Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 9/2004

01-09-2004 | Molecular Imaging

Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy

Authors: Heike E. Daldrup-Link, Martina Rudelius, Stephan Metz, Guido Piontek, Bernd Pichler, Marcus Settles, Ulrich Heinzmann, Jürgen Schlegel, Robert A. J. Oostendorp, Ernst J. Rummeny

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 9/2004

Login to get access

Abstract

The purpose of this study was to assess the feasibility of use of gadophrin-2 to trace intravenously injected human hematopoietic cells in athymic mice, employing magnetic resonance (MR) imaging, optical imaging (OI), and fluorescence microscopy. Mononuclear peripheral blood cells from GCSF-primed patients were labeled with gadophrin-2 (Schering AG, Berlin, Germany), a paramagnetic and fluorescent metalloporphyrin, using established transfection techniques with cationic liposomes. The labeled cells were evaluated in vitro with electron microscopy and inductively coupled plasma atomic emission spectrometry. Then, 1×106–3×108 labeled cells were injected into 14 nude Balb/c mice and the in vivo cell distribution was evaluated with MR imaging and OI before and 4, 24, and 48 h after intravenous injection (p.i.). Five additional mice served as controls: three mice were untreated controls and two mice were investigated after injection of unlabeled cells. The contrast agent effect was determined quantitatively for MR imaging by calculating signal-to-noise-ratio (SNR) data. After completion of in vivo imaging studies, fluorescence microscopy of excised organs was performed. Intracellular cytoplasmatic uptake of gadophrin-2 was confirmed by electron microscopy. Spectrometry determined an uptake of 31.56 nmol Gd per 106 cells. After intravenous injection, the distribution of gadophrin-2 labeled cells in nude mice could be visualized by MR, OI, and fluorescence microscopy. At 4 h p.i., the transplanted cells mainly distributed to lung, liver, and spleen, and 24 h p.i. they also distributed to the bone marrow. Fluorescence microscopy confirmed the distribution of gadophrin-2 labeled cells to these target organs. Gadophrin-2 is suited as a bifunctional contrast agent for MR imaging, OI, and fluorescence microscopy and may be used to combine the advantages of each individual imaging modality for in vivo tracking of intravenously injected hematopoietic cells.
Literature
2.
go back to reference Molina A, Popplewell L, Kashyap A, Nademanee A. Hematopoietic stem cell transplantation in the new millennium: report from City of Hope National Medical Center. Ann N Y Acad Sci 2001; 938:54–61.PubMed Molina A, Popplewell L, Kashyap A, Nademanee A. Hematopoietic stem cell transplantation in the new millennium: report from City of Hope National Medical Center. Ann N Y Acad Sci 2001; 938:54–61.PubMed
3.
go back to reference Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson S, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine D, Leri A, Anversa P. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410:701–704.PubMed Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson S, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine D, Leri A, Anversa P. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410:701–704.PubMed
4.
5.
go back to reference Oostendorp R, Ghaffari S, Eaves C. Kinetics of in vivo homing and recruitment into cycle of hematopoietic cells are organ-specific but CD44-independent. Bone Marrow Transpl 2000; 26:559–566.CrossRef Oostendorp R, Ghaffari S, Eaves C. Kinetics of in vivo homing and recruitment into cycle of hematopoietic cells are organ-specific but CD44-independent. Bone Marrow Transpl 2000; 26:559–566.CrossRef
6.
go back to reference Daldrup-Link H, Rudelius M, Oostendorp R, Settles M, Piontek G, Metz S, Heinzmann U, Rummeny E, Schlegel J, Link TM. Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology 2003; 228:760–767.PubMed Daldrup-Link H, Rudelius M, Oostendorp R, Settles M, Piontek G, Metz S, Heinzmann U, Rummeny E, Schlegel J, Link TM. Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology 2003; 228:760–767.PubMed
