Skip to main content
Top
Published in: Pediatric Radiology 12/2008

01-12-2008 | Original Article

Diffusion-weighted and dynamic contrast-enhanced imaging as markers of clinical behavior in children with optic pathway glioma

Authors: Sarah C. Jost, Joseph W. Ackerman, Joel R. Garbow, Linda P. Manwaring, David H. Gutmann, Robert C. McKinstry

Published in: Pediatric Radiology | Issue 12/2008

Login to get access

Abstract

Background

Optic pathway gliomas (OPGs) are common pediatric brain tumors that pose significant clinical challenges with regard to predicting which tumors are likely to become symptomatic and require treatment. These tumors can arise sporadically or in the context of the inherited cancer predisposition syndrome neurofibromatosis type 1 (NF1). Few studies have suggested biological or imaging markers that predict the clinical course of this disease.

Objective

In this cross-sectional study, we hypothesized that the clinical behavior of OPGs in children can be differentiated by diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI.

Materials and methods

A total of 27 children with OPG were studied using DW and DCE MRI protocols. Diffusivity and permeability were calculated and correlated with the clinical behavior the OPG.

Results

Mean diffusivity values of 1.39 μm2/ms and mean permeability values of 2.10 ml/min per 100 cm3 of tissue were measured. Clinically aggressive OPGs had significantly higher mean permeability values (P = 0.05) than clinically stable tumors. In addition, there was a strong correlation between clinical aggressiveness and the absence of NF1 (P < 0.01).

