Skip to main content
Top
Published in: Skeletal Radiology 9/2010

01-09-2010 | Scientific Article

A comparison of conventional maximum intensity projection with a new depth-specific topographic mapping technique in the CT analysis of proximal tibial subchondral bone density

Authors: James D. Johnston, Saija A. Kontulainen, Bassam A. Masri, David R. Wilson

Published in: Skeletal Radiology | Issue 9/2010

Login to get access

Abstract

Objective

The objective was to identify subchondral bone density differences between normal and osteoarthritic (OA) proximal tibiae using computed tomography osteoabsorptiometry (CT-OAM) and computed tomography topographic mapping of subchondral density (CT-TOMASD).

Materials and methods

Sixteen intact cadaver knees from ten donors (8 male:2 female; mean age:77.8, SD:7.4 years) were categorized as normal (n = 10) or OA (n = 6) based upon CT reconstructions. CT-OAM assessed maximum subchondral bone mineral density (BMD). CT-TOMASD assessed average subchondral BMD across three layers (0–2.5, 2.5–5 and 5–10 mm) measured in relation to depth from the subchondral surface. Regional analyses of CT-OAM and CT-TOMASD included: medial BMD, lateral BMD, and average BMD of a 10-mm diameter area that searched each medial and lateral plateau for the highest “focal” density present within each knee.

Results

Compared with normal knees, both CT-OAM and CT-TOMASD demonstrated an average of 17% greater whole medial compartment density in OA knees (p < 0.016). CT-OAM did not distinguish focal density differences between OA and normal knees (p > 0.05). CT-TOMASD focal region analyses revealed an average of 24% greater density in the 0- to 2.5-mm layer (p = 0.003) and 36% greater density in the 2.5- to 5-mm layer (p = 0.034) in OA knees.

