Skip to main content
Top
Published in: Urolithiasis 1/2012

01-02-2012 | Original Paper

The effect of intracrystalline and surface-bound osteopontin on the degradation and dissolution of calcium oxalate dihydrate crystals in MDCKII cells

Authors: Lauren A. Thurgood, Esben S. Sørensen, Rosemary L. Ryall

Published in: Urolithiasis | Issue 1/2012

Login to get access

Abstract

In vivo, urinary crystals are associated with proteins located within the mineral bulk as well as upon their surfaces. Proteins incarcerated within the mineral phase of retained crystals could act as a defence against urolithiasis by rendering them more vulnerable to destruction by intracellular and interstitial proteases. The aim of this study was to examine the effects of intracrystalline and surface-bound osteopontin (OPN) on the degradation and dissolution of urinary calcium oxalate dihydrate (COD) crystals in cultured Madin Darby canine kidney (MDCK) cells. [14C]-oxalate-labelled COD crystals with intracrystalline (IC), surface-bound (SB) and IC + SB OPN, were generated from ultrafiltered (UF) urine containing 0, 1 and 5 mg/L human milk OPN and incubated with MDCKII cells, using UF urine as the binding medium. Crystal size and degradation were assessed using field emission scanning electron microscopy (FESEM) and dissolution was quantified by the release of radioactivity into the culture medium. Crystal size decreased directly with OPN concentration. FESEM examination indicated that crystals covered with SB OPN were more resistant to cellular degradation than those containing IC OPN, whose degree of disruption appeared to be related to OPN concentration. Whether bound to the crystal surface or incarcerated within the mineral interior, OPN inhibited crystal dissolution in direct proportion to its concentration. Under physiological conditions OPN may routinely protect against stone formation by inhibiting the growth of COD crystals, which would encourage their excretion in urine and thereby perhaps partly explain why, compared with calcium oxalate monohydrate crystals, COD crystals are more prevalent in urine, but less common in kidney stones.
Literature
1.
go back to reference Vervaet BA, Verhulst A, D’Haese PC, De Broe ME (2009) Nephrocalcinosis: new insights into mechanisms and consequences. Nephrol Dial Transpl 24:2030–2035CrossRef Vervaet BA, Verhulst A, D’Haese PC, De Broe ME (2009) Nephrocalcinosis: new insights into mechanisms and consequences. Nephrol Dial Transpl 24:2030–2035CrossRef
2.
go back to reference Coe FL, Evan AP, Worcester EM, Lingeman JE (2010) Three pathways for human kidney stone formation. Urol Res 38:147–160PubMedCrossRef Coe FL, Evan AP, Worcester EM, Lingeman JE (2010) Three pathways for human kidney stone formation. Urol Res 38:147–160PubMedCrossRef
3.
go back to reference Khan SR (1995) Experimental calcium oxalate nephrolithiasis and the formation of human urinary stones. Scan Microsc Int 9:89–101 Khan SR (1995) Experimental calcium oxalate nephrolithiasis and the formation of human urinary stones. Scan Microsc Int 9:89–101
4.
go back to reference Evan AP, Coe FL, Rittling SR, Bledsoe SB, Shao Y, Lingeman JE, Worcester EM (2005) Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int 68:145–154PubMedCrossRef Evan AP, Coe FL, Rittling SR, Bledsoe SB, Shao Y, Lingeman JE, Worcester EM (2005) Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int 68:145–154PubMedCrossRef
5.
go back to reference Evan AP, Lingeman JE, Worcester EM, Bledsoe SB, Sommer AJ, Williams JC, Krambeck AE, Philips CL, Coe FL (2010) Renal histopathology and crystal deposits in patients with small bowel resection and calcium oxalate stone disease. Kidney Int 78:310–317PubMedCrossRef Evan AP, Lingeman JE, Worcester EM, Bledsoe SB, Sommer AJ, Williams JC, Krambeck AE, Philips CL, Coe FL (2010) Renal histopathology and crystal deposits in patients with small bowel resection and calcium oxalate stone disease. Kidney Int 78:310–317PubMedCrossRef
6.
