Skip to main content
Top
Published in: Pediatric Radiology 6/2017

01-05-2017 | Original Article

Subjective and objective image differences in pediatric computed tomography cardiac angiography using lower iodine concentration

Authors: Jae-Yeon Hwang, Ki Seok Choo, Yoon Young Choi, Jin Hyeok Kim, Hwaseong Ryu, Junhee Han, Yong-Woo Kim, Ung Bae Jeon, Kyung Jin Nam

Published in: Pediatric Radiology | Issue 6/2017

Login to get access

Abstract

Background

Several recent studies showed the optimal contrast enhancement with a low-concentration and iso-osmolar contrast media in both adult and pediatric patients. However, low contrast media concentrations are not routinely used due to concerns of suboptimal enhancement of cardiac structures and small vessels.

Objective

To evaluate the feasibility of using iso-osmolar contrast media containing a low iodine dose for CT cardiac angiography at 80 kilovolts (kVp) in neonates and infants.

Materials and methods

The iodixanol 270 group consisted of 79 CT scans and the iopromide 370 group of 62 CT scans in patients ≤1 year old. Objective measurement of the contrast enhancement was analyzed and contrast-to-noise ratios of the ascending aorta and left ventricle were calculated. Regarding subjective measurement, a four-point scale system was devised to evaluate degrees of contrast enhancement, image noise, motion artifact and overall image quality of each image set. Reader performance for correctly differentiating iodixanol 270 and iopromide 370 by visual assessment was evaluated.

Results

Group objective and subjective measurements were nonsignificantly different. Overall sensitivity, specificity and diagnostic accuracy for correctly differentiating iodixanol 270 and iopromide 370 by visual assessment were 42.8%, 59%, and 50%, respectively.