Conclusions

Both CT-OAM and TOMASD identified higher medial compartment density in OA tibiae compared with normal tibiae. In addition, CT-TOMASD indicated greater focal density differences between normal and OA knees with increased depth from the subchondral surface. Depth-specific density analyses may help identify and quantify small changes in subchondral BMD associated with OA disease onset and progression.
Literature
1.
go back to reference Burr DB. Increased biological activity of subchondral mineralized tissues underlies the progressive deterioration of articular cartilage in osteoarthritis. J Rheumatol. 2005;32:1156–8. discussion 1158–9.PubMed Burr DB. Increased biological activity of subchondral mineralized tissues underlies the progressive deterioration of articular cartilage in osteoarthritis. J Rheumatol. 2005;32:1156–8. discussion 1158–9.PubMed
2.
go back to reference Burr DB, Radin EL. Microfractures and microcracks in subchondral bone: are they relevant to osteoarthrosis? Rheum Dis Clin North Am. 2003;29:675–85.CrossRefPubMed Burr DB, Radin EL. Microfractures and microcracks in subchondral bone: are they relevant to osteoarthrosis? Rheum Dis Clin North Am. 2003;29:675–85.CrossRefPubMed
3.
go back to reference Brown TD, Radin EL, Martin RB, Burr DB. Finite element studies of some juxtarticular stress changes due to localized subchondral stiffening. J Biomech. 1984;17:11–24.CrossRefPubMed Brown TD, Radin EL, Martin RB, Burr DB. Finite element studies of some juxtarticular stress changes due to localized subchondral stiffening. J Biomech. 1984;17:11–24.CrossRefPubMed
4.
go back to reference Radin EL, Paul IL, Rose RM. Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet. 1972;1:519–22.CrossRefPubMed Radin EL, Paul IL, Rose RM. Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet. 1972;1:519–22.CrossRefPubMed
5.
go back to reference Radin EL, Parker HG, Pugh JW, Steinberg RS, Paul IL, et al. Response of joints to impact loading. 3. Relationship between trabecular microfractures and cartilage degeneration. J Biomech. 1973;6:51–7.CrossRefPubMed Radin EL, Parker HG, Pugh JW, Steinberg RS, Paul IL, et al. Response of joints to impact loading. 3. Relationship between trabecular microfractures and cartilage degeneration. J Biomech. 1973;6:51–7.CrossRefPubMed
6.
go back to reference Burr DB, Schaffler MB. The involvement of subchondral mineralized tissues in osteoarthrosis: quantitative microscopic evidence. Microsc Res Tech. 1997;37:343–57.CrossRefPubMed Burr DB, Schaffler MB. The involvement of subchondral mineralized tissues in osteoarthrosis: quantitative microscopic evidence. Microsc Res Tech. 1997;37:343–57.CrossRefPubMed
7.
go back to reference Burr DB. Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis. Osteoarthritis Cartilage. 2004;12(Suppl A):S20–30.CrossRefPubMed Burr DB. Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis. Osteoarthritis Cartilage. 2004;12(Suppl A):S20–30.CrossRefPubMed
8.
go back to reference Burr DB. The importance of subchondral bone in the progression of osteoarthritis. J Rheumatol Suppl. 2004;70:77–80.PubMed Burr DB. The importance of subchondral bone in the progression of osteoarthritis. J Rheumatol Suppl. 2004;70:77–80.PubMed
9.
go back to reference Bennell KL, Creaby MW, Wrigley TV, Hunter DJ. Tibial subchondral trabecular volumetric bone density in medial knee joint osteoarthritis using peripheral quantitative computed tomography technology. Arthritis Rheum. 2008;58:2776–85.CrossRefPubMed Bennell KL, Creaby MW, Wrigley TV, Hunter DJ. Tibial subchondral trabecular volumetric bone density in medial knee joint osteoarthritis using peripheral quantitative computed tomography technology. Arthritis Rheum. 2008;58:2776–85.CrossRefPubMed
10.
go back to reference Engelke K, Libanati C, Liu Y, Wang H, Austin M, et al. Quantitative computed tomography (QCT) of the forearm using general purpose spiral whole-body CT scanners: accuracy, precision and comparison with dual-energy X-ray absorptiometry (DXA). Bone. 2009;45:110–8.CrossRefPubMed Engelke K, Libanati C, Liu Y, Wang H, Austin M, et al. Quantitative computed tomography (QCT) of the forearm using general purpose spiral whole-body CT scanners: accuracy, precision and comparison with dual-energy X-ray absorptiometry (DXA). Bone. 2009;45:110–8.CrossRefPubMed
11.
