med Biol 2001; 46:621–635.PubMed
45.
go back to reference Rosenthal MS, Cullom J, Hawkins W, Moore SC, Tsui BM, Yester M. Quantitative SPECT imaging: a review and recommendations by the Focus Committee of the Society of Nuclear Medicine Computer and Instrumentation Council. J Nucl Med 1995; 36:1489–1513.PubMed Rosenthal MS, Cullom J, Hawkins W, Moore SC, Tsui BM, Yester M. Quantitative SPECT imaging: a review and recommendations by the Focus Committee of the Society of Nuclear Medicine Computer and Instrumentation Council. J Nucl Med 1995; 36:1489–1513.PubMed
46.
go back to reference Zaidi H. Quantitative SPECT: recent developments in detector response, attenuation and scatter correction techniques. Phys Med 1996; 12:101–117. Zaidi H. Quantitative SPECT: recent developments in detector response, attenuation and scatter correction techniques. Phys Med 1996; 12:101–117.
47.
go back to reference Koral KF. Monte Carlo in SPECT scatter correction. In: Ljungberg M, Strand S-E, King MA, eds. Monte Carlo calculations in nuclear medicine: applications in diagnostic imaging. Bristol: Institute of Physics Publishing; 1998:165–181. Koral KF. Monte Carlo in SPECT scatter correction. In: Ljungberg M, Strand S-E, King MA, eds. Monte Carlo calculations in nuclear medicine: applications in diagnostic imaging. Bristol: Institute of Physics Publishing; 1998:165–181.
48.
go back to reference Yanch JC, Flower MA, Webb S. Improved quantification of radionuclide uptake using deconvolution and windowed subtraction techniques for scatter compensation in single photon emission computed tomography. Med Phys 1990; 17:1011–1022.CrossRefPubMed Yanch JC, Flower MA, Webb S. Improved quantification of radionuclide uptake using deconvolution and windowed subtraction techniques for scatter compensation in single photon emission computed tomography. Med Phys 1990; 17:1011–1022.CrossRefPubMed
49.
go back to reference King MA, Coleman M, Penney BC, Glick SJ. Activity quantitation in SPECT: a study of prereconstruction Metz filtering and use of the scatter degradation factor. Med Phys 1991; 18:184–189.CrossRefPubMed King MA, Coleman M, Penney BC, Glick SJ. Activity quantitation in SPECT: a study of prereconstruction Metz filtering and use of the scatter degradation factor. Med Phys 1991; 18:184–189.CrossRefPubMed
50.
go back to reference Meikle SR, Hutton BF, Bailey DL. A transmission-dependent method for scatter correction in SPECT. J Nucl Med 1994; 35:360–367.PubMed Meikle SR, Hutton BF, Bailey DL. A transmission-dependent method for scatter correction in SPECT. J Nucl Med 1994; 35:360–367.PubMed
51.
go back to reference Narita Y, Eberl S, Iida H, et al. Monte Carlo and experimental evaluation of accuracy and noise properties of two scatter correction methods for SPECT. Phys Med Biol 1996; 41:2481–2496.CrossRefPubMed Narita Y, Eberl S, Iida H, et al. Monte Carlo and experimental evaluation of accuracy and noise properties of two scatter correction methods for SPECT. Phys Med Biol 1996; 41:2481–2496.CrossRefPubMed
52.
go back to reference Narita Y, Iida H, Eberl S, Nakamura T. Monte Carlo evaluation of accuracy and noise properties of two scatter correction methods for201Tl cardiac SPECT. IEEE Trans Nucl Sci 1997; 44:2465–2472.CrossRef Narita Y, Iida H, Eberl S, Nakamura T. Monte Carlo evaluation of accuracy and noise properties of two scatter correction methods for201Tl cardiac SPECT. IEEE Trans Nucl Sci 1997; 44:2465–2472.CrossRef
53.