Conclusion

The application of iodixanol 270 achieved optimal enhancement for performing pediatric cardiac CT angiography at 80 kVp in neonates and infants. Objective measurements of contrast enhancement and subjective image quality assessments were not statistically different in the iodixanol 270 and iopromide 370 groups.
Literature
1.
go back to reference American College of Radiology (2015) ACR manual on contrast media, Version 10.1 American College of Radiology (2015) ACR manual on contrast media, Version 10.1
2.
go back to reference Bae KT (2010) Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 256:32–61CrossRefPubMed Bae KT (2010) Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 256:32–61CrossRefPubMed
3.
go back to reference Fleischmann D (2005) How to design injection protocols for multiple detector-row CT angiography (MDCTA). Eur Radiol 15:E60–E65CrossRefPubMed Fleischmann D (2005) How to design injection protocols for multiple detector-row CT angiography (MDCTA). Eur Radiol 15:E60–E65CrossRefPubMed
4.
go back to reference Fleischmann D (2003) Use of high concentration contrast media: principles and rationale—vascular district. Eur J Radiol 45:S88–S93CrossRefPubMed Fleischmann D (2003) Use of high concentration contrast media: principles and rationale—vascular district. Eur J Radiol 45:S88–S93CrossRefPubMed
5.
go back to reference Coley BD (2013) Caffey’s pediatric diagnostic imaging. Elsevier Health Sciences, Philadelphia Coley BD (2013) Caffey’s pediatric diagnostic imaging. Elsevier Health Sciences, Philadelphia
6.
go back to reference Zheng M, Wu Y, Wei M et al (2015) Low-concentration contrast medium for 128-slice dual-source CT coronary angiography at a very low radiation dose using prospectively ECG-triggered high-pitch spiral acquisition. Acad Radiol 22:195–202CrossRefPubMed Zheng M, Wu Y, Wei M et al (2015) Low-concentration contrast medium for 128-slice dual-source CT coronary angiography at a very low radiation dose using prospectively ECG-triggered high-pitch spiral acquisition. Acad Radiol 22:195–202CrossRefPubMed
7.
go back to reference Pan Y-N, Li A-J, Chen X-M et al (2016) Coronary computed tomographic angiography at low concentration of contrast agent and low tube voltage in patients with obesity: a feasibility study. Acad Radiol 23:438–445CrossRefPubMed Pan Y-N, Li A-J, Chen X-M et al (2016) Coronary computed tomographic angiography at low concentration of contrast agent and low tube voltage in patients with obesity: a feasibility study. Acad Radiol 23:438–445CrossRefPubMed
8.
go back to reference Lee FT Jr, Caroline DF, Thornbury JR et al (1996) A randomized comparison of iodixanol and iohexol in adult body computed tomography scanning. Acad Radiol 3:S500–S506CrossRefPubMed Lee FT Jr, Caroline DF, Thornbury JR et al (1996) A randomized comparison of iodixanol and iohexol in adult body computed tomography scanning. Acad Radiol 3:S500–S506CrossRefPubMed
9.
go back to reference Zo’o M, Hoermann M, Balassy C et al (2011) Renal safety in pediatric imaging: randomized, double-blind phase IV clinical trial of iobitridol 300 versus iodixanol 270 in multidetector CT. Pediatr Radiol 41:1393–1400CrossRefPubMedPubMedCentral Zo’o M, Hoermann M, Balassy C et al (2011) Renal safety in pediatric imaging: randomized, double-blind phase IV clinical trial of iobitridol 300 versus iodixanol 270 in multidetector CT. Pediatr Radiol 41:1393–1400CrossRefPubMedPubMedCentral
10.
go back to reference Manke C, Marcus C, Page A et al (2003) Pain in femoral arteriography: a double-blind, randomized, clinical study comparing safety and efficacy of the iso-osmolar iodixanol 270 mgI/ml and the low-osmolar iomeprol 300 mgI/ml in 9 European centers. Acta Radiol 44:590–596PubMed Manke C, Marcus C, Page A et al (2003) Pain in femoral arteriography: a double-blind, randomized, clinical study comparing safety and efficacy of the iso-osmolar iodixanol 270 mgI/ml and the low-osmolar iomeprol 300 mgI/ml in 9 European centers. Acta Radiol 44:590–596PubMed
11.
go back to reference Aspelin P, Aubry P, Fransson SG et al (2003) Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med 348:491–499CrossRefPubMed Aspelin P, Aubry P, Fransson SG et al (2003) Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med 348:491–499CrossRefPubMed