go back to reference Genant HK, Engelke K, Prevrhal S. Advanced CT bone imaging in osteoporosis. Rheumatology (Oxford). 2008;47(Suppl 4):iv9–16.CrossRef Genant HK, Engelke K, Prevrhal S. Advanced CT bone imaging in osteoporosis. Rheumatology (Oxford). 2008;47(Suppl 4):iv9–16.CrossRef
12.
go back to reference Müller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B. Computed tomography-osteoabsorptiometry for assessing the density distribution of subchondral bone as a measure of long-term mechanical adaptation in individual joints. Skeletal Radiol. 1989;18:507–12.CrossRefPubMed Müller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B. Computed tomography-osteoabsorptiometry for assessing the density distribution of subchondral bone as a measure of long-term mechanical adaptation in individual joints. Skeletal Radiol. 1989;18:507–12.CrossRefPubMed
13.
go back to reference Müller-Gerbl M. The subchondral bone plate. Adv Anat Embryol Cell Biol. 1998;141(III–XI):1–134. Müller-Gerbl M. The subchondral bone plate. Adv Anat Embryol Cell Biol. 1998;141(III–XI):1–134.
14.
go back to reference Eckstein F, Putz R, Muller-Gerbl M, Steinlechner M, Benedetto KP. Cartilage degeneration in the human patellae and its relationship to the mineralisation of the underlying bone: a key to the understanding of chondromalacia patellae and femoropatellar arthrosis? Surg Radiol Anat. 1993;15:279–86.CrossRefPubMed Eckstein F, Putz R, Muller-Gerbl M, Steinlechner M, Benedetto KP. Cartilage degeneration in the human patellae and its relationship to the mineralisation of the underlying bone: a key to the understanding of chondromalacia patellae and femoropatellar arthrosis? Surg Radiol Anat. 1993;15:279–86.CrossRefPubMed
15.
go back to reference Johnston JD, Masri BA, Wilson DR. Computed Tomography Topographic Mapping of Subchondral Density (CT-TOMASD) in osteoarthritic and normal knees: methodological development and preliminary findings. Osteoarthritis Cartilage. 2009;17:1319–26.CrossRefPubMed Johnston JD, Masri BA, Wilson DR. Computed Tomography Topographic Mapping of Subchondral Density (CT-TOMASD) in osteoarthritic and normal knees: methodological development and preliminary findings. Osteoarthritis Cartilage. 2009;17:1319–26.CrossRefPubMed
16.
go back to reference Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16:494–502.CrossRefPubMed Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16:494–502.CrossRefPubMed
17.
go back to reference Kontulainen S, Liu D, Manske S, Jamieson M, Sievanen H, et al. Analyzing cortical bone cross-sectional geometry by peripheral QCT: comparison with bone histomorphometry. J Clin Densitom. 2007;10:86–92.CrossRefPubMed Kontulainen S, Liu D, Manske S, Jamieson M, Sievanen H, et al. Analyzing cortical bone cross-sectional geometry by peripheral QCT: comparison with bone histomorphometry. J Clin Densitom. 2007;10:86–92.CrossRefPubMed
18.
go back to reference Spoor CF, Zonneveld FW, Macho GA. Linear measurements of cortical bone and dental enamel by computed tomography: applications and problems. Am J Phys Anthropol. 1993;91:469–84.CrossRefPubMed Spoor CF, Zonneveld FW, Macho GA. Linear measurements of cortical bone and dental enamel by computed tomography: applications and problems. Am J Phys Anthropol. 1993;91:469–84.CrossRefPubMed
19.
go back to reference Glüer CC, Blake G, Lu Y, Blunt BA, Jergas M, et al. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int. 1995;5:262–70.CrossRefPubMed Glüer CC, Blake G, Lu Y, Blunt BA, Jergas M, et al. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int. 1995;5:262–70.CrossRefPubMed
20.
go back to reference Yamada K, Healey R, Amiel D, Lotz M, Coutts R. Subchondral bone of the human knee joint in aging and osteoarthritis. Osteoarthritis Cartilage. 2002;10:360–9.CrossRefPubMed Yamada K, Healey R, Amiel D, Lotz M, Coutts R. Subchondral bone of the human knee joint in aging and osteoarthritis. Osteoarthritis Cartilage. 2002;10:360–9.CrossRefPubMed
21.
go back to reference Milz S, Putz R. Quantitative morphology of the subchondral plate of the tibial plateau. J Anat. 1994;185(Pt 1):103–10.PubMed Milz S, Putz R. Quantitative morphology of the subchondral plate of the tibial plateau. J Anat. 1994;185(Pt 1):103–10.PubMed
23.
go back to reference Gong JK, Burgess E, Bacalao P. Accretion and exchange of strontium-85 in trabecular and cortical bones. Radiat Res. 1966;28:753–65.CrossRefPubMed Gong JK, Burgess E, Bacalao P. Accretion and exchange of strontium-85 in trabecular and cortical bones. Radiat Res. 1966;28:753–65.CrossRefPubMed
24.