Conclusion

These results suggest that DCE MRI might be a useful biomarker for clinically aggressive OPG, which should be confirmed in larger prospective longitudinal studies.
Literature
1.
go back to reference Louis DN, Ohgaki H, Wiestler OD et al (2007) WHO classification of tumours of the central nervous system. IARC, Lyon, France Louis DN, Ohgaki H, Wiestler OD et al (2007) WHO classification of tumours of the central nervous system. IARC, Lyon, France
2.
go back to reference Friedman JM (1989) Epidemiology of neurofibromatosis type 1. Am J Med Genet 89:1–6CrossRef Friedman JM (1989) Epidemiology of neurofibromatosis type 1. Am J Med Genet 89:1–6CrossRef
3.
go back to reference Friedman JM, Gutmann DH, MacCollin MM et al (1999) Neurofibromatosis, 3rd edn. Johns Hopkins Press, Baltimore Friedman JM, Gutmann DH, MacCollin MM et al (1999) Neurofibromatosis, 3rd edn. Johns Hopkins Press, Baltimore
4.
go back to reference Listernick R, Louis DN, Packer RJ et al (1997) Optic pathway gliomas in children with NF1: consensus statement from the NF1 Optic Pathway Glioma Task Force. Ann Neurol 41:143–149PubMedCrossRef Listernick R, Louis DN, Packer RJ et al (1997) Optic pathway gliomas in children with NF1: consensus statement from the NF1 Optic Pathway Glioma Task Force. Ann Neurol 41:143–149PubMedCrossRef
5.
go back to reference Listernick R, Ferner RE, Liu GT et al (2007) Optic pathway glioma in neurofibromatosis-1: controversies and recommendations. Ann Neurol 61:189–198PubMedCrossRef Listernick R, Ferner RE, Liu GT et al (2007) Optic pathway glioma in neurofibromatosis-1: controversies and recommendations. Ann Neurol 61:189–198PubMedCrossRef
6.
go back to reference King A, Listernick R, Charrow J et al (2003) Optic pathway gliomas in neurofibromatosis type 1: the effect of presenting symptoms on outcome. Am J Med Genet 122A:95–99CrossRefPubMed King A, Listernick R, Charrow J et al (2003) Optic pathway gliomas in neurofibromatosis type 1: the effect of presenting symptoms on outcome. Am J Med Genet 122A:95–99CrossRefPubMed
7.
go back to reference Czyzyk E, Jozwiak S, Roszkowski M et al (2003) Optic pathway gliomas in children with and without neurofibromatosis 1. J Child Neurol 18:471–478PubMedCrossRef Czyzyk E, Jozwiak S, Roszkowski M et al (2003) Optic pathway gliomas in children with and without neurofibromatosis 1. J Child Neurol 18:471–478PubMedCrossRef
8.
go back to reference Shamji MF, Benoit BG (2007) Syndromic and sporadic pediatric optic pathway gliomas: review of clinical and histopathological differences and treatment implications. Neurosurg Focus 23:E3PubMedCrossRef Shamji MF, Benoit BG (2007) Syndromic and sporadic pediatric optic pathway gliomas: review of clinical and histopathological differences and treatment implications. Neurosurg Focus 23:E3PubMedCrossRef
9.
go back to reference Singhal S, Birch HM, Kerr B et al (2002) Neurofibromatosis type 1 and sporadic optic gliomas. Arch Dis Child 87:65–70PubMedCrossRef Singhal S, Birch HM, Kerr B et al (2002) Neurofibromatosis type 1 and sporadic optic gliomas. Arch Dis Child 87:65–70PubMedCrossRef
10.
go back to reference Tow SL, Chandela S, Miller NR (2003) Long-term outcome in children with gliomas of the anterior visual pathway. Pediatr Neurol 28:262–270PubMedCrossRef Tow SL, Chandela S, Miller NR (2003) Long-term outcome in children with gliomas of the anterior visual pathway. Pediatr Neurol 28:262–270PubMedCrossRef
11.
go back to reference Adams C, Fletcher WA, Myles ST (1997) Chiasmal glioma in neurofibromatosis type 1 with severe visual loss regained with radiation. Pediatr Neurol 17:80–82PubMedCrossRef Adams C, Fletcher WA, Myles ST (1997) Chiasmal glioma in neurofibromatosis type 1 with severe visual loss regained with radiation. Pediatr Neurol 17:80–82PubMedCrossRef
12.
go back to reference Champion MP, Robinson RO (1995) Screening for optic gliomas in neurofibromatosis type 1. The role of neuroimaging. J Pediatr 127:507–508PubMed Champion MP, Robinson RO (1995) Screening for optic gliomas in neurofibromatosis type 1. The role of neuroimaging. J Pediatr 127:507–508PubMed
13.
go back to reference Brzowski AE, Bazan C, Mumma JV et al (1992) Spontaneous regression of optic glioma in a patient with neurofibromatosis. Neurology 42:679–681PubMed Brzowski AE, Bazan C, Mumma JV et al (1992) Spontaneous regression of optic glioma in a patient with neurofibromatosis. Neurology 42:679–681PubMed
14.
go back to reference Liu GT, Lessel S (1992) Spontaneous visual improvement in chiasmal gliomas. Am J Ophthalmol 114:193–201PubMed Liu GT, Lessel S (1992) Spontaneous visual improvement in chiasmal gliomas. Am J Ophthalmol 114:193–201PubMed
15.
go back to reference Parazzini C, Triulzi F, Bianchini E et al (1995) Spontaneous involution of optic pathway lesions in neurofibromatosis type 1: serial contrast MR evaluation. AJNR 16:1711–1718PubMed Parazzini C, Triulzi F, Bianchini E et al (1995) Spontaneous involution of optic pathway lesions in neurofibromatosis type 1: serial contrast MR evaluation. AJNR 16:1711–1718PubMed
16.
go back to reference Shuper A, Horev G, Kornreich L et al (1997) Visual pathway glioma: an erratic tumour with therapeutic dilemmas. Arch Dis Child 76:259–263PubMedCrossRef Shuper A, Horev G, Kornreich L et al (1997) Visual pathway glioma: an erratic tumour with therapeutic dilemmas. Arch Dis Child 76:259–263PubMedCrossRef
17.