go back to reference Kim KM, Varrone A, Watabe H, et al. Contribution of scatter and attenuation compensation to SPECT images of nonuniformly distributed brain activities. J Nucl Med 2003; 44:512–519.PubMed Kim KM, Varrone A, Watabe H, et al. Contribution of scatter and attenuation compensation to SPECT images of nonuniformly distributed brain activities. J Nucl Med 2003; 44:512–519.PubMed
54.
go back to reference Larsson A, Johansson L. Scatter-to-primary based scatter fractions for transmission-dependent convolution subtraction of SPECT images. Phys Med Biol 2003; 48:N323–N328.CrossRefPubMed Larsson A, Johansson L. Scatter-to-primary based scatter fractions for transmission-dependent convolution subtraction of SPECT images. Phys Med Biol 2003; 48:N323–N328.CrossRefPubMed
55.
go back to reference King MA, Hademenos GJ, Glick SJ. A dual-photopeak window method for scatter correction. J Nucl Med 1992; 33:605–612.PubMed King MA, Hademenos GJ, Glick SJ. A dual-photopeak window method for scatter correction. J Nucl Med 1992; 33:605–612.PubMed
56.
go back to reference Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single-photon emission CT. IEEE Trans Med Imaging 1991; 10:408–412.CrossRef Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single-photon emission CT. IEEE Trans Med Imaging 1991; 10:408–412.CrossRef
57.
go back to reference Koral KF, Wang XQ, Rogers WL, Clinthorne NH, Wang XH. SPECT Compton-scattering correction by analysis of energy spectra. J Nucl Med 1988; 29:195–202.PubMed Koral KF, Wang XQ, Rogers WL, Clinthorne NH, Wang XH. SPECT Compton-scattering correction by analysis of energy spectra. J Nucl Med 1988; 29:195–202.PubMed
58.
go back to reference Wang X, Koral KF. A regularized deconvolution-fitting method for Compton-scatter correction in SPECT. IEEE Trans Med Imaging 1992; 11:351–360.CrossRef Wang X, Koral KF. A regularized deconvolution-fitting method for Compton-scatter correction in SPECT. IEEE Trans Med Imaging 1992; 11:351–360.CrossRef
59.
go back to reference El Fakhri G, Kijewski MF, Maksud P, Moore SC. The effects of compensation for scatter, lead x-rays, and high-energy contamination on tumor detectability and activity estimation in Ga-67 imaging. IEEE Trans Nucl Sci 2003; 50:439–445.CrossRef El Fakhri G, Kijewski MF, Maksud P, Moore SC. The effects of compensation for scatter, lead x-rays, and high-energy contamination on tumor detectability and activity estimation in Ga-67 imaging. IEEE Trans Nucl Sci 2003; 50:439–445.CrossRef
60.
go back to reference Ogawa K, Nishizaki N. Accurate scatter compensation using neural networks in radionuclide imaging. IEEE Trans Nucl Sci 1993; 40:1020–1025.CrossRef Ogawa K, Nishizaki N. Accurate scatter compensation using neural networks in radionuclide imaging. IEEE Trans Nucl Sci 1993; 40:1020–1025.CrossRef
61.
go back to reference Maksud P, Fertil B, Rica C, El Fakhri G, Aurengo A. Artificial neural network as a tool to compensate for scatter and attenuation in radionuclide imaging. J Nucl Med 1998; 39:735–745.PubMed Maksud P, Fertil B, Rica C, El Fakhri G, Aurengo A. Artificial neural network as a tool to compensate for scatter and attenuation in radionuclide imaging. J Nucl Med 1998; 39:735–745.PubMed
62.
go back to reference El Fakhri G, Moore SC, Maksud P. A new scatter compensation method for Ga-67 Imaging using artificial neural networks. IEEE Trans Nucl Sci 2001; 48:799–804.CrossRef El Fakhri G, Moore SC, Maksud P. A new scatter compensation method for Ga-67 Imaging using artificial neural networks. IEEE Trans Nucl Sci 2001; 48:799–804.CrossRef
63.
go back to reference Hutton B, Nuyts J, Zaidi H. Iterative image reconstruction methods. In: Zaidi H, ed. Quantitative analysis in nuclear medicine imaging. New York: Kluwer Academic/Plenum Publishers, 2004. Hutton B, Nuyts J, Zaidi H. Iterative image reconstruction methods. In: Zaidi H, ed. Quantitative analysis in nuclear medicine imaging. New York: Kluwer Academic/Plenum Publishers, 2004.