go back to reference Boyd SK, Matyas JR, Wohl GR, Kantzas A, Zernicke RF. Early regional adaptation of periarticular bone mineral density after anterior cruciate ligament injury. J Appl Physiol. 2000;89:2359–64.PubMed Boyd SK, Matyas JR, Wohl GR, Kantzas A, Zernicke RF. Early regional adaptation of periarticular bone mineral density after anterior cruciate ligament injury. J Appl Physiol. 2000;89:2359–64.PubMed
25.
go back to reference Madsen OR, Schaadt O, Bliddal H, Egsmose C, Sylvest J. Bone mineral distribution of the proximal tibia in gonarthrosis assessed in vivo by photon absorption. Osteoarthritis Cartilage. 1994;2:141–7.CrossRefPubMed Madsen OR, Schaadt O, Bliddal H, Egsmose C, Sylvest J. Bone mineral distribution of the proximal tibia in gonarthrosis assessed in vivo by photon absorption. Osteoarthritis Cartilage. 1994;2:141–7.CrossRefPubMed
26.
go back to reference Bruyere O, Dardenne C, Lejeune E, Zegels B, Pahaut A, et al. Subchondral tibial bone mineral density predicts future joint space narrowing at the medial femoro-tibial compartment in patients with knee osteoarthritis. Bone. 2003;32:541–5.CrossRefPubMed Bruyere O, Dardenne C, Lejeune E, Zegels B, Pahaut A, et al. Subchondral tibial bone mineral density predicts future joint space narrowing at the medial femoro-tibial compartment in patients with knee osteoarthritis. Bone. 2003;32:541–5.CrossRefPubMed
27.
go back to reference Clarke S, Wakeley C, Duddy J, Sharif M, Watt I, et al. Dual-energy X-ray absorptiometry applied to the assessment of tibial subchondral bone mineral density in osteoarthritis of the knee. Skeletal Radiol. 2004;33:588–95.CrossRefPubMed Clarke S, Wakeley C, Duddy J, Sharif M, Watt I, et al. Dual-energy X-ray absorptiometry applied to the assessment of tibial subchondral bone mineral density in osteoarthritis of the knee. Skeletal Radiol. 2004;33:588–95.CrossRefPubMed
28.
go back to reference Karvonen RL, Miller PR, Nelson DA, Granda JL, Fernandez-Madrid F. Periarticular osteoporosis in osteoarthritis of the knee. J Rheumatol. 1998;25:2187–94.PubMed Karvonen RL, Miller PR, Nelson DA, Granda JL, Fernandez-Madrid F. Periarticular osteoporosis in osteoarthritis of the knee. J Rheumatol. 1998;25:2187–94.PubMed
29.
go back to reference Hulet C, Sabatier JP, Souquet D, Locker B, Marcelli C, et al. Distribution of bone mineral density at the proximal tibia in knee osteoarthritis. Calcif Tissue Int. 2002;71:315–22.CrossRefPubMed Hulet C, Sabatier JP, Souquet D, Locker B, Marcelli C, et al. Distribution of bone mineral density at the proximal tibia in knee osteoarthritis. Calcif Tissue Int. 2002;71:315–22.CrossRefPubMed
30.
go back to reference Wada M, Maezawa Y, Baba H, Shimada S, Sasaki S, et al. Relationships among bone mineral densities, static alignment and dynamic load in patients with medial compartment knee osteoarthritis. Rheumatology (Oxford). 2001;40:499–505.CrossRef Wada M, Maezawa Y, Baba H, Shimada S, Sasaki S, et al. Relationships among bone mineral densities, static alignment and dynamic load in patients with medial compartment knee osteoarthritis. Rheumatology (Oxford). 2001;40:499–505.CrossRef
31.
go back to reference Grynpas MD, Alpert B, Katz I, Lieberman I, Pritzker KP. Subchondral bone in osteoarthritis. Calcif Tissue Int. 1991;49:20–6.CrossRefPubMed Grynpas MD, Alpert B, Katz I, Lieberman I, Pritzker KP. Subchondral bone in osteoarthritis. Calcif Tissue Int. 1991;49:20–6.CrossRefPubMed
32.
go back to reference Kamibayashi L, Wyss UP, Cooke TD, Zee B. Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis. Bone. 1995;17:27–35.CrossRefPubMed Kamibayashi L, Wyss UP, Cooke TD, Zee B. Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis. Bone. 1995;17:27–35.CrossRefPubMed
33.
go back to reference Bobinac D, Spanjol J, Zoricic S, Maric I. Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans. Bone. 2003;32:284–90.CrossRefPubMed Bobinac D, Spanjol J, Zoricic S, Maric I. Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans. Bone. 2003;32:284–90.CrossRefPubMed
34.
go back to reference Li B, Aspden RM. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res. 1997;12:641–51.CrossRefPubMed Li B, Aspden RM. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res. 1997;12:641–51.CrossRefPubMed
35.
