Skip to main content
Top
Published in: Skeletal Radiology 9/2015

01-09-2015 | Scientific Article

Value of monoenergetic dual-energy CT (DECT) for artefact reduction from metallic orthopedic implants in post-mortem studies

Authors: Laura Filograna, Nicola Magarelli, Antonio Leone, Roman Guggenberger, Sebastian Winklhofer, Michael John Thali, Lorenzo Bonomo

Published in: Skeletal Radiology | Issue 9/2015

Login to get access

Abstract

Objectives

The aim of this ex vivo study was to assess the performance of monoenergetic dual-energy CT (DECT) reconstructions to reduce metal artefacts in bodies with orthopedic devices in comparison with standard single-energy CT (SECT) examinations in forensic imaging. Forensic and clinical impacts of this study are also discussed.

Materials and methods

Thirty metallic implants in 20 consecutive cadavers with metallic implants underwent both SECT and DECT with a clinically suitable scanning protocol. Extrapolated monoenergetic DECT images at 64, 69, 88, 105, 120, and 130 keV and individually adjusted monoenergy for optimized image quality (OPTkeV) were generated. Image quality of the seven monoenergetic images and of the corresponding SECT image was assessed qualitatively and quantitatively by visual rating and measurements of attenuation changes induced by streak artefact.

Results

Qualitative and quantitative analyses showed statistically significant differences between monoenergetic DECT extrapolated images and SECT, with improvements in diagnostic assessment in monoenergetic DECT at higher monoenergies. The mean value of OPTkeV was 137.6 ± 4.9 with a range of 130 to 148 keV.