7.
go back to reference Fawwaz R, Oluwole T, Wang N, Kuromoto N, Iga C, Hardy M, Alderson P. Biodistribution of radiolabeled lymphocytes. Radiology 1985; 155:483–486.PubMed Fawwaz R, Oluwole T, Wang N, Kuromoto N, Iga C, Hardy M, Alderson P. Biodistribution of radiolabeled lymphocytes. Radiology 1985; 155:483–486.PubMed
8.
go back to reference Modo M, Cash D, Melledew K, Williams S, Fraser S, Meade T, Price J, Hodges H. Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging. Neuroimage 2002; 17:803–811.CrossRefPubMed Modo M, Cash D, Melledew K, Williams S, Fraser S, Meade T, Price J, Hodges H. Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging. Neuroimage 2002; 17:803–811.CrossRefPubMed
9.
go back to reference Rudelius M, Daldrup-Link H, Heinzmann U, Piontek G, Settles M, Link T, Schlegel J. Highly efficient paramagnetic labeling of embryonic and neuronal stem cells. J Nucl Med Mol Imaging 2003; 30:1038–1044.CrossRef Rudelius M, Daldrup-Link H, Heinzmann U, Piontek G, Settles M, Link T, Schlegel J. Highly efficient paramagnetic labeling of embryonic and neuronal stem cells. J Nucl Med Mol Imaging 2003; 30:1038–1044.CrossRef
10.
go back to reference Schoepf U, Marecos E, Melder R, Jain R, Weissleder R. Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. Biotechniques 1998; 24:642–651.PubMed Schoepf U, Marecos E, Melder R, Jain R, Weissleder R. Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. Biotechniques 1998; 24:642–651.PubMed
11.
go back to reference Weissleder R, Cheng H, Bogdanova A, Bogdanov A. Magnetically labeled cells can be detected by MR imaging. J Magn Reson Imaging 1997; 7:258–263.PubMed Weissleder R, Cheng H, Bogdanova A, Bogdanov A. Magnetically labeled cells can be detected by MR imaging. J Magn Reson Imaging 1997; 7:258–263.PubMed
12.
go back to reference Josephson L, Kircher M, Mahmood U, Tang Y, Weissleder R. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjugate Chem 2002; 13:554–560.CrossRef Josephson L, Kircher M, Mahmood U, Tang Y, Weissleder R. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjugate Chem 2002; 13:554–560.CrossRef
13.
go back to reference Hüber M, Staubli A, Kustedjo K, Gray M, Shih J, Fraser S, Jacobs R, Maede T. Fluorescently detectable magnetic resonance imaging agents. Bioconjugate Chem 1998; 9:242–249.CrossRef Hüber M, Staubli A, Kustedjo K, Gray M, Shih J, Fraser S, Jacobs R, Maede T. Fluorescently detectable magnetic resonance imaging agents. Bioconjugate Chem 1998; 9:242–249.CrossRef
14.
go back to reference Hofmann B, Bogdanov JA, Marecos E, Ebert W, Semmler W, Weissleder R. Mechanism of gadophrin-2 accumulation in tumor necrosis. J Magn Res Imag 1999; 9:336–341.CrossRef Hofmann B, Bogdanov JA, Marecos E, Ebert W, Semmler W, Weissleder R. Mechanism of gadophrin-2 accumulation in tumor necrosis. J Magn Res Imag 1999; 9:336–341.CrossRef
15.
go back to reference Kim T, Choi B, Par S, Lee W, Han J, Han M, Weinmann H. Gadolinium mesoporphyrin as an MR imaging contrast agent in the evaluation of tumors: an experimental model of VX2 carcinoma in rabbits. Am J Roentgenol 2000; 175:227–234. Kim T, Choi B, Par S, Lee W, Han J, Han M, Weinmann H. Gadolinium mesoporphyrin as an MR imaging contrast agent in the evaluation of tumors: an experimental model of VX2 carcinoma in rabbits. Am J Roentgenol 2000; 175:227–234.
16.
go back to reference Young S, Sidhu M, Qing F, Muller H, Neuder M, Zanassi G, Mody T, Hemmi G, Dow W, Mutch J, Sessler J, Miller R. Preclinical evaluation of gadolinium(III) texaphyrin complex: a new paramagnetic contrast agent for magnetic resonance imaging. Invest Radiol 1994; 29:330–338.PubMed Young S, Sidhu M, Qing F, Muller H, Neuder M, Zanassi G, Mody T, Hemmi G, Dow W, Mutch J, Sessler J, Miller R. Preclinical evaluation of gadolinium(III) texaphyrin complex: a new paramagnetic contrast agent for magnetic resonance imaging. Invest Radiol 1994; 29:330–338.PubMed
17.
go back to reference Young S, Fan Q. Imaging of human colon cancer xenograft with gadolinium-texaphyrin. Invest Radiol 1996; 31:280–283.CrossRefPubMed Young S, Fan Q. Imaging of human colon cancer xenograft with gadolinium-texaphyrin. Invest Radiol 1996; 31:280–283.CrossRefPubMed