go back to reference Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright C. Differences in trabecular structure between knees with and without osteoarthritis quantified by macro and standard radiography, respectively. Osteoarthritis Cartilage. 2006;14:1302–5.CrossRefPubMed Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright C. Differences in trabecular structure between knees with and without osteoarthritis quantified by macro and standard radiography, respectively. Osteoarthritis Cartilage. 2006;14:1302–5.CrossRefPubMed
36.
go back to reference Messent EA, Buckland-Wright JC, Blake GM. Fractal analysis of trabecular bone in knee osteoarthritis (OA) is a more sensitive marker of disease status than bone mineral density (BMD). Calcif Tissue Int. 2005;76:419–25.CrossRefPubMed Messent EA, Buckland-Wright JC, Blake GM. Fractal analysis of trabecular bone in knee osteoarthritis (OA) is a more sensitive marker of disease status than bone mineral density (BMD). Calcif Tissue Int. 2005;76:419–25.CrossRefPubMed
37.
go back to reference Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright C. Cancellous bone differences between knees with early, definite and advanced joint space loss; a comparative quantitative macroradiographic study. Osteoarthritis Cartilage. 2005;13:39–47.CrossRefPubMed Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright C. Cancellous bone differences between knees with early, definite and advanced joint space loss; a comparative quantitative macroradiographic study. Osteoarthritis Cartilage. 2005;13:39–47.CrossRefPubMed
38.
go back to reference Buckland-Wright C. Subchondral bone changes in hand and knee osteoarthritis detected by radiography. Osteoarthritis Cartilage. 2004;12(Suppl A):S10–9.CrossRefPubMed Buckland-Wright C. Subchondral bone changes in hand and knee osteoarthritis detected by radiography. Osteoarthritis Cartilage. 2004;12(Suppl A):S10–9.CrossRefPubMed
39.
go back to reference Dedrick DK, Goldstein SA, Brandt KD, O'Connor BL, Goulet RW, et al. A longitudinal study of subchondral plate and trabecular bone in cruciate-deficient dogs with osteoarthritis followed up for 54 months. Arthritis Rheum. 1993;36:1460–7.CrossRefPubMed Dedrick DK, Goldstein SA, Brandt KD, O'Connor BL, Goulet RW, et al. A longitudinal study of subchondral plate and trabecular bone in cruciate-deficient dogs with osteoarthritis followed up for 54 months. Arthritis Rheum. 1993;36:1460–7.CrossRefPubMed
40.
go back to reference Brandt KD, Myers SL, Burr D, Albrecht M. Osteoarthritic changes in canine articular cartilage, subchondral bone, and synovium fifty-four months after transection of the anterior cruciate ligament. Arthritis Rheum. 1991;34:1560–70.PubMed Brandt KD, Myers SL, Burr D, Albrecht M. Osteoarthritic changes in canine articular cartilage, subchondral bone, and synovium fifty-four months after transection of the anterior cruciate ligament. Arthritis Rheum. 1991;34:1560–70.PubMed
41.
go back to reference Harada Y, Wevers HW, Cooke TD. Distribution of bone strength in the proximal tibia. J Arthroplast. 1988;3:167–75.CrossRef Harada Y, Wevers HW, Cooke TD. Distribution of bone strength in the proximal tibia. J Arthroplast. 1988;3:167–75.CrossRef
42.
go back to reference Hvid I, Hansen SL. Trabecular bone strength patterns at the proximal tibial epiphysis. J Orthop Res. 1985;3:464–72.CrossRefPubMed Hvid I, Hansen SL. Trabecular bone strength patterns at the proximal tibial epiphysis. J Orthop Res. 1985;3:464–72.CrossRefPubMed
43.
go back to reference Bolbos RI, Zuo J, Banerjee S, Link TM, Ma CB, et al. Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3 T. Osteoarthritis Cartilage. 2008;16:1150–9.CrossRefPubMed Bolbos RI, Zuo J, Banerjee S, Link TM, Ma CB, et al. Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3 T. Osteoarthritis Cartilage. 2008;16:1150–9.CrossRefPubMed
44.
go back to reference Lindsey CT, Narasimhan A, Adolfo JM, Jin H, Steinbach LS, et al. Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee. Osteoarthritis Cartilage. 2004;12:86–96.CrossRefPubMed Lindsey CT, Narasimhan A, Adolfo JM, Jin H, Steinbach LS, et al. Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee. Osteoarthritis Cartilage. 2004;12:86–96.CrossRefPubMed
45.
go back to reference Beuf O, Ghosh S, Newitt DC, Link TM, Steinbach L, et al. Magnetic resonance imaging of normal and osteoarthritic trabecular bone structure in the human knee. Arthritis Rheum. 2002;46:385–93.CrossRefPubMed Beuf O, Ghosh S, Newitt DC, Link TM, Steinbach L, et al. Magnetic resonance imaging of normal and osteoarthritic trabecular bone structure in the human knee. Arthritis Rheum. 2002;46:385–93.CrossRefPubMed