go back to reference Evan AP, Coe FL, Gillen D, Lingeman JE, Bledsoe S, Worcester EM (2008) Renal intratubular crystals and hyaluronan staining occur in stone formers with bypass surgery but not with idiopathic CaOx stones. Anat Rec 291:325–334CrossRef Evan AP, Coe FL, Gillen D, Lingeman JE, Bledsoe S, Worcester EM (2008) Renal intratubular crystals and hyaluronan staining occur in stone formers with bypass surgery but not with idiopathic CaOx stones. Anat Rec 291:325–334CrossRef
7.
go back to reference Verhulst A, Asselman M, De Naeyer S, Vervaet BA, Mengel M, Gwinner W, D’Haese PC, Verkoelen CF, De Broe ME (2005) Preconditioning of the distal tubular epithelium of the human kidney precedes nephrocalcinosis. Kidney Int 68:1643–1647PubMedCrossRef Verhulst A, Asselman M, De Naeyer S, Vervaet BA, Mengel M, Gwinner W, D’Haese PC, Verkoelen CF, De Broe ME (2005) Preconditioning of the distal tubular epithelium of the human kidney precedes nephrocalcinosis. Kidney Int 68:1643–1647PubMedCrossRef
8.
go back to reference Vervaet BA, Verhulst A, Dauwe SE, De Broe ME, D’Haese PC (2009) An active renal crystal clearance mechanism in rat and man. Kidney Int 75:41–51PubMedCrossRef Vervaet BA, Verhulst A, Dauwe SE, De Broe ME, D’Haese PC (2009) An active renal crystal clearance mechanism in rat and man. Kidney Int 75:41–51PubMedCrossRef
9.
go back to reference Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommers AJ, Paterson RF, Kuo RL, Grynpas M (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607–616PubMed Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommers AJ, Paterson RF, Kuo RL, Grynpas M (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607–616PubMed
10.
go back to reference Beer E (1904) Lime deposits especially the so-called “kalkmetastasen”, in the kidney. J Pathol Bacteriol 9:225–233CrossRef Beer E (1904) Lime deposits especially the so-called “kalkmetastasen”, in the kidney. J Pathol Bacteriol 9:225–233CrossRef
11.
go back to reference Stout HA, Akin RH, Morton E (1955) Nephrocalcinosis in routine necropsies: its relationship to stone formation. J Urol 74:8–22PubMed Stout HA, Akin RH, Morton E (1955) Nephrocalcinosis in routine necropsies: its relationship to stone formation. J Urol 74:8–22PubMed
12.
go back to reference Bennington JL, Haber SL, Smith JV, Warner NE (1964) Crystals of calcium oxalate in the human kidney. Am J Clin Pathol 41:8–14PubMed Bennington JL, Haber SL, Smith JV, Warner NE (1964) Crystals of calcium oxalate in the human kidney. Am J Clin Pathol 41:8–14PubMed
13.
go back to reference Ebisuno S, Kohjimoto Y, Tamura M, Inagaki T, Ohkawa T (1997) Histological observations of the adhesion and endocytosis of calcium oxalate crystals in MDCK cells and in rat and human kidney. Urol Int 58:227–231PubMedCrossRef Ebisuno S, Kohjimoto Y, Tamura M, Inagaki T, Ohkawa T (1997) Histological observations of the adhesion and endocytosis of calcium oxalate crystals in MDCK cells and in rat and human kidney. Urol Int 58:227–231PubMedCrossRef
14.
go back to reference Vervaet BA, D’Haese PC, De Broe ME, Verhulst A (2009) Crystalluric and tubular epithelial parameters during the onset of intratubular nephrocalcinosis: illustration of the ‘fixed particle’ theory in vivo. Nephrol Dial Transpl 24:3659–3668CrossRef Vervaet BA, D’Haese PC, De Broe ME, Verhulst A (2009) Crystalluric and tubular epithelial parameters during the onset of intratubular nephrocalcinosis: illustration of the ‘fixed particle’ theory in vivo. Nephrol Dial Transpl 24:3659–3668CrossRef
15.