64.
go back to reference Hutton BF, Baccarne V. Efficient scatter modelling for incorporation in maximum likelihood reconstruction. Eur J Nucl Med 1998; 25:1658–1665.CrossRefPubMed Hutton BF, Baccarne V. Efficient scatter modelling for incorporation in maximum likelihood reconstruction. Eur J Nucl Med 1998; 25:1658–1665.CrossRefPubMed
65.
go back to reference Kamphuis C, Beekman FJ, van Rijk PP, Viergever MA. Dual matrix ordered subsets reconstruction for accelerated 3D scatter compensation in single-photon emission tomography. Eur J Nucl Med 1998; 25:8–18.CrossRefPubMed Kamphuis C, Beekman FJ, van Rijk PP, Viergever MA. Dual matrix ordered subsets reconstruction for accelerated 3D scatter compensation in single-photon emission tomography. Eur J Nucl Med 1998; 25:8–18.CrossRefPubMed
66.
go back to reference Narayanan MV, Pretorius PH, Dahlberg ST, et al. Evaluation of scatter compensation strategies and their impact on human detection performance Tc-99m myocardial perfusion imaging. IEEE Trans Nucl Sci 2003; 50:1522–1527.CrossRef Narayanan MV, Pretorius PH, Dahlberg ST, et al. Evaluation of scatter compensation strategies and their impact on human detection performance Tc-99m myocardial perfusion imaging. IEEE Trans Nucl Sci 2003; 50:1522–1527.CrossRef
67.
go back to reference Koral KF, Dewaraja Y, Li J, et al. Update on hybrid conjugate-view SPECT tumor dosimetry and response in131I-tositumomab therapy of previously untreated lymphoma patients. J Nucl Med 2003; 44:457–464.PubMed Koral KF, Dewaraja Y, Li J, et al. Update on hybrid conjugate-view SPECT tumor dosimetry and response in131I-tositumomab therapy of previously untreated lymphoma patients. J Nucl Med 2003; 44:457–464.PubMed
68.
go back to reference Iida H, Narita Y, Kado H, et al. Effects of scatter and attenuation correction on quantitative assessment of regional cerebral blood flow with SPECT. J Nucl Med 1998; 39:181–189.PubMed Iida H, Narita Y, Kado H, et al. Effects of scatter and attenuation correction on quantitative assessment of regional cerebral blood flow with SPECT. J Nucl Med 1998; 39:181–189.PubMed
69.
go back to reference Links JM. Scattered photons as “good counts gone bad:” are they reformable or should they be permanently removed from society? J Nucl Med 1995; 36:130–132.PubMed Links JM. Scattered photons as “good counts gone bad:” are they reformable or should they be permanently removed from society? J Nucl Med 1995; 36:130–132.PubMed
70.
go back to reference Msaki P, Bentourkia M, Lecomte R. Scatter degradation and correction models for high-resolution PET. J Nucl Med 1996; 37:2047–2049.PubMed Msaki P, Bentourkia M, Lecomte R. Scatter degradation and correction models for high-resolution PET. J Nucl Med 1996; 37:2047–2049.PubMed
71.
go back to reference Bailey DL. Quantitative procedures in 3D PET. In: Bendriem B, Townsend DW, eds. The theory and practice of 3D PET. Dordrecht, The Netherlands: Kluwer Academic; 1998:55–109. Bailey DL. Quantitative procedures in 3D PET. In: Bendriem B, Townsend DW, eds. The theory and practice of 3D PET. Dordrecht, The Netherlands: Kluwer Academic; 1998:55–109.