46.
go back to reference Blumenkrantz G, Lindsey CT, Dunn TC, Jin H, Ries MD, et al. A pilot, two-year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee. Osteoarthritis Cartilage. 2004;12:997–1005.CrossRefPubMed Blumenkrantz G, Lindsey CT, Dunn TC, Jin H, Ries MD, et al. A pilot, two-year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee. Osteoarthritis Cartilage. 2004;12:997–1005.CrossRefPubMed
48.
go back to reference Silvast TS, Jurvelin JS, Lammi MJ, Toyras J (2009) pQCT study on diffusion and equilibrium distribution of iodinated anionic contrast agent in human articular cartilage—associations to matrix composition and integrity. Osteoarthritis Cartilage 17:26–32.CrossRefPubMed Silvast TS, Jurvelin JS, Lammi MJ, Toyras J (2009) pQCT study on diffusion and equilibrium distribution of iodinated anionic contrast agent in human articular cartilage—associations to matrix composition and integrity. Osteoarthritis Cartilage 17:26–32.CrossRefPubMed
49.
go back to reference Piscaer TM, van Osch GJ, Verhaar JA, Weinans H. Imaging of experimental osteoarthritis in small animal models. Biorheology. 2008;45:355–64.PubMed Piscaer TM, van Osch GJ, Verhaar JA, Weinans H. Imaging of experimental osteoarthritis in small animal models. Biorheology. 2008;45:355–64.PubMed
50.
go back to reference Taylor C, Carballido-Gamio J, Majumdar S, Li X. Comparison of quantitative imaging of cartilage for osteoarthritis: T2, T1rho, dGEMRIC and contrast-enhanced computed tomography. Magn Reson Imaging. 2009;27:779–84.CrossRefPubMed Taylor C, Carballido-Gamio J, Majumdar S, Li X. Comparison of quantitative imaging of cartilage for osteoarthritis: T2, T1rho, dGEMRIC and contrast-enhanced computed tomography. Magn Reson Imaging. 2009;27:779–84.CrossRefPubMed
52.
go back to reference Croft P, Cooper C, Wickham C, Coggon D. Defining osteoarthritis of the hip for epidemiologic studies. Am J Epidemiol. 1990;132:514–22.PubMed Croft P, Cooper C, Wickham C, Coggon D. Defining osteoarthritis of the hip for epidemiologic studies. Am J Epidemiol. 1990;132:514–22.PubMed
53.
go back to reference Spector TD, Hart DJ, Byrne J, Harris PA, Dacre JE, et al. Definition of osteoarthritis of the knee for epidemiological studies. Ann Rheum Dis. 1993;52:790–4.CrossRefPubMed Spector TD, Hart DJ, Byrne J, Harris PA, Dacre JE, et al. Definition of osteoarthritis of the knee for epidemiological studies. Ann Rheum Dis. 1993;52:790–4.CrossRefPubMed
54.
go back to reference UNSCEAR 2000 Report to the General Assembly—Volume 1: United Nations Scientific Committee on the Effects of Atomic Radiation; 2000. UNSCEAR 2000 Report to the General Assembly—Volume 1: United Nations Scientific Committee on the Effects of Atomic Radiation; 2000.
55.
go back to reference UNSCEAR 2000 Report to the General Assembly—Annex B: Exposures from natural radiation sources: United Nations Scientific Committee on the Effects of Atomic Radiation; 2000. UNSCEAR 2000 Report to the General Assembly—Annex B: Exposures from natural radiation sources: United Nations Scientific Committee on the Effects of Atomic Radiation; 2000.
56.
go back to reference Bezakova E, Collins PJ, Beddoe AH. Absorbed dose measurements in dual energy X-ray absorptiometry (DXA). Br J Radiol. 1997;70:172–9.PubMed Bezakova E, Collins PJ, Beddoe AH. Absorbed dose measurements in dual energy X-ray absorptiometry (DXA). Br J Radiol. 1997;70:172–9.PubMed
57.
go back to reference Braun MJ, Meta MD, Schneider P, Reiners C. Clinical evaluation of a high-resolution new peripheral quantitative computerized tomography (pQCT) scanner for the bone densitometry at the lower limbs. Phys Med Biol. 1998;43:2279–94.CrossRefPubMed Braun MJ, Meta MD, Schneider P, Reiners C. Clinical evaluation of a high-resolution new peripheral quantitative computerized tomography (pQCT) scanner for the bone densitometry at the lower limbs. Phys Med Biol. 1998;43:2279–94.CrossRefPubMed
Metadata
Title
A comparison of conventional maximum intensity projection with a new depth-specific topographic mapping technique in the CT analysis of proximal tibial subchondral bone density
Authors
James D. Johnston
Saija A. Kontulainen
Bassam A. Masri
David R. Wilson
Publication date
01-09-2010
Publisher
Springer-Verlag
Published in
Skeletal Radiology / Issue 9/2010
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-009-0835-2

Other articles of this Issue 9/2010

Skeletal Radiology 9/2010 Go to the issue