Conclusions

This study demonstrates that monoenergetic DECT images extrapolated at high energy levels significantly reduce metallic artefacts from orthopedic implants and improve image quality compared to SECT examination in forensic imaging.
Literature
1.
go back to reference Thali MJ, Yen K, Schweitzer W, et al. Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI)—a feasibility study. J Forensic Sci. 2003;48:1–18. Thali MJ, Yen K, Schweitzer W, et al. Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI)—a feasibility study. J Forensic Sci. 2003;48:1–18.
3.
go back to reference Wallace SK, Cohen WA, Stern EJ, Reay DT. Judicial hanging: postmortem radiographic, CT, and MR imaging features with autopsy confirmation. Radiology. 1994;193:263–7.PubMedCrossRef Wallace SK, Cohen WA, Stern EJ, Reay DT. Judicial hanging: postmortem radiographic, CT, and MR imaging features with autopsy confirmation. Radiology. 1994;193:263–7.PubMedCrossRef
4.
go back to reference Poulsen K, Simonsen J. Computed tomography in connection with medico-legal autopsies. Forensic Sci Int. 2007;171:190–7.PubMedCrossRef Poulsen K, Simonsen J. Computed tomography in connection with medico-legal autopsies. Forensic Sci Int. 2007;171:190–7.PubMedCrossRef
5.
go back to reference Hayakawa M, Yamamoto S, Motani H, Yajima D, Sato Y, Iwase H. Does imaging technology overcome problems of conventional postmortem examination. Int J Legal Med. 2006;120:24–6.PubMedCrossRef Hayakawa M, Yamamoto S, Motani H, Yajima D, Sato Y, Iwase H. Does imaging technology overcome problems of conventional postmortem examination. Int J Legal Med. 2006;120:24–6.PubMedCrossRef
6.
go back to reference O’Donnell C, Woodford N. Post-mortem radiology—a new sub-speciality? Clin Radiol. 2008;63:1189–94.PubMedCrossRef O’Donnell C, Woodford N. Post-mortem radiology—a new sub-speciality? Clin Radiol. 2008;63:1189–94.PubMedCrossRef
7.
go back to reference Shiotani S, Shiigai M, Ueno Y, et al. Postmortem computed tomography findings as evidence of traffic accident-related fatal injury. Radiat Med. 2008;26:253–60.PubMedCrossRef Shiotani S, Shiigai M, Ueno Y, et al. Postmortem computed tomography findings as evidence of traffic accident-related fatal injury. Radiat Med. 2008;26:253–60.PubMedCrossRef
8.
go back to reference Sochor MR, Trowbridge MJ, Boscak A, Maino JC, Maio RF. Postmortem computed tomography as an adjunct to autopsy for analyzing fatal motor vehicle crash injuries: results of a pilot study. J Trauma. 2008;65:659–65.PubMedCrossRef Sochor MR, Trowbridge MJ, Boscak A, Maino JC, Maio RF. Postmortem computed tomography as an adjunct to autopsy for analyzing fatal motor vehicle crash injuries: results of a pilot study. J Trauma. 2008;65:659–65.PubMedCrossRef
9.
go back to reference Leth PM, Ibsen M. Abbreviated injury scale scoring in traffic fatalities: comparison of computerized tomography and autopsy. J Trauma. 2010;68:1413–6.PubMedCrossRef Leth PM, Ibsen M. Abbreviated injury scale scoring in traffic fatalities: comparison of computerized tomography and autopsy. J Trauma. 2010;68:1413–6.PubMedCrossRef
10.
go back to reference Scholing M, Saltzherr TP, Fung Kon Jin P, et al. The value of postmortem computed tomography as an alternative for autopsy in trauma victims: a systematic review. Eur Radiol. 2009;19:2333–41.PubMedCentralPubMedCrossRef Scholing M, Saltzherr TP, Fung Kon Jin P, et al. The value of postmortem computed tomography as an alternative for autopsy in trauma victims: a systematic review. Eur Radiol. 2009;19:2333–41.PubMedCentralPubMedCrossRef
11.
go back to reference Thali MJ, Markwalder T, Jackowski C, Sonnenschein M, Dirnhofer R. Dental CT imaging as a screening tool for dental profiling: advantages and limitations. J Forensic Sci. 2006;51:113–9.PubMedCrossRef Thali MJ, Markwalder T, Jackowski C, Sonnenschein M, Dirnhofer R. Dental CT imaging as a screening tool for dental profiling: advantages and limitations. J Forensic Sci. 2006;51:113–9.PubMedCrossRef
12.
go back to reference Lee MJ, Kim S, Lee SA, et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics. 2007;27:791–803.PubMedCrossRef Lee MJ, Kim S, Lee SA, et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics. 2007;27:791–803.PubMedCrossRef
13.
go back to reference Watzke O, Kalender WA. A pragmatic approach to metal artifact reduction in CT: merging of metal artifact reduced images. Eur Radiol. 2004;14:849–56.PubMedCrossRef Watzke O, Kalender WA. A pragmatic approach to metal artifact reduction in CT: merging of metal artifact reduced images. Eur Radiol. 2004;14:849–56.PubMedCrossRef