72.
go back to reference Meikle SR, Badawi RD. Quantitative techniques in positron emission tomography. In: Valk PE, Bailey DL, Townsend DW, et al., eds. Positron emission tomography: basic science and clinical practice. London: Springer; 2003:115–146. Meikle SR, Badawi RD. Quantitative techniques in positron emission tomography. In: Valk PE, Bailey DL, Townsend DW, et al., eds. Positron emission tomography: basic science and clinical practice. London: Springer; 2003:115–146.
73.
go back to reference Grootoonk S, Spinks TJ, Sashin D, Spyrou NM, Jones T. Correction for scatter in 3D brain PET using a dual energy window method. Phys Med Biol 1996; 41:2757–2774.CrossRefPubMed Grootoonk S, Spinks TJ, Sashin D, Spyrou NM, Jones T. Correction for scatter in 3D brain PET using a dual energy window method. Phys Med Biol 1996; 41:2757–2774.CrossRefPubMed
74.
go back to reference Bendriem B, Trebossen R, Frouin V, Syrota A. A PET scatter correction using simultaneous acquisitions with low and high lower energy thresholds. Proc IEEE Med Imag Conf, San Francisco, CA, 3:1779–1783. Bendriem B, Trebossen R, Frouin V, Syrota A. A PET scatter correction using simultaneous acquisitions with low and high lower energy thresholds. Proc IEEE Med Imag Conf, San Francisco, CA, 3:1779–1783.
75.
go back to reference Shao L, Freifelder R, Karp JS. Triple energy window scatter correction technique in PET. IEEE Trans Med Imaging 1994; 4:641–648. Shao L, Freifelder R, Karp JS. Triple energy window scatter correction technique in PET. IEEE Trans Med Imaging 1994; 4:641–648.
76.
go back to reference Bentourkia M, Msaki P, Cadorette J, Lecomte R. Nonstationary scatter subtraction-restoration in high-resolution PET. J Nucl Med 1996; 37:2040–2046.PubMed Bentourkia M, Msaki P, Cadorette J, Lecomte R. Nonstationary scatter subtraction-restoration in high-resolution PET. J Nucl Med 1996; 37:2040–2046.PubMed
77.
go back to reference Bailey DL, Meikle SR. A convolution-subtraction scatter correction method for 3D PET. Phys Med Biol 1994; 39:411–424.CrossRef Bailey DL, Meikle SR. A convolution-subtraction scatter correction method for 3D PET. Phys Med Biol 1994; 39:411–424.CrossRef
78.
go back to reference Lercher MJ, Wienhard K. Scatter correction in 3D PET. IEEE Trans Med Imaging 1994; 13:649–657.CrossRef Lercher MJ, Wienhard K. Scatter correction in 3D PET. IEEE Trans Med Imaging 1994; 13:649–657.CrossRef
79.
go back to reference Cherry S, Huang SC. Effects of scatter on model parameter estimates in 3D PET studies of the human brain. IEEE Trans Nucl Sci 1995; 42:1174–1179. Cherry S, Huang SC. Effects of scatter on model parameter estimates in 3D PET studies of the human brain. IEEE Trans Nucl Sci 1995; 42:1174–1179.
80.
go back to reference Links JL, Leal JP, Mueller-Gartner HW, Wagner HN. Improved positron emission tomography quantification by Fourier-based restoration filtering. Eur J Nucl Med 1992; 19:925–932.PubMed Links JL, Leal JP, Mueller-Gartner HW, Wagner HN. Improved positron emission tomography quantification by Fourier-based restoration filtering. Eur J Nucl Med 1992; 19:925–932.PubMed
81.