12.
go back to reference Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257:158–166CrossRefPubMed Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257:158–166CrossRefPubMed
13.
go back to reference Shuman WP, Branch KR, May JM et al (2008) Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 248:431–437CrossRefPubMed Shuman WP, Branch KR, May JM et al (2008) Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 248:431–437CrossRefPubMed
14.
go back to reference Ramos-Duran LR, Kalafut JF, Hanley M et al (2010) Current contrast media delivery strategies for cardiac and pulmonary multidetector-row computed tomography angiography. J Thorac Imaging 25:270–277CrossRefPubMed Ramos-Duran LR, Kalafut JF, Hanley M et al (2010) Current contrast media delivery strategies for cardiac and pulmonary multidetector-row computed tomography angiography. J Thorac Imaging 25:270–277CrossRefPubMed
15.
go back to reference Loubeyre P, Debaro I, Nemoz C et al (2000) Using thoracic helical CT to assess iodine concentration in a small volume of nonionic contrast medium during vascular opacification. AJR Am J Roentgenol 174:783–787CrossRefPubMed Loubeyre P, Debaro I, Nemoz C et al (2000) Using thoracic helical CT to assess iodine concentration in a small volume of nonionic contrast medium during vascular opacification. AJR Am J Roentgenol 174:783–787CrossRefPubMed
16.
go back to reference Schoellnast H, Deutschmann HA, Fritz GA et al (2005) MDCT angiography of the pulmonary arteries: influence of iodine flow concentration on vessel attenuation and visualization. AJR Am J Roentgenol 184:1935–1939CrossRefPubMed Schoellnast H, Deutschmann HA, Fritz GA et al (2005) MDCT angiography of the pulmonary arteries: influence of iodine flow concentration on vessel attenuation and visualization. AJR Am J Roentgenol 184:1935–1939CrossRefPubMed
17.
go back to reference Cademartiri F, Mollet NR, van der Lugt A et al (2005) Intravenous contrast material administration at helical 16–detector row CT coronary angiography: effect of iodine concentration on vascular attenuation. Radiology 236:661–665CrossRefPubMed Cademartiri F, Mollet NR, van der Lugt A et al (2005) Intravenous contrast material administration at helical 16–detector row CT coronary angiography: effect of iodine concentration on vascular attenuation. Radiology 236:661–665CrossRefPubMed
18.
go back to reference Faggioni L, Neri E, Sbragia P et al (2012) 80-kV pulmonary CT angiography with 40 mL of iodinated contrast material in lean patients: comparison of vascular enhancement with iodixanol (320 mg I/mL) and iomeprol (400 mg I/mL). AJR Am J Roentgenol 199:1220–1225CrossRefPubMed Faggioni L, Neri E, Sbragia P et al (2012) 80-kV pulmonary CT angiography with 40 mL of iodinated contrast material in lean patients: comparison of vascular enhancement with iodixanol (320 mg I/mL) and iomeprol (400 mg I/mL). AJR Am J Roentgenol 199:1220–1225CrossRefPubMed
19.
go back to reference Wang H, Xu L, Zhang N et al (2014) Coronary computed tomographic angiography in coronary artery bypass grafts: comparison between low-concentration iodixanol 270 and iohexol 350. J Comput Assist Tomogr 39:112–118CrossRef Wang H, Xu L, Zhang N et al (2014) Coronary computed tomographic angiography in coronary artery bypass grafts: comparison between low-concentration iodixanol 270 and iohexol 350. J Comput Assist Tomogr 39:112–118CrossRef
20.
go back to reference Becker CR, Hong C, Knez A et al (2003) Optimal contrast application for cardiac 4-detector-row computed tomography. Invest Radiol 38:690–694CrossRefPubMed Becker CR, Hong C, Knez A et al (2003) Optimal contrast application for cardiac 4-detector-row computed tomography. Invest Radiol 38:690–694CrossRefPubMed
21.
go back to reference Zhang WL, Li M, Zhang B et al (2013) CT angiography of the head-and-neck vessels acquired with low tube voltage, low iodine, and iterative image reconstruction: clinical evaluation of radiation dose and image quality. PLoS One 8, e81486CrossRefPubMedPubMedCentral Zhang WL, Li M, Zhang B et al (2013) CT angiography of the head-and-neck vessels acquired with low tube voltage, low iodine, and iterative image reconstruction: clinical evaluation of radiation dose and image quality. PLoS One 8, e81486CrossRefPubMedPubMedCentral