go back to reference Kumar V, Farell G, Yu S, Harrington S, Fitzpatrick L, Rzewuska E, Miller VM, Lieske JC (2006) Cell biology of pathologic renal calcification: contribution of crystal transcytosis, cell-mediated calcification, and nanoparticles. J Invest Med 54:412–424CrossRef Kumar V, Farell G, Yu S, Harrington S, Fitzpatrick L, Rzewuska E, Miller VM, Lieske JC (2006) Cell biology of pathologic renal calcification: contribution of crystal transcytosis, cell-mediated calcification, and nanoparticles. J Invest Med 54:412–424CrossRef
16.
go back to reference Ryall RL (2011) The possible roles of inhibitors, promoters and macromolecules in the formation of calcium kidney stones. In: Rao N, Kavanagh JP, Preminger G (eds) Urinary tract stone disease. Springer, London, pp 31–60 Ryall RL (2011) The possible roles of inhibitors, promoters and macromolecules in the formation of calcium kidney stones. In: Rao N, Kavanagh JP, Preminger G (eds) Urinary tract stone disease. Springer, London, pp 31–60
17.
18.
go back to reference Ryall RL (2004) Macromolecules and urolithiasis: parallels and paradoxes. Nephron Physiol 98:37–42CrossRef Ryall RL (2004) Macromolecules and urolithiasis: parallels and paradoxes. Nephron Physiol 98:37–42CrossRef
19.
go back to reference Kumar V, Yu S, Farell G, Toback FG, Lieske JC (2004) Renal epithelial cells constitutively produce a protein that blocks adhesion of crystals to their surface. Am J Physiol Renal Physiol 287:F373–F383PubMedCrossRef Kumar V, Yu S, Farell G, Toback FG, Lieske JC (2004) Renal epithelial cells constitutively produce a protein that blocks adhesion of crystals to their surface. Am J Physiol Renal Physiol 287:F373–F383PubMedCrossRef
20.
go back to reference Lieske JC, Leonard R, Toback FG (1995) Adhesion of calcium oxalate monohydrate crystals to renal epithelial cells is inhibited by specific anions. Am J Physiol Renal Physiol 268:F604–F612 Lieske JC, Leonard R, Toback FG (1995) Adhesion of calcium oxalate monohydrate crystals to renal epithelial cells is inhibited by specific anions. Am J Physiol Renal Physiol 268:F604–F612
21.
go back to reference Kohjimoto Y, Ebisuno S, Tamura M, Ohkawa T (1996) Adhesion and endocytosis of calcium oxalate crystals on renal tubular cells. Scanning Microsc 10:459–470PubMed Kohjimoto Y, Ebisuno S, Tamura M, Ohkawa T (1996) Adhesion and endocytosis of calcium oxalate crystals on renal tubular cells. Scanning Microsc 10:459–470PubMed
22.
go back to reference Lieske JC, Toback FG (1993) Regulation of renal epithelial cell endocytosis of calcium oxalate monohydrate crystals. Am J Physiol Renal Physiol 264:F800–F807 Lieske JC, Toback FG (1993) Regulation of renal epithelial cell endocytosis of calcium oxalate monohydrate crystals. Am J Physiol Renal Physiol 264:F800–F807
23.
go back to reference Tsujihata M, Yoshimura K, Tsujikawa K, Tei N, Okuyama A (2006) Fibronectin inhibits endocytosis of calcium oxalate crystals by renal tubular cells. Int J Urol 13:743–746PubMedCrossRef Tsujihata M, Yoshimura K, Tsujikawa K, Tei N, Okuyama A (2006) Fibronectin inhibits endocytosis of calcium oxalate crystals by renal tubular cells. Int J Urol 13:743–746PubMedCrossRef
24.
go back to reference Ebisuno S, Nishihata M, Inagaki T, Umehara M, Kohjimoto Y (1999) Bikunin prevents adhesion of calcium oxalate crystal to renal tubular cells in human urine. J Am Soc Nephrol 10(Suppl 14):S436–S440PubMed Ebisuno S, Nishihata M, Inagaki T, Umehara M, Kohjimoto Y (1999) Bikunin prevents adhesion of calcium oxalate crystal to renal tubular cells in human urine. J Am Soc Nephrol 10(Suppl 14):S436–S440PubMed
25.