82.
go back to reference Wollenweber SD. Parameterization of a model-based 3-D PET scatter correction. IEEE Trans Nucl Sci 2002; 49:722–727.CrossRef Wollenweber SD. Parameterization of a model-based 3-D PET scatter correction. IEEE Trans Nucl Sci 2002; 49:722–727.CrossRef
83.
go back to reference Watson CC. New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci 2000; 47:1587–1594. Watson CC. New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci 2000; 47:1587–1594.
84.
go back to reference Zaidi H, Montandon M-L, Slosman DO. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography. Med Phys 2003; 30:937–948.CrossRefPubMed Zaidi H, Montandon M-L, Slosman DO. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography. Med Phys 2003; 30:937–948.CrossRefPubMed
85.
go back to reference Ferreira NC, Trebossen R, Lartizien C, Brulon V, Merceron P, Bendriem B. A hybrid scatter correction for 3D PET based on an estimation of the distribution of unscattered coincidences: implementation on the ECAT EXACT HR+. Phys Med Biol 2002; 47:1555–1571.CrossRefPubMed Ferreira NC, Trebossen R, Lartizien C, Brulon V, Merceron P, Bendriem B. A hybrid scatter correction for 3D PET based on an estimation of the distribution of unscattered coincidences: implementation on the ECAT EXACT HR+. Phys Med Biol 2002; 47:1555–1571.CrossRefPubMed
86.
go back to reference Zaidi H. Comparative evaluation of scatter correction techniques in 3D positron emission tomography. Eur J Nucl Med 2000; 27:1813–1826.PubMed Zaidi H. Comparative evaluation of scatter correction techniques in 3D positron emission tomography. Eur J Nucl Med 2000; 27:1813–1826.PubMed
87.
go back to reference Daube-Witherspoon ME, Carson RE, Yan YC, Yap TK. Scatter correction in maximum-likelihood reconstruction of PET data. IEEE Nuclear Science Symposium and Medical Imaging Conference, 1992. Conference Record 2:945–947. Daube-Witherspoon ME, Carson RE, Yan YC, Yap TK. Scatter correction in maximum-likelihood reconstruction of PET data. IEEE Nuclear Science Symposium and Medical Imaging Conference, 1992. Conference Record 2:945–947.
88.
go back to reference Werling A, Bublitz O, Doll J, Adam LE, Brix G. Fast implementation of the single scatter simulation algorithm and its use in iterative image reconstruction of PET data. Phys Med Biol 2002; 47:2947–2960.CrossRefPubMed Werling A, Bublitz O, Doll J, Adam LE, Brix G. Fast implementation of the single scatter simulation algorithm and its use in iterative image reconstruction of PET data. Phys Med Biol 2002; 47:2947–2960.CrossRefPubMed
89.
go back to reference Pan TS, Yagle AE. Numerical study of multigrid implementations of some iterative image reconstruction algorithms. IEEE Trans Med Imaging 1991; 10:572–588.CrossRef Pan TS, Yagle AE. Numerical study of multigrid implementations of some iterative image reconstruction algorithms. IEEE Trans Med Imaging 1991; 10:572–588.CrossRef
90.
go back to reference Ljungberg M, King MA, Hademenos GJ, Strand SE. Comparison of four scatter correction methods using Monte Carlo simulated source distributions. J Nucl Med 1994; 35:143–151.PubMed Ljungberg M, King MA, Hademenos GJ, Strand SE. Comparison of four scatter correction methods using Monte Carlo simulated source distributions. J Nucl Med 1994; 35:143–151.PubMed
91.
go back to reference Buvat I, Rodriguez-Villafuerte M, Todd-Pokropek A, Benali H, Di Paola R. Comparative assessment of nine scatter correction methods based on spectral analysis using Monte Carlo simulations. J Nucl Med 1995; 36:1476–1488.PubMed Buvat I, Rodriguez-Villafuerte M, Todd-Pokropek A, Benali H, Di Paola R. Comparative assessment of nine scatter correction methods based on spectral analysis using Monte Carlo simulations. J Nucl Med 1995; 36:1476–1488.PubMed
92.