22.
go back to reference Tricarico F, Hlavacek AM, Schoepf UJ et al (2013) Cardiovascular CT angiography in neonates and children: image quality and potential for radiation dose reduction with iterative image reconstruction techniques. Eur Radiol 23:1306–1315CrossRefPubMed Tricarico F, Hlavacek AM, Schoepf UJ et al (2013) Cardiovascular CT angiography in neonates and children: image quality and potential for radiation dose reduction with iterative image reconstruction techniques. Eur Radiol 23:1306–1315CrossRefPubMed
23.
go back to reference Schueller-Weidekamm C, Schaefer-Prokop CM, Weber M et al (2006) CT angiography of pulmonary arteries to detect pulmonary embolism: improvement of vascular enhancement with low kilovoltage settings. Radiology 241:899–907CrossRefPubMed Schueller-Weidekamm C, Schaefer-Prokop CM, Weber M et al (2006) CT angiography of pulmonary arteries to detect pulmonary embolism: improvement of vascular enhancement with low kilovoltage settings. Radiology 241:899–907CrossRefPubMed
24.
25.
go back to reference Mahesh M (2009) MDCT physics: the basics: technology, image quality and radiation dose. Lippincott Williams & Wilkins, Philadelphia Mahesh M (2009) MDCT physics: the basics: technology, image quality and radiation dose. Lippincott Williams & Wilkins, Philadelphia
26.
go back to reference Holmquist F, Hansson K, Pasquariello F et al (2009) Minimizing contrast medium doses to diagnose pulmonary embolism with 80-kVp multidetector computed tomography in azotemic patients. Acta Radiol 50:181–193CrossRefPubMed Holmquist F, Hansson K, Pasquariello F et al (2009) Minimizing contrast medium doses to diagnose pulmonary embolism with 80-kVp multidetector computed tomography in azotemic patients. Acta Radiol 50:181–193CrossRefPubMed
27.
go back to reference Szucs-Farkas Z, Schaller C, Bensler S et al (2009) Detection of pulmonary emboli with CT angiography at reduced radiation exposure and contrast material volume: comparison of 80 kVp and 120 kVp protocols in a matched cohort. Invest Radiol 44:793–799CrossRefPubMed Szucs-Farkas Z, Schaller C, Bensler S et al (2009) Detection of pulmonary emboli with CT angiography at reduced radiation exposure and contrast material volume: comparison of 80 kVp and 120 kVp protocols in a matched cohort. Invest Radiol 44:793–799CrossRefPubMed
28.
go back to reference Nyman U, Almén T, Aspelin P et al (2005) Contrast-medium-induced nephropathy correlated to the ratio between dose in gram iodine and estimated GFR in ml/min. Acta Radiol 46:830–842CrossRefPubMed Nyman U, Almén T, Aspelin P et al (2005) Contrast-medium-induced nephropathy correlated to the ratio between dose in gram iodine and estimated GFR in ml/min. Acta Radiol 46:830–842CrossRefPubMed
29.
go back to reference Hernandez F, Mora L, Garcia-Tejada J et al (2009) Comparison of iodixanol and ioversol for the prevention of contrast-induced nephropathy in diabetic patients after coronary angiography or angioplasty. Rev Esp Cardiol 62:1373–1380CrossRefPubMed Hernandez F, Mora L, Garcia-Tejada J et al (2009) Comparison of iodixanol and ioversol for the prevention of contrast-induced nephropathy in diabetic patients after coronary angiography or angioplasty. Rev Esp Cardiol 62:1373–1380CrossRefPubMed
30.
go back to reference Jo SH, Youn TJ, Koo BK et al (2006) Renal toxicity evaluation and comparison between visipaque (iodixanol) and hexabrix (ioxaglate) in patients with renal insufficiency undergoing coronary angiography: the RECOVER study: a randomized controlled trial. J Am Coll Cardiol 48:924–930CrossRefPubMed Jo SH, Youn TJ, Koo BK et al (2006) Renal toxicity evaluation and comparison between visipaque (iodixanol) and hexabrix (ioxaglate) in patients with renal insufficiency undergoing coronary angiography: the RECOVER study: a randomized controlled trial. J Am Coll Cardiol 48:924–930CrossRefPubMed
31.
go back to reference Nguyen SA, Suranyi P, Ravenel JG et al (2008) Iso-osmolality versus low-osmolality iodinated contrast medium at intravenous contrast-enhanced CT: effect on kidney function. Radiology 248:97–105CrossRefPubMed Nguyen SA, Suranyi P, Ravenel JG et al (2008) Iso-osmolality versus low-osmolality iodinated contrast medium at intravenous contrast-enhanced CT: effect on kidney function. Radiology 248:97–105CrossRefPubMed