go back to reference Gutmann DH, Aylsworth A, Carey JC et al (1997) The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA 278:51–57PubMedCrossRef Gutmann DH, Aylsworth A, Carey JC et al (1997) The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA 278:51–57PubMedCrossRef
18.
go back to reference Ewing JR, Knight RA, Nagaraja TN et al (2003) Patlak plots of Gd-DTPA MRI data yield blood-brain transfer constants concordant with those of 14C-sucrose in areas of blood-brain opening. Magn Reson Med 50:283–292PubMedCrossRef Ewing JR, Knight RA, Nagaraja TN et al (2003) Patlak plots of Gd-DTPA MRI data yield blood-brain transfer constants concordant with those of 14C-sucrose in areas of blood-brain opening. Magn Reson Med 50:283–292PubMedCrossRef
19.
go back to reference Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood to brain transfer constants from multiple uptake data. J Cereb Blood Flow Metab 3:1–7PubMed Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood to brain transfer constants from multiple uptake data. J Cereb Blood Flow Metab 3:1–7PubMed
20.
go back to reference Chenevert TL, McKeever PE, Ross BD (1997) Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 3:1457–1466PubMed Chenevert TL, McKeever PE, Ross BD (1997) Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 3:1457–1466PubMed
21.
go back to reference Hall DE, Moffat BA, Stojanovska J et al (2004) Efficacy of DTI-015 using diffusion MRI as an early surrogate marker. Clin Cancer Res 10:7852–7859PubMedCrossRef Hall DE, Moffat BA, Stojanovska J et al (2004) Efficacy of DTI-015 using diffusion MRI as an early surrogate marker. Clin Cancer Res 10:7852–7859PubMedCrossRef
22.
go back to reference Moffat BA, Chenevert TL, Lawrence TS et al (2005) Functional diffusion map: a noninvasive MRI biomarker for stratification of clinical brain tumor response. Proc Natl Acad Sci USA 102:5524–5529PubMedCrossRef Moffat BA, Chenevert TL, Lawrence TS et al (2005) Functional diffusion map: a noninvasive MRI biomarker for stratification of clinical brain tumor response. Proc Natl Acad Sci USA 102:5524–5529PubMedCrossRef
23.
go back to reference Gauvain KM, McKinstry RC, Mukherjee P et al (2001) Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. AJR 177:449–454PubMed Gauvain KM, McKinstry RC, Mukherjee P et al (2001) Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. AJR 177:449–454PubMed
24.
go back to reference Rumboldt Z, Camacho DL, Lake D et al (2006) Apparent diffusion coefficients for differentiation of cerebellar tumors in children. AJNR 27:1362–1369PubMed Rumboldt Z, Camacho DL, Lake D et al (2006) Apparent diffusion coefficients for differentiation of cerebellar tumors in children. AJNR 27:1362–1369PubMed
25.
go back to reference Yamasaki F, Kurisu K, Satoh K et al (2005) Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology 235:985–991PubMedCrossRef Yamasaki F, Kurisu K, Satoh K et al (2005) Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology 235:985–991PubMedCrossRef
26.
go back to reference Sener RN (2001) Diffusion MRI in neurofibromatosis type 1: ADC evaluations of the optic pathways, and a comparison with normal individuals. Comput Med Imaging Graph 26:59–64CrossRef Sener RN (2001) Diffusion MRI in neurofibromatosis type 1: ADC evaluations of the optic pathways, and a comparison with normal individuals. Comput Med Imaging Graph 26:59–64CrossRef
27.
go back to reference Pauliah M, Saxena V, Haris M et al (2007) Improved T(1)-weighted dynamic contrast-enhanced MRI to probe microvascularity and heterogeneity of human glioma. Magn Reson Imaging 25:1292–1299PubMedCrossRef Pauliah M, Saxena V, Haris M et al (2007) Improved T(1)-weighted dynamic contrast-enhanced MRI to probe microvascularity and heterogeneity of human glioma. Magn Reson Imaging 25:1292–1299PubMedCrossRef
28.
go back to reference Bajenaru ML, Garbow JR, Perry A et al (2005) Natural history of neurofibromatosis 1-associated optic nerve glioma in mice. Ann Neurol 57:119–127PubMedCrossRef Bajenaru ML, Garbow JR, Perry A et al (2005) Natural history of neurofibromatosis 1-associated optic nerve glioma in mice. Ann Neurol 57:119–127PubMedCrossRef
29.
go back to reference Law M, Oh S, Babb JS et al (2006) Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging – prediction of patient clinical response. Radiology 238:658–667PubMedCrossRef Law M, Oh S, Babb JS et al (2006) Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging – prediction of patient clinical response. Radiology 238:658–667PubMedCrossRef
30.
go back to reference Robinson SP, Howe FA, Griffiths JR et al (2007) Susceptibility contrast magnetic resonance imaging determination of fractional tumor blood volume: a noninvasive imaging biomarker of response to the vascular disrupting agent ZD6126. Int J Radiat Oncol Biol Phys 69:872–879PubMed Robinson SP, Howe FA, Griffiths JR et al (2007) Susceptibility contrast magnetic resonance imaging determination of fractional tumor blood volume: a noninvasive imaging biomarker of response to the vascular disrupting agent ZD6126. Int J Radiat Oncol Biol Phys 69:872–879PubMed
Metadata
Title
Diffusion-weighted and dynamic contrast-enhanced imaging as markers of clinical behavior in children with optic pathway glioma
Authors
Sarah C. Jost
Joseph W. Ackerman
Joel R. Garbow
Linda P. Manwaring
David H. Gutmann
Robert C. McKinstry
Publication date
01-12-2008
Publisher
Springer-Verlag
Published in
Pediatric Radiology / Issue 12/2008
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-008-1003-x

Other articles of this Issue 12/2008

Pediatric Radiology 12/2008 Go to the issue