go back to reference Tei N, Tsujihata M, Tsujikawa K, Yoshimura K, Nonomura N, Okuyama A (2006) Hepatocyte growth factor has protective effects on crystal–cell interactions and crystal deposits. Urology 67:864–869PubMedCrossRef Tei N, Tsujihata M, Tsujikawa K, Yoshimura K, Nonomura N, Okuyama A (2006) Hepatocyte growth factor has protective effects on crystal–cell interactions and crystal deposits. Urology 67:864–869PubMedCrossRef
26.
go back to reference Verkoelen CF, Van Der Boom BG, Romijn JC (2000) Identification of hyaluronan as a crystal-binding molecule at the surface of migrating and proliferating MDCK cells. Kidney Int 58:1045–1054PubMedCrossRef Verkoelen CF, Van Der Boom BG, Romijn JC (2000) Identification of hyaluronan as a crystal-binding molecule at the surface of migrating and proliferating MDCK cells. Kidney Int 58:1045–1054PubMedCrossRef
27.
go back to reference Verkoelen CF, van der Boom BG, Houtsmuller AB, Schröder FH, Romijn JC (1998) Increased calcium oxalate monohydrate crystal binding to injured renal tubular epithelial cells in culture. Am J Physiol 274:F958–F965PubMed Verkoelen CF, van der Boom BG, Houtsmuller AB, Schröder FH, Romijn JC (1998) Increased calcium oxalate monohydrate crystal binding to injured renal tubular epithelial cells in culture. Am J Physiol 274:F958–F965PubMed
28.
go back to reference Verhulst A, Asselman M, Persy VP, Schepers MS, Helbert MF, Verkoelen CF, De Broe ME (2003) Crystal retention capacity of cells in the human nephron: involvement of CD44 and its ligands hyaluronic acid and osteopontin in the transition of a crystal binding- into a non-adherent epithelium. J Am Soc Nephrol 14:107–114PubMedCrossRef Verhulst A, Asselman M, Persy VP, Schepers MS, Helbert MF, Verkoelen CF, De Broe ME (2003) Crystal retention capacity of cells in the human nephron: involvement of CD44 and its ligands hyaluronic acid and osteopontin in the transition of a crystal binding- into a non-adherent epithelium. J Am Soc Nephrol 14:107–114PubMedCrossRef
29.
go back to reference Asselman M, Verhulst A, De Broe ME, Verkoelen CF (2003) Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys. J Am Soc Nephrol 14:3155–3166PubMedCrossRef Asselman M, Verhulst A, De Broe ME, Verkoelen CF (2003) Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys. J Am Soc Nephrol 14:3155–3166PubMedCrossRef
30.
go back to reference Yamate T, Kohri K, Umekawa T, Amasaki N, Amasaki N, Isikawa Y, Iguchi M, Kurita T (1996) The effect of osteopontin on the adhesion of calcium oxalate crystals to Madin–Darby canine kidney cells. Eur Urol 30:388–393PubMed Yamate T, Kohri K, Umekawa T, Amasaki N, Amasaki N, Isikawa Y, Iguchi M, Kurita T (1996) The effect of osteopontin on the adhesion of calcium oxalate crystals to Madin–Darby canine kidney cells. Eur Urol 30:388–393PubMed
31.
go back to reference Yamate T, Kohri K, Umekawa T, Iguchi M, Kurita T (1998) Osteopontin antisense oligonucleotide inhibits adhesion of calcium oxalate crystals in Madin–Darby canine kidney cell. J Urol 160:1506–1512PubMedCrossRef Yamate T, Kohri K, Umekawa T, Iguchi M, Kurita T (1998) Osteopontin antisense oligonucleotide inhibits adhesion of calcium oxalate crystals in Madin–Darby canine kidney cell. J Urol 160:1506–1512PubMedCrossRef
32.
go back to reference Yamate T, Kohri K, Umekawa T, Konya E, Ishikawa Y, Iguchi M, Kurita T (1999) Interaction between osteopontin on Madin Darby canine kidney cell membrane and calcium oxalate crystal. Urol Int 62:81–86PubMedCrossRef Yamate T, Kohri K, Umekawa T, Konya E, Ishikawa Y, Iguchi M, Kurita T (1999) Interaction between osteopontin on Madin Darby canine kidney cell membrane and calcium oxalate crystal. Urol Int 62:81–86PubMedCrossRef
33.
