Skip to main content
Top
Published in: Pediatric Radiology 11/2015

01-10-2015 | Original Article

MRI characterization of brown adipose tissue in obese and normal-weight children

Authors: Jie Deng, Samantha E. Schoeneman, Huiyuan Zhang, Soyang Kwon, Cynthia K. Rigsby, Richard M. Shore, Jami L. Josefson

Published in: Pediatric Radiology | Issue 11/2015

Login to get access

Abstract

Background

Brown adipose tissue (BAT) is identified in mammals as an adaptive thermogenic organ for modulation of energy expenditure and heat generation. Human BAT may be primarily composed of brown-in-white (BRITE) adipocytes and stimulation of BRITE may serve as a potential target for obesity interventions. Current imaging studies of BAT detection and characterization have been mainly limited to PET/CT. MRI is an emerging application for BAT characterization in healthy children.

Objective

To exploit Dixon and diffusion-weighted MRI methods to characterize cervical-supraclavicular BAT/BRITE properties in normal-weight and obese children while accounting for pubertal status.

Materials and methods

Twenty-eight healthy children (9–15 years old) with a normal or obese body mass index participated. MRI exams were performed to characterize supraclavicular adipose tissues by measuring tissue fat percentage, T2*, tissue water mobility, and microvasculature properties. We used multivariate linear regression models to compare tissue properties between normal-weight and obese groups while accounting for pubertal status.

Results

MRI measurements of BAT/BRITE tissues in obese children showed higher fat percentage (P < 0.0001), higher T2* (P < 0.0001), and lower diffusion coefficient (P = 0.015) compared with normal-weight children. Pubertal status was a significant covariate for the T2* measurement, with higher T2* (P = 0.0087) in pubertal children compared to prepubertal children. Perfusion measurements varied by pubertal status. Compared to normal-weight children, obese prepubertal children had lower perfusion fraction (P = 0.003) and pseudo-perfusion coefficient (P = 0.048); however, obese pubertal children had higher perfusion fraction (P = 0.02) and pseudo-perfusion coefficient (P = 0.028).