go back to reference El Fakhri G, Buvat I, Benali H, Todd-Pokropek A, Di Paola R. Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT. J Nucl Med 2000; 41:1400–1408.PubMed El Fakhri G, Buvat I, Benali H, Todd-Pokropek A, Di Paola R. Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT. J Nucl Med 2000; 41:1400–1408.PubMed
93.
go back to reference Townsend D, Price J, Mintun M, et al. Scatter correction for brain receptor quantitation in 3D PET. In: Myers R CVJ, Bailey DL, Jones T, eds. Quantification of brain function using PET. San Diego, CA: Academic Press; 1996:76–81. Townsend D, Price J, Mintun M, et al. Scatter correction for brain receptor quantitation in 3D PET. In: Myers R CVJ, Bailey DL, Jones T, eds. Quantification of brain function using PET. San Diego, CA: Academic Press; 1996:76–81.
94.
go back to reference Sossi V, Oakes TR, Ruth TJ. A phantom study evaluating the quantitative aspect of 3D PET imaging of the brain. Phys Med Biol 1998; 43:2615–2630. Sossi V, Oakes TR, Ruth TJ. A phantom study evaluating the quantitative aspect of 3D PET imaging of the brain. Phys Med Biol 1998; 43:2615–2630.
95.
go back to reference Barrett HH, Denny JL, Wagner RF, Myers KJ. Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance. J Opt Soc Am A 1995; 12:834–852.PubMed Barrett HH, Denny JL, Wagner RF, Myers KJ. Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance. J Opt Soc Am A 1995; 12:834–852.PubMed
96.
go back to reference King MA, deVries DJ, Pan T-S, Pretorius PH, Case JA. An investigation of the filtering of TEW scatter estimates used to compensate for scatter with ordered subset reconstructions. IEEE Trans Nucl Sci 1997; 44:1140–1145.CrossRef King MA, deVries DJ, Pan T-S, Pretorius PH, Case JA. An investigation of the filtering of TEW scatter estimates used to compensate for scatter with ordered subset reconstructions. IEEE Trans Nucl Sci 1997; 44:1140–1145.CrossRef
97.
go back to reference Ljungberg M, Strand S-E, King MA. Monte Carlo calculations in nuclear medicine: applications in diagnostic imaging. Bristol: Institute of Physics Publishing, 1998. Ljungberg M, Strand S-E, King MA. Monte Carlo calculations in nuclear medicine: applications in diagnostic imaging. Bristol: Institute of Physics Publishing, 1998.
98.
go back to reference Zaidi H, Sgouros G. Therapeutic applications of Monte Carlo calculations in nuclear medicine. Bristol: Institute of Physics Publishing, 2002. Zaidi H, Sgouros G. Therapeutic applications of Monte Carlo calculations in nuclear medicine. Bristol: Institute of Physics Publishing, 2002.
99.
go back to reference Zaidi H. Relevance of accurate Monte Carlo modeling in nuclear medical imaging. Med Phys 1999; 26:574–608.CrossRefPubMed Zaidi H. Relevance of accurate Monte Carlo modeling in nuclear medical imaging. Med Phys 1999; 26:574–608.CrossRefPubMed
100.
go back to reference Kim KM, Watabe H, Shidahara M, Onishi Y, Yonekura Y, Iida H. Impact of scatter correction in the kinetic analysis of a D2 receptror ligand SPECT study. IEEE Medical Imaging Conference, San Diego; 3:1509–1512. Kim KM, Watabe H, Shidahara M, Onishi Y, Yonekura Y, Iida H. Impact of scatter correction in the kinetic analysis of a D2 receptror ligand SPECT study. IEEE Medical Imaging Conference, San Diego; 3:1509–1512.