go back to reference Sorokina EA, Wesson JA, Kleinman JG (2004) An acidic peptide sequence of nucleolin-related protein can mediate the attachment of calcium oxalate to renal tubule cells. J Am Soc Nephrol 15:2057–2065PubMedCrossRef Sorokina EA, Wesson JA, Kleinman JG (2004) An acidic peptide sequence of nucleolin-related protein can mediate the attachment of calcium oxalate to renal tubule cells. J Am Soc Nephrol 15:2057–2065PubMedCrossRef
34.
go back to reference Kumar V, Farell G, Deganello S, Lieske JC (2003) Annexin II is present on renal epithelial cells and binds calcium oxalate monohydrate crystals. J Am Soc Nephrol 14:289–297PubMedCrossRef Kumar V, Farell G, Deganello S, Lieske JC (2003) Annexin II is present on renal epithelial cells and binds calcium oxalate monohydrate crystals. J Am Soc Nephrol 14:289–297PubMedCrossRef
35.
go back to reference Kohri K, Kodama M, Ishikawa Y, Katayama Y, Matsuda H, Imanishi M, Takada M, Katoh Y, Kataoka K, Akiyama T (1991) Immunofluorescent study on the interaction between collagen and calcium oxalate crystals in the renal tubules. Eur Urol 19:249–252PubMed Kohri K, Kodama M, Ishikawa Y, Katayama Y, Matsuda H, Imanishi M, Takada M, Katoh Y, Kataoka K, Akiyama T (1991) Immunofluorescent study on the interaction between collagen and calcium oxalate crystals in the renal tubules. Eur Urol 19:249–252PubMed
36.
go back to reference Asselman M, Verkoelen CF (2002) Crystal-cell interaction in the pathogenesis of kidney stone disease. Curr Opin Urol 12:271–276PubMedCrossRef Asselman M, Verkoelen CF (2002) Crystal-cell interaction in the pathogenesis of kidney stone disease. Curr Opin Urol 12:271–276PubMedCrossRef
37.
go back to reference Kramer G, Steiner GE, Prinz-Kashani M, Bursa B, Marberger M (2003) Cell-surface matrix proteins and sialic acids in cell–crystal adhesion; the effect of crystal binding on the viability of human CAKI-1 renal epithelial cells. Br J Urol 91:554–559CrossRef Kramer G, Steiner GE, Prinz-Kashani M, Bursa B, Marberger M (2003) Cell-surface matrix proteins and sialic acids in cell–crystal adhesion; the effect of crystal binding on the viability of human CAKI-1 renal epithelial cells. Br J Urol 91:554–559CrossRef
38.
go back to reference de Bruijn WC, Boevé ER, van Run PR, van Miert PP, de Water R, Romijn JC, Verkoelen CF, Cao LC, Schröder FH (1995) Etiology of calcium oxalate nephrolithiasis in rats. I. Can this be a model for human stone formation? Scanning Microsc 9:103–114PubMed de Bruijn WC, Boevé ER, van Run PR, van Miert PP, de Water R, Romijn JC, Verkoelen CF, Cao LC, Schröder FH (1995) Etiology of calcium oxalate nephrolithiasis in rats. I. Can this be a model for human stone formation? Scanning Microsc 9:103–114PubMed
39.
go back to reference de Bruijn WC, Boevé ER, van Run PR, van Miert PP, Romijn JC, Verkoelen CF, Cao LC, Schröder FH (1994) Etiology of experimental cacluium oxalate monohydrate nephrolithiasis in rats. Scanning Microsc 8:541–549PubMed de Bruijn WC, Boevé ER, van Run PR, van Miert PP, Romijn JC, Verkoelen CF, Cao LC, Schröder FH (1994) Etiology of experimental cacluium oxalate monohydrate nephrolithiasis in rats. Scanning Microsc 8:541–549PubMed
40.