Conclusion

This study utilized chemical-shift Dixon MRI and diffusion-weighted MRI methods to characterize supraclavicular BAT/BRITE tissue properties. The multi-parametric evaluation revealed evidence of morphological differences in brown adipose tissues between obese and normal-weight children.
Literature
1.
go back to reference National Heart, Lung and Blood Institute (1998) Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults — the evidence report. National Institutes of Health. Obes Res 2:51S–209S National Heart, Lung and Blood Institute (1998) Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults — the evidence report. National Institutes of Health. Obes Res 2:51S–209S
2.
go back to reference Van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508CrossRefPubMed Van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508CrossRefPubMed
3.
go back to reference Saito M, Okamatsu-Ogura Y, Matsushita M et al (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–1531PubMedCentralCrossRefPubMed Saito M, Okamatsu-Ogura Y, Matsushita M et al (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–1531PubMedCentralCrossRefPubMed
5.
go back to reference Lee P, Zhao JT, Swarbrick MM et al (2011) High prevalence of brown adipose tissue in adult humans. J Clin Endocrinol Metab 96:2450–2455CrossRefPubMed Lee P, Zhao JT, Swarbrick MM et al (2011) High prevalence of brown adipose tissue in adult humans. J Clin Endocrinol Metab 96:2450–2455CrossRefPubMed
6.
go back to reference Virtanen KA, Lidell ME, Orava J et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525CrossRefPubMed Virtanen KA, Lidell ME, Orava J et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525CrossRefPubMed
7.
go back to reference Lee P, Greenfield JR, Ho KK et al (2010) A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 299:E601–606CrossRefPubMed Lee P, Greenfield JR, Ho KK et al (2010) A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 299:E601–606CrossRefPubMed
8.
go back to reference Yoneshiro T, Aita S, Matsushita M et al (2011) Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity 19:13–16CrossRefPubMed Yoneshiro T, Aita S, Matsushita M et al (2011) Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity 19:13–16CrossRefPubMed
10.
go back to reference Vosselman MJ, Brans B, van der Lans AA et al (2013) Brown adipose tissue activity after a high-calorie meal in humans. Am J Clin Nutr 98:57–64CrossRefPubMed Vosselman MJ, Brans B, van der Lans AA et al (2013) Brown adipose tissue activity after a high-calorie meal in humans. Am J Clin Nutr 98:57–64CrossRefPubMed
11.
go back to reference Van der Lans AA, Hoeks J, Brans B et al (2013) Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest 123:3395–3403PubMedCentralCrossRefPubMed Van der Lans AA, Hoeks J, Brans B et al (2013) Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest 123:3395–3403PubMedCentralCrossRefPubMed
12.
go back to reference Chondronikola M, Volpi E, Borsheim E et al (2014) Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 63:4089–4099CrossRefPubMed Chondronikola M, Volpi E, Borsheim E et al (2014) Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 63:4089–4099CrossRefPubMed
13.
go back to reference Lee P, Smith S, Linderman J et al (2014) Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes 63:3686–3698CrossRefPubMed Lee P, Smith S, Linderman J et al (2014) Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes 63:3686–3698CrossRefPubMed
14.
16.
go back to reference Lidell ME, Betz MJ, Dahlqvist Leinhard O et al (2013) Evidence for two types of brown adipose tissue in humans. Nat Med 19:631–634CrossRefPubMed Lidell ME, Betz MJ, Dahlqvist Leinhard O et al (2013) Evidence for two types of brown adipose tissue in humans. Nat Med 19:631–634CrossRefPubMed
17.
go back to reference Giralt M, Villarroya F (2013) White, brown, beige/brite: different adipose cells for different functions? Endocrinology 154:2992–3000CrossRefPubMed Giralt M, Villarroya F (2013) White, brown, beige/brite: different adipose cells for different functions? Endocrinology 154:2992–3000CrossRefPubMed
18.
go back to reference Beranger GE, Karbiener M, Barquissau V et al (2013) In vitro brown and “brite”/”beige” [sic] adipogenesis: human cellular models and molecular aspects. Biochim Biophys Acta 1831:905–914CrossRefPubMed Beranger GE, Karbiener M, Barquissau V et al (2013) In vitro brown and “brite”/”beige” [sic] adipogenesis: human cellular models and molecular aspects. Biochim Biophys Acta 1831:905–914CrossRefPubMed
19.
go back to reference Gelfand MJ, O’Hara SM, Curtwright LA et al (2005) Pre-medication to block [(18)F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiol 35:984–990CrossRefPubMed Gelfand MJ, O’Hara SM, Curtwright LA et al (2005) Pre-medication to block [(18)F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiol 35:984–990CrossRefPubMed
20.
go back to reference Bar-Sever Z, Keidar Z, Ben-Barak A et al (2007) The incremental value of 18F-FDG PET/CT in paediatric malignancies. Eur J Nucl Med Mol Imaging 34:630–637CrossRefPubMed Bar-Sever Z, Keidar Z, Ben-Barak A et al (2007) The incremental value of 18F-FDG PET/CT in paediatric malignancies. Eur J Nucl Med Mol Imaging 34:630–637CrossRefPubMed
21.
go back to reference Drubach LA, Palmer EL 3rd, Connolly LP et al (2011) Pediatric brown adipose tissue: detection, epidemiology, and differences from adults. J Pediatr 159:939–944CrossRefPubMed Drubach LA, Palmer EL 3rd, Connolly LP et al (2011) Pediatric brown adipose tissue: detection, epidemiology, and differences from adults. J Pediatr 159:939–944CrossRefPubMed
22.
23.
go back to reference Ponrartana S, Hu HH, Gilsanz V (2013) On the relevance of brown adipose tissue in children. Ann N Y Acad Sci 1302:24–29CrossRefPubMed Ponrartana S, Hu HH, Gilsanz V (2013) On the relevance of brown adipose tissue in children. Ann N Y Acad Sci 1302:24–29CrossRefPubMed
24.