14.
15.
go back to reference Haramati N, Staron RB, Mazel-Sperling K, et al. CT scans through metal scanning technique versus hardware composition. Comput Med Imaging Graph. 1994;18:429–34.PubMedCrossRef Haramati N, Staron RB, Mazel-Sperling K, et al. CT scans through metal scanning technique versus hardware composition. Comput Med Imaging Graph. 1994;18:429–34.PubMedCrossRef
16.
go back to reference Douglas-Akinwande AC, Buckwalter KA, Rydberg J, Rankin JL, Choplin RH. Multichannel CT: evaluating the spine in postoperative patients with orthopedic hardware. Radiographics. 2006;26:S97–110.PubMedCrossRef Douglas-Akinwande AC, Buckwalter KA, Rydberg J, Rankin JL, Choplin RH. Multichannel CT: evaluating the spine in postoperative patients with orthopedic hardware. Radiographics. 2006;26:S97–110.PubMedCrossRef
17.
go back to reference Buckwalter KA, Parr JA, Choplin RH, Capello WN. Multichannel CT imaging of orthopedic hardware and implants. Semin Musculoskelet Radiol. 2006;10:86–97.PubMedCrossRef Buckwalter KA, Parr JA, Choplin RH, Capello WN. Multichannel CT imaging of orthopedic hardware and implants. Semin Musculoskelet Radiol. 2006;10:86–97.PubMedCrossRef
18.
go back to reference Kachelriess M, Watzke O, Kalender WA. Generalized multidimensional adaptive filtering for conventional and spiral single slice, multi-slice, and cone-beam CT. Med Phys. 2001;28:475–90.PubMedCrossRef Kachelriess M, Watzke O, Kalender WA. Generalized multidimensional adaptive filtering for conventional and spiral single slice, multi-slice, and cone-beam CT. Med Phys. 2001;28:475–90.PubMedCrossRef
19.
go back to reference Veldkamp WJ, Joemai RM, van der Molen AJ, Geleijns J. Development and validation of segmentation and interpolation techniques in sinograms for metal artifact suppression in CT. Med Phys. 2010;37:620–8.PubMedCrossRef Veldkamp WJ, Joemai RM, van der Molen AJ, Geleijns J. Development and validation of segmentation and interpolation techniques in sinograms for metal artifact suppression in CT. Med Phys. 2010;37:620–8.PubMedCrossRef
20.
go back to reference Mahnken AH, Raupach R, Wildberger JE, et al. A new algorithm for metal artifact reduction in computed tomography: in vitro and in vivo evaluation after total hip replacement. Investig Radiol. 2003;38:769–75.CrossRef Mahnken AH, Raupach R, Wildberger JE, et al. A new algorithm for metal artifact reduction in computed tomography: in vitro and in vivo evaluation after total hip replacement. Investig Radiol. 2003;38:769–75.CrossRef
21.
go back to reference Bal M, Spies L. Metal artifact reduction in CT using tissue-class modeling and adaptive prefiltering. Med Phys. 2006;33:2852–9.PubMedCrossRef Bal M, Spies L. Metal artifact reduction in CT using tissue-class modeling and adaptive prefiltering. Med Phys. 2006;33:2852–9.PubMedCrossRef
22.
go back to reference Link TM, Berning W, Scherf S, et al. CT of metal implants: reduction of artifacts using an extended CT scale technique. J Comput Assist Tomogr. 2000;24:165–72.PubMedCrossRef Link TM, Berning W, Scherf S, et al. CT of metal implants: reduction of artifacts using an extended CT scale technique. J Comput Assist Tomogr. 2000;24:165–72.PubMedCrossRef
23.
go back to reference Meyer E, Raupach R, Lell M, Schmidt B, Kachelriess M. Normalized metal artifact reduction (NMAR) in computed tomography. Med Phys. 2010;37:5482–93.PubMedCrossRef Meyer E, Raupach R, Lell M, Schmidt B, Kachelriess M. Normalized metal artifact reduction (NMAR) in computed tomography. Med Phys. 2010;37:5482–93.PubMedCrossRef
24.
go back to reference Lemmens C, Faul D, Nuyts J. Suppression of metal artifacts in CT using a reconstruction procedure that combines MAP and projection completion. IEEE Trans Med Imaging. 2009;28:250–60.PubMedCrossRef Lemmens C, Faul D, Nuyts J. Suppression of metal artifacts in CT using a reconstruction procedure that combines MAP and projection completion. IEEE Trans Med Imaging. 2009;28:250–60.PubMedCrossRef
25.
go back to reference Yu L, Li H, Mueller J, et al. Metal artifact reduction from reformatted projections for hip prostheses in multislice helical computed tomography techniques and initial clinical results. Investig Radiol. 2009;44:691–6.CrossRef Yu L, Li H, Mueller J, et al. Metal artifact reduction from reformatted projections for hip prostheses in multislice helical computed tomography techniques and initial clinical results. Investig Radiol. 2009;44:691–6.CrossRef