go back to reference de Water R, Noordermeer C, Houtsmuller AB, Nigg AL, Stijnen T, Schröder FH, Kok DJ (2000) The role of macrophages in nephrolithiasis in rats: an analysis of the renal interstitium. Am J Kidney Dis 36:615–625PubMedCrossRef de Water R, Noordermeer C, Houtsmuller AB, Nigg AL, Stijnen T, Schröder FH, Kok DJ (2000) The role of macrophages in nephrolithiasis in rats: an analysis of the renal interstitium. Am J Kidney Dis 36:615–625PubMedCrossRef
41.
go back to reference de Water R, Leenen PJ, Noordermeer C, Nigg AL, Houtsmuller AB, Kok DJ, Schröder FH (2001) Cytokine production induced by binding and processing of calcium oxalate crystals in cultured macrophages. Am J Kidney Dis 38:331–338PubMedCrossRef de Water R, Leenen PJ, Noordermeer C, Nigg AL, Houtsmuller AB, Kok DJ, Schröder FH (2001) Cytokine production induced by binding and processing of calcium oxalate crystals in cultured macrophages. Am J Kidney Dis 38:331–338PubMedCrossRef
42.
go back to reference de Water R, Nordermeer C, van der Kwast TH, Nizze H, Boevé ER, Kok DJ, Schröder FH (1999) Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal interstitium. Am J Kidney Dis 33:761–771PubMedCrossRef de Water R, Nordermeer C, van der Kwast TH, Nizze H, Boevé ER, Kok DJ, Schröder FH (1999) Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal interstitium. Am J Kidney Dis 33:761–771PubMedCrossRef
43.
go back to reference Schepers MS, Duim RA, Asselman M, Romijn JC, Schröder FH, Verkoelen CF (2003) Internalization of calcium oxalate crystals by renal tubular cells: a nephron segment-specific process? Kidney Int 64:493–500PubMedCrossRef Schepers MS, Duim RA, Asselman M, Romijn JC, Schröder FH, Verkoelen CF (2003) Internalization of calcium oxalate crystals by renal tubular cells: a nephron segment-specific process? Kidney Int 64:493–500PubMedCrossRef
44.
go back to reference Chauvet MC, Ryall RL (2005) Intracrystalline proteins and calcium oxalate crystal degradation in MDCK II cells. J Struct Biol 151:12–17PubMedCrossRef Chauvet MC, Ryall RL (2005) Intracrystalline proteins and calcium oxalate crystal degradation in MDCK II cells. J Struct Biol 151:12–17PubMedCrossRef
45.
go back to reference Grover PK, Thurgood LA, Fleming DE, van Bronswijk W, Wang T, Ryall RL (2008) Intracrystalline urinary proteins facilitate degradation and dissolution of calcium oxalate crystals in cultured renal cells. Am J Physiol Renal Physiol 294:F355–F361PubMedCrossRef Grover PK, Thurgood LA, Fleming DE, van Bronswijk W, Wang T, Ryall RL (2008) Intracrystalline urinary proteins facilitate degradation and dissolution of calcium oxalate crystals in cultured renal cells. Am J Physiol Renal Physiol 294:F355–F361PubMedCrossRef
46.
go back to reference Lieske JC, Swift H, Martin T, Patterson B, Toback FG (1994) Renal epithelial cells rapidly bind and internalize calcium oxalate monohydrate crystals. Proc Natl Acad Sci 91:6987–6991PubMedCrossRef Lieske JC, Swift H, Martin T, Patterson B, Toback FG (1994) Renal epithelial cells rapidly bind and internalize calcium oxalate monohydrate crystals. Proc Natl Acad Sci 91:6987–6991PubMedCrossRef
47.
go back to reference Lieske JC, Norris R, Swift H, Toback FG (1997) Adhesion, internalization and metabolism of calcium oxalate monohydrate crystals by renal epithelial cells. Kidney Int 52:1291–1301PubMedCrossRef Lieske JC, Norris R, Swift H, Toback FG (1997) Adhesion, internalization and metabolism of calcium oxalate monohydrate crystals by renal epithelial cells. Kidney Int 52:1291–1301PubMedCrossRef
48.
go back to reference Lieske JC, Deganello S, Toback FG (1999) Cell-crystal interactions and kidney stone formation. Nephron 81:8–17PubMedCrossRef Lieske JC, Deganello S, Toback FG (1999) Cell-crystal interactions and kidney stone formation. Nephron 81:8–17PubMedCrossRef
49.