go back to reference Hu HH, Perkins TG, Chia JM et al (2013) Characterization of human brown adipose tissue by chemical-shift water-fat MRI. AJR Am J Roentgenol 200:177–183PubMedCentralCrossRefPubMed Hu HH, Perkins TG, Chia JM et al (2013) Characterization of human brown adipose tissue by chemical-shift water-fat MRI. AJR Am J Roentgenol 200:177–183PubMedCentralCrossRefPubMed
25.
26.
27.
go back to reference Hu HH, Yin L, Aggabao PC et al (2013) Comparison of brown and white adipose tissues in infants and children with chemical-shift-encoded water-fat MRI. J Magn Reson Imaging 38:885–896PubMedCentralCrossRefPubMed Hu HH, Yin L, Aggabao PC et al (2013) Comparison of brown and white adipose tissues in infants and children with chemical-shift-encoded water-fat MRI. J Magn Reson Imaging 38:885–896PubMedCentralCrossRefPubMed
28.
go back to reference Rasmussen JM, Entringer S, Nguyen A et al (2013) Brown adipose tissue quantification in human neonates using water-fat separated MRI. PLoS One 8, e77907PubMedCentralCrossRefPubMed Rasmussen JM, Entringer S, Nguyen A et al (2013) Brown adipose tissue quantification in human neonates using water-fat separated MRI. PLoS One 8, e77907PubMedCentralCrossRefPubMed
29.
go back to reference Le Bihan D (2008) Intravoxel incoherent motion perfusion MR imaging: a wake-up call. Radiology 249:748–752CrossRefPubMed Le Bihan D (2008) Intravoxel incoherent motion perfusion MR imaging: a wake-up call. Radiology 249:748–752CrossRefPubMed
32.
go back to reference Deng J, Miller FH, Salem R et al (2006) Multishot diffusion-weighted PROPELLER magnetic resonance imaging of the abdomen. Invest Radiol 41:769–775CrossRefPubMed Deng J, Miller FH, Salem R et al (2006) Multishot diffusion-weighted PROPELLER magnetic resonance imaging of the abdomen. Invest Radiol 41:769–775CrossRefPubMed
33.
34.
go back to reference Deng J, Fishbein MH, Rigsby CK et al (2014) Quantitative MRI for hepatic fat fraction and T2* measurement in pediatric patients with non-alcoholic fatty liver disease. Pediatr Radiol 44:1379–1387CrossRefPubMed Deng J, Fishbein MH, Rigsby CK et al (2014) Quantitative MRI for hepatic fat fraction and T2* measurement in pediatric patients with non-alcoholic fatty liver disease. Pediatr Radiol 44:1379–1387CrossRefPubMed
35.
go back to reference Patel J, Sigmund EE, Rusinek H et al (2010) Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 31:589–600CrossRefPubMed Patel J, Sigmund EE, Rusinek H et al (2010) Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 31:589–600CrossRefPubMed
36.
go back to reference Weber DR, Moore RH, Leonard MB et al (2013) Fat and lean BMI reference curves in children and adolescents and their utility in identifying excess adiposity compared with BMI and percentage body fat. Am J Clin Nutr 98:49–56PubMedCentralCrossRefPubMed Weber DR, Moore RH, Leonard MB et al (2013) Fat and lean BMI reference curves in children and adolescents and their utility in identifying excess adiposity compared with BMI and percentage body fat. Am J Clin Nutr 98:49–56PubMedCentralCrossRefPubMed
37.
go back to reference Hu HH, Hines CD, Smith DL Jr et al (2012) Variations in T(2)* and fat content of murine brown and white adipose tissues by chemical-shift MRI. Magn Reson Imaging 30:323–329PubMedCentralCrossRefPubMed Hu HH, Hines CD, Smith DL Jr et al (2012) Variations in T(2)* and fat content of murine brown and white adipose tissues by chemical-shift MRI. Magn Reson Imaging 30:323–329PubMedCentralCrossRefPubMed
38.
go back to reference Van Rooijen BD, van der Lans AA, Brans B et al (2013) Imaging cold-activated brown adipose tissue using dynamic T2*-weighted magnetic resonance imaging and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography. Invest Radiol 48:708–714CrossRefPubMed Van Rooijen BD, van der Lans AA, Brans B et al (2013) Imaging cold-activated brown adipose tissue using dynamic T2*-weighted magnetic resonance imaging and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography. Invest Radiol 48:708–714CrossRefPubMed
39.
go back to reference Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125PubMedCentralCrossRefPubMed Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125PubMedCentralCrossRefPubMed
40.
go back to reference Bogner W, Pinker-Domenig K, Bickel H et al (2012) Readout-segmented echo-planar imaging improves the diagnostic performance of diffusion-weighted MR breast examinations at 3.0T. Radiology 263:64–76CrossRefPubMed Bogner W, Pinker-Domenig K, Bickel H et al (2012) Readout-segmented echo-planar imaging improves the diagnostic performance of diffusion-weighted MR breast examinations at 3.0T. Radiology 263:64–76CrossRefPubMed
41.
go back to reference Jeong EK, Kim SE, Guo J et al (2005) High-resolution DTI with 2D interleaved multislice reduced FOV single-shot diffusion-weighted EPI (2D ss-rFOV-DWEPI). Magn Reson Med 54:1575–1579CrossRefPubMed Jeong EK, Kim SE, Guo J et al (2005) High-resolution DTI with 2D interleaved multislice reduced FOV single-shot diffusion-weighted EPI (2D ss-rFOV-DWEPI). Magn Reson Med 54:1575–1579CrossRefPubMed
42.
go back to reference Wilm BJ, Svensson J, Henning A et al (2007) Reduced field-of-view MRI using outer volume suppression for spinal cord diffusion imaging. Magn Reson Med 57:625–630CrossRefPubMed Wilm BJ, Svensson J, Henning A et al (2007) Reduced field-of-view MRI using outer volume suppression for spinal cord diffusion imaging. Magn Reson Med 57:625–630CrossRefPubMed
Metadata
Title
MRI characterization of brown adipose tissue in obese and normal-weight children
Authors
Jie Deng
Samantha E. Schoeneman
Huiyuan Zhang
Soyang Kwon
Cynthia K. Rigsby
Richard M. Shore
Jami L. Josefson
Publication date
01-10-2015
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 11/2015
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-015-3391-z

Other articles of this Issue 11/2015

Pediatric Radiology 11/2015 Go to the issue