26.
go back to reference Prell D, Kyriakou Y, Kachelrie M, Kalender WA. Reducing metal artifacts in computed tomography caused by hip endoprostheses using a physics-based approach. Investig Radiol. 2010;45:747–54.CrossRef Prell D, Kyriakou Y, Kachelrie M, Kalender WA. Reducing metal artifacts in computed tomography caused by hip endoprostheses using a physics-based approach. Investig Radiol. 2010;45:747–54.CrossRef
27.
go back to reference Coupal TM, Mallinson PI, McLaughlin P, Nicolaou S, Munk PL, Ouellette H. Peering through the glare: using dual-energy CT to overcome the problem of metal artefacts in bone radiology. Skelet Radiol. 2014;43:567–75.CrossRef Coupal TM, Mallinson PI, McLaughlin P, Nicolaou S, Munk PL, Ouellette H. Peering through the glare: using dual-energy CT to overcome the problem of metal artefacts in bone radiology. Skelet Radiol. 2014;43:567–75.CrossRef
28.
go back to reference Stolzmann P, Winklhofer S, Schwendener N, et al. Mono-energetic computed tomography reconstructions reduce beam hardening artifacts from dental restorations. Forensic Sci Med Pathol. 2013;9:327–32.PubMedCrossRef Stolzmann P, Winklhofer S, Schwendener N, et al. Mono-energetic computed tomography reconstructions reduce beam hardening artifacts from dental restorations. Forensic Sci Med Pathol. 2013;9:327–32.PubMedCrossRef
29.
go back to reference Stolzmann P, Leschka S, Scheffel H, et al. Characterization of urinary stones with dual-energy CT: improved differentiation using a tin filter. Investig Radiol. 2010;45:1–6.CrossRef Stolzmann P, Leschka S, Scheffel H, et al. Characterization of urinary stones with dual-energy CT: improved differentiation using a tin filter. Investig Radiol. 2010;45:1–6.CrossRef
30.
go back to reference Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol. 2011;21:1424–9.PubMedCrossRef Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol. 2011;21:1424–9.PubMedCrossRef
31.
go back to reference Zhou C, Zhao YE, Luo S, et al. Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures. Acad Radiol. 2011;18:1252–7.PubMedCrossRef Zhou C, Zhao YE, Luo S, et al. Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures. Acad Radiol. 2011;18:1252–7.PubMedCrossRef
32.
go back to reference Meinel FG, Bischoff B, Zhang Q, Bamberg F, Reiser MF, Johnson TR. Metal artifact reduction by dual energy computed tomography using energetic extrapolation: a systematically optimized protocol. Investig Radiol. 2012;47:406–14.CrossRef Meinel FG, Bischoff B, Zhang Q, Bamberg F, Reiser MF, Johnson TR. Metal artifact reduction by dual energy computed tomography using energetic extrapolation: a systematically optimized protocol. Investig Radiol. 2012;47:406–14.CrossRef
33.
go back to reference Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.PubMedCrossRef Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.PubMedCrossRef
34.
go back to reference Meyers CR, Blesh TE. Measurement in physical education. New York: Ronald Press; 1962. Meyers CR, Blesh TE. Measurement in physical education. New York: Ronald Press; 1962.
35.
go back to reference Guggenberger R, Winklhofer S, Osterhoff G, et al. Metallic artifact reduction with mono-energetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels. Eur Radiol. 2012;22:2357–64.PubMedCrossRef Guggenberger R, Winklhofer S, Osterhoff G, et al. Metallic artifact reduction with mono-energetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels. Eur Radiol. 2012;22:2357–64.PubMedCrossRef
36.
go back to reference White LM, Buckwalter KA. Technical considerations: CT and MR imaging in the postoperative orthopedic patient. Semin Musculoskelet Radiol. 1977;6:5–17.CrossRef White LM, Buckwalter KA. Technical considerations: CT and MR imaging in the postoperative orthopedic patient. Semin Musculoskelet Radiol. 1977;6:5–17.CrossRef
Metadata
Title
Value of monoenergetic dual-energy CT (DECT) for artefact reduction from metallic orthopedic implants in post-mortem studies
Authors
Laura Filograna
Nicola Magarelli
Antonio Leone
Roman Guggenberger
Sebastian Winklhofer
Michael John Thali
Lorenzo Bonomo
Publication date
01-09-2015
Publisher
Springer Berlin Heidelberg
Published in
Skeletal Radiology / Issue 9/2015
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-015-2155-z

Other articles of this Issue 9/2015

Skeletal Radiology 9/2015 Go to the issue