go back to reference Lieske JC, Walsh‐Reitz MM, Toback FG (1992) Calcium oxalate monohydrate crystals are endocytosed by renal epithelial cells and induce proliferation. Am J Physiol 262:F622–F630 Lieske JC, Walsh‐Reitz MM, Toback FG (1992) Calcium oxalate monohydrate crystals are endocytosed by renal epithelial cells and induce proliferation. Am J Physiol 262:F622–F630
50.
go back to reference Lieske JC, Toback FG, Deganello S (1998) Direct nucleation of calcium oxalate dihydrate crystals onto the surface of living renal epithelial cells in culture. Kidney Int 54:796–803PubMedCrossRef Lieske JC, Toback FG, Deganello S (1998) Direct nucleation of calcium oxalate dihydrate crystals onto the surface of living renal epithelial cells in culture. Kidney Int 54:796–803PubMedCrossRef
51.
go back to reference Ryall RL, Fleming DE, Grover PK, Chauvet M, Dean CJ, Marshall VR (2000) The hole truth: intracrystalline proteins and calcium oxalate kidney stones. Mol Urol 4:391–402PubMed Ryall RL, Fleming DE, Grover PK, Chauvet M, Dean CJ, Marshall VR (2000) The hole truth: intracrystalline proteins and calcium oxalate kidney stones. Mol Urol 4:391–402PubMed
52.
go back to reference Ryall RL, Fleming DE, Doyle IR, Evans NA, Dean CJ, Marshall VR (2001) Intracrystalline proteins and the hidden ultrastructure of calcium oxalate urinary crystals: implications for kidney stone formation. J Struct Biol 134:5–14CrossRef Ryall RL, Fleming DE, Doyle IR, Evans NA, Dean CJ, Marshall VR (2001) Intracrystalline proteins and the hidden ultrastructure of calcium oxalate urinary crystals: implications for kidney stone formation. J Struct Biol 134:5–14CrossRef
53.
go back to reference Ryall RL, Chauvet MC, Grover PK (2005) Intracrystalline proteins and urolithiasis: a comparison of the protein content and ultrastructure of urinary calcium oxalate monohydrate and dihydrate crystals. Br J Urol 96:654–663CrossRef Ryall RL, Chauvet MC, Grover PK (2005) Intracrystalline proteins and urolithiasis: a comparison of the protein content and ultrastructure of urinary calcium oxalate monohydrate and dihydrate crystals. Br J Urol 96:654–663CrossRef
54.
go back to reference Fleming DE, van Riessen A, Chauvet MC, Grover PK, Hunter B, van Bronswijk W, Ryall RL (2003) Intracrystalline proteins and urolithiasis: a synchrotron X-ray diffraction study of calcium oxalate monohydrate. J Bone Min Res 18:1282–1291CrossRef Fleming DE, van Riessen A, Chauvet MC, Grover PK, Hunter B, van Bronswijk W, Ryall RL (2003) Intracrystalline proteins and urolithiasis: a synchrotron X-ray diffraction study of calcium oxalate monohydrate. J Bone Min Res 18:1282–1291CrossRef
55.
go back to reference Wang T, Thurgood LA, Grover PK, Ryall RL (2010) A comparison of the binding of urinary calcium oxalate monohydrate and dihydrate crystals to human kidney cells in urine. Br J Urol Int 106:1768–1774CrossRef Wang T, Thurgood LA, Grover PK, Ryall RL (2010) A comparison of the binding of urinary calcium oxalate monohydrate and dihydrate crystals to human kidney cells in urine. Br J Urol Int 106:1768–1774CrossRef
56.
go back to reference Lieske JC, Deganello S (1999) Nucleation, adhesion and internalization of calcium-containing urinary crystals by renal cells. J Am Nephrol Soc 10:S422–S429 Lieske JC, Deganello S (1999) Nucleation, adhesion and internalization of calcium-containing urinary crystals by renal cells. J Am Nephrol Soc 10:S422–S429
57.