32.
go back to reference Shin DH, Choi DJ, Youn TJ et al (2011) Comparison of contrast-induced nephrotoxicity of iodixanol and iopromide in patients with renal insufficiency undergoing coronary angiography. Am J Cardiol 108:189–194CrossRefPubMed Shin DH, Choi DJ, Youn TJ et al (2011) Comparison of contrast-induced nephrotoxicity of iodixanol and iopromide in patients with renal insufficiency undergoing coronary angiography. Am J Cardiol 108:189–194CrossRefPubMed
33.
go back to reference Biondi-Zoccai G, Lotrionte M, Thomsen HS et al (2014) Nephropathy after administration of iso-osmolar and low-osmolar contrast media: evidence from a network meta-analysis. Int J Cardiol 172:375–380CrossRefPubMed Biondi-Zoccai G, Lotrionte M, Thomsen HS et al (2014) Nephropathy after administration of iso-osmolar and low-osmolar contrast media: evidence from a network meta-analysis. Int J Cardiol 172:375–380CrossRefPubMed
34.
go back to reference Reed M, Meier P, Tamhane UU et al (2009) The relative renal safety of iodixanol compared with low-osmolar contrast media: a meta-analysis of randomized controlled trials. JACC Cardiovasc Interv 2:645–654CrossRefPubMed Reed M, Meier P, Tamhane UU et al (2009) The relative renal safety of iodixanol compared with low-osmolar contrast media: a meta-analysis of randomized controlled trials. JACC Cardiovasc Interv 2:645–654CrossRefPubMed
35.
go back to reference Justesen P, Downes M, Grynne BH et al (1997) Injection-associated pain in femoral arteriography: a European multicenter study comparing safety, tolerability, and efficacy of iodixanol and iopromide. Cardiovasc Intervent Radiol 20:251–256CrossRefPubMed Justesen P, Downes M, Grynne BH et al (1997) Injection-associated pain in femoral arteriography: a European multicenter study comparing safety, tolerability, and efficacy of iodixanol and iopromide. Cardiovasc Intervent Radiol 20:251–256CrossRefPubMed
36.
go back to reference Sutton AG, Finn P, Grech ED et al (2001) Early and late reactions after the use of iopamidol 340, ioxaglate 320, and iodixanol 320 in cardiac catheterization. Am Heart J 141:677–683CrossRefPubMed Sutton AG, Finn P, Grech ED et al (2001) Early and late reactions after the use of iopamidol 340, ioxaglate 320, and iodixanol 320 in cardiac catheterization. Am Heart J 141:677–683CrossRefPubMed
37.
go back to reference Rubin GD, Lane MJ, Bloch DA et al (1996) Optimization of thoracic spiral CT: effects of iodinated contrast medium concentration. Radiology 201:785–791CrossRefPubMed Rubin GD, Lane MJ, Bloch DA et al (1996) Optimization of thoracic spiral CT: effects of iodinated contrast medium concentration. Radiology 201:785–791CrossRefPubMed
38.
go back to reference Suzuki H, Oshima H, Shiraki N et al (2004) Comparison of two contrast materials with different iodine concentrations in enhancing the density of the aorta, portal vein and liver at multi-detector row CT: a randomized study. Eur Radiol 14:2099–2104CrossRefPubMed Suzuki H, Oshima H, Shiraki N et al (2004) Comparison of two contrast materials with different iodine concentrations in enhancing the density of the aorta, portal vein and liver at multi-detector row CT: a randomized study. Eur Radiol 14:2099–2104CrossRefPubMed
39.
go back to reference Itoh S, Ikeda M, Achiwa M et al (2005) Multiphase contrast-enhanced CT of the liver with a multislice CT scanner: effects of iodine concentration and delivery rate. Radiat Med 23:61–69PubMed Itoh S, Ikeda M, Achiwa M et al (2005) Multiphase contrast-enhanced CT of the liver with a multislice CT scanner: effects of iodine concentration and delivery rate. Radiat Med 23:61–69PubMed
Metadata
Title
Subjective and objective image differences in pediatric computed tomography cardiac angiography using lower iodine concentration
Authors
Jae-Yeon Hwang
Ki Seok Choo
Yoon Young Choi
Jin Hyeok Kim
Hwaseong Ryu
Junhee Han
Yong-Woo Kim
Ung Bae Jeon
Kyung Jin Nam
Publication date
01-05-2017
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 6/2017
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-017-3795-z

Other articles of this Issue 6/2017

Pediatric Radiology 6/2017 Go to the issue