18.
go back to reference Felgner P, Gadek T, Holm M, et al. Lipofectin: a highly efficient, lipid mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987; 84:7413–7417. Felgner P, Gadek T, Holm M, et al. Lipofectin: a highly efficient, lipid mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987; 84:7413–7417.
19.
go back to reference Wolff S, Balaban R. Assessing contrast on MR images. Radiology 1997; 202:25–29.PubMed Wolff S, Balaban R. Assessing contrast on MR images. Radiology 1997; 202:25–29.PubMed
20.
go back to reference Kassab K. Photophysical and photosensitizing properties of selected cyanines. J Photochem Photobiol B 2002; 68:15–22.CrossRef Kassab K. Photophysical and photosensitizing properties of selected cyanines. J Photochem Photobiol B 2002; 68:15–22.CrossRef
21.
go back to reference Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes. J Biomed Opt 2001; 6:432–440.CrossRefPubMed Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes. J Biomed Opt 2001; 6:432–440.CrossRefPubMed
22.
go back to reference Kerre T, de Smet G, de Smedt M, Offner F, de Bosscher J, Plum J, Vandekerckhove B. Both CD34+38− and CD34+38− cells home specifically to the bone marrow of NOD/LtSZ scid (scid mice but show different kinetics in expansion. J Immunol 2001; 167:3692–3698.PubMed Kerre T, de Smet G, de Smedt M, Offner F, de Bosscher J, Plum J, Vandekerckhove B. Both CD34+38− and CD34+38− cells home specifically to the bone marrow of NOD/LtSZ scid (scid mice but show different kinetics in expansion. J Immunol 2001; 167:3692–3698.PubMed
23.
go back to reference Kollet O, Spiegel A, Peled A, Petit I, Byk T, Hershkoviz R, Guetta E, Barkai G, Nagler A, Lapidot T. Rapid and efficient homing of human CD34+CD38−/lowCXCR4+ stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2mnull mice. Blood 2001; 97:3283–3291.CrossRefPubMed Kollet O, Spiegel A, Peled A, Petit I, Byk T, Hershkoviz R, Guetta E, Barkai G, Nagler A, Lapidot T. Rapid and efficient homing of human CD34+CD38−/lowCXCR4+ stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2mnull mice. Blood 2001; 97:3283–3291.CrossRefPubMed
24.
go back to reference van Hennik P, de Koning A, Ploemacher R. Seeding efficiency of primitive human hematopoietic cells in nonobese diabetic/severe combined immune deficiency mice: implications for stem cell frequency assessment. Blood 1999; 94:3055–3061. van Hennik P, de Koning A, Ploemacher R. Seeding efficiency of primitive human hematopoietic cells in nonobese diabetic/severe combined immune deficiency mice: implications for stem cell frequency assessment. Blood 1999; 94:3055–3061.
25.
go back to reference Daldrup-Link H, Rudelius M, Piontek G, Metz S, Bräuer R, Debus G, Corot C, Schlegel J, Link T, Peschel C, Rummeny E, Oostendorp R. Migration of iron oxide labeled hematopoietic progenitor cells in a xenotransplant model: in vivo monitoring using 1.5 Tesla magnetic resonance imaging equipment. Radiology 2004:accepted for publication. Daldrup-Link H, Rudelius M, Piontek G, Metz S, Bräuer R, Debus G, Corot C, Schlegel J, Link T, Peschel C, Rummeny E, Oostendorp R. Migration of iron oxide labeled hematopoietic progenitor cells in a xenotransplant model: in vivo monitoring using 1.5 Tesla magnetic resonance imaging equipment. Radiology 2004:accepted for publication.
26.
go back to reference Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 2003; 101:2999–3001.CrossRefPubMed Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 2003; 101:2999–3001.CrossRefPubMed
Metadata
Title
Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy
Authors
Heike E. Daldrup-Link
Martina Rudelius
Stephan Metz
Guido Piontek
Bernd Pichler
Marcus Settles
Ulrich Heinzmann
Jürgen Schlegel
Robert A. J. Oostendorp
Ernst J. Rummeny
Publication date
01-09-2004
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 9/2004
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-004-1484-2

Other articles of this Issue 9/2004

European Journal of Nuclear Medicine and Molecular Imaging 9/2004 Go to the issue