101.
go back to reference Fujita M, Varrone A, Kim KM, et al. Measurement of striatal and extrastriatal dopamine D2 receptors using [123I]-epidepride SPET. Eur J Nucl Med Mol Imaging 2004; 31:in press. DOI 10.1007/s00259-003-1431-7. Fujita M, Varrone A, Kim KM, et al. Measurement of striatal and extrastriatal dopamine D2 receptors using [123I]-epidepride SPET. Eur J Nucl Med Mol Imaging 2004; 31:in press. DOI 10.1007/s00259-003-1431-7.
102.
go back to reference de Vries DJ, King MA, Soares EJ, Tsui BM, Metz CE. Effects of scatter subtraction on detection and quantitation in hepatic SPECT. J Nucl Med 1999; 40:1011–1023.PubMed de Vries DJ, King MA, Soares EJ, Tsui BM, Metz CE. Effects of scatter subtraction on detection and quantitation in hepatic SPECT. J Nucl Med 1999; 40:1011–1023.PubMed
103.
go back to reference Sankaran S, Frey EC, Gilland KL, Tsui BM. Optimum compensation method and filter cutoff frequency in myocardial SPECT: a human observer study. J Nucl Med 2002; 43:432–438.PubMed Sankaran S, Frey EC, Gilland KL, Tsui BM. Optimum compensation method and filter cutoff frequency in myocardial SPECT: a human observer study. J Nucl Med 2002; 43:432–438.PubMed
104.
go back to reference Montandon M-L, Slosman DO, Zaidi H. Assessment of the impact of model-based scatter correction on18F-[FDG] 3D brain PET in healthy subjects using statistical parametric mapping. Neuroimage 2003; 20:1848–1856.CrossRefPubMed Montandon M-L, Slosman DO, Zaidi H. Assessment of the impact of model-based scatter correction on18F-[FDG] 3D brain PET in healthy subjects using statistical parametric mapping. Neuroimage 2003; 20:1848–1856.CrossRefPubMed
105.
go back to reference Zaidi H, Hasegawa BH. Determination of the attenuation map in emission tomography. J Nucl Med 2003; 44:291–315.PubMed Zaidi H, Hasegawa BH. Determination of the attenuation map in emission tomography. J Nucl Med 2003; 44:291–315.PubMed
106.
go back to reference Wegmann K, Adam L-E, Livieratos L, Zaers J, Bailey DL, Brix G. Investigation of the scatter contribution in single photon transmission measurements by means of Monte Carlo simulations. IEEE Trans Nucl Sci 1999; 46:1184–1190.CrossRef Wegmann K, Adam L-E, Livieratos L, Zaers J, Bailey DL, Brix G. Investigation of the scatter contribution in single photon transmission measurements by means of Monte Carlo simulations. IEEE Trans Nucl Sci 1999; 46:1184–1190.CrossRef
107.
go back to reference Celler A, Axen D, Togane D, El-Khatib J. Investigation of scatter in SPECT transmission studies. IEEE Trans Nucl Sci 2000; 47:1251–1257.CrossRef Celler A, Axen D, Togane D, El-Khatib J. Investigation of scatter in SPECT transmission studies. IEEE Trans Nucl Sci 2000; 47:1251–1257.CrossRef
108.
go back to reference Ohnesorge B, Flohr T, Klingenbeck-Regn K. Efficient object scatter correction algorithm for third and fourth generation CT scanners. Eur Radiol 1999; 9:563–569.CrossRefPubMed Ohnesorge B, Flohr T, Klingenbeck-Regn K. Efficient object scatter correction algorithm for third and fourth generation CT scanners. Eur Radiol 1999; 9:563–569.CrossRefPubMed
Metadata
Title
Scatter modelling and compensation in emission tomography
Authors
Habib Zaidi
Kenneth F. Koral
Publication date
01-05-2004
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 5/2004
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-004-1495-z

Other articles of this Issue 5/2004

European Journal of Nuclear Medicine and Molecular Imaging 5/2004 Go to the issue

News & Views

May 2004