go back to reference Semangoen T, Sinchaikul S, Chen ST, Thongboonkerd V (2008) Altered proteins in MDCK renal tubular cells in response to calcium oxalate dihydrate crystal adhesion: a proteomics approach. J Proteome Res 7:2889–2896PubMedCrossRef Semangoen T, Sinchaikul S, Chen ST, Thongboonkerd V (2008) Altered proteins in MDCK renal tubular cells in response to calcium oxalate dihydrate crystal adhesion: a proteomics approach. J Proteome Res 7:2889–2896PubMedCrossRef
58.
go back to reference Webber D, Chauvet MC, Ryall RL (2005) Proteolysis and partial dissolution of calcium oxalate: a comparative, morphological study of urinary crystals from black and white subjects. Urol Res 33:273–284PubMedCrossRef Webber D, Chauvet MC, Ryall RL (2005) Proteolysis and partial dissolution of calcium oxalate: a comparative, morphological study of urinary crystals from black and white subjects. Urol Res 33:273–284PubMedCrossRef
59.
go back to reference Chien YC, Masica DL, Gray JJ, Nguyen S, Vali H, McKee MD (2009) Modulation of calcium oxalate dihydrate growth by selective crystal-face binding of phosphorylated osteopontin and poly-aspartate peptide showing occlusion by sectoral (compositional) zoning. J Biol Chem 284:23491–23501PubMedCrossRef Chien YC, Masica DL, Gray JJ, Nguyen S, Vali H, McKee MD (2009) Modulation of calcium oxalate dihydrate growth by selective crystal-face binding of phosphorylated osteopontin and poly-aspartate peptide showing occlusion by sectoral (compositional) zoning. J Biol Chem 284:23491–23501PubMedCrossRef
60.
go back to reference Thurgood LA, Cook AF, Sørensen ES, Ryall RL (2010) Face-specific incorporation of osteopontin into urinary and inorganic calcium oxalate monohydrate and dihydrate crystals. Urol Res 38:357–376PubMedCrossRef Thurgood LA, Cook AF, Sørensen ES, Ryall RL (2010) Face-specific incorporation of osteopontin into urinary and inorganic calcium oxalate monohydrate and dihydrate crystals. Urol Res 38:357–376PubMedCrossRef
61.
go back to reference Thurgood LA, Wang T, Chataway TK, Ryall RL (2010) Comparison of the specific incorporation of intracrystalline proteins into urinary calcium oxalate monohydrate and dihydrate crystals. J Proteome Res 9:4745–4757PubMedCrossRef Thurgood LA, Wang T, Chataway TK, Ryall RL (2010) Comparison of the specific incorporation of intracrystalline proteins into urinary calcium oxalate monohydrate and dihydrate crystals. J Proteome Res 9:4745–4757PubMedCrossRef
62.
go back to reference Shiraga H, Min W, VanDusen WJ, Clayman MD, Miner D, Terrell CH, Sherbotie JR, Foreman JW, Przysiecki C, Neilson EG, Hoyer JR (1992) Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. PNAS 89:426–430PubMedCrossRef Shiraga H, Min W, VanDusen WJ, Clayman MD, Miner D, Terrell CH, Sherbotie JR, Foreman JW, Przysiecki C, Neilson EG, Hoyer JR (1992) Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. PNAS 89:426–430PubMedCrossRef
63.
go back to reference Asplin JR, Arsenault D, Parks JH, Coe FL, Hoyer JR (1998) Contribution of uropontin to inhibition of calcium oxalate crystallization. Kidney Int 53:194–199PubMedCrossRef Asplin JR, Arsenault D, Parks JH, Coe FL, Hoyer JR (1998) Contribution of uropontin to inhibition of calcium oxalate crystallization. Kidney Int 53:194–199PubMedCrossRef
64.
go back to reference Nishio S, Hatanaka M, Takeda H, Aoki K, Iseda T, Iwata H, Yokoyama M (2001) Calcium phosphate crystal-associated proteins: alpha-2-HS-glycoprotein, prothrombin fragment 1 and osteopontin. Int J Urol 8:S58–S62PubMedCrossRef Nishio S, Hatanaka M, Takeda H, Aoki K, Iseda T, Iwata H, Yokoyama M (2001) Calcium phosphate crystal-associated proteins: alpha-2-HS-glycoprotein, prothrombin fragment 1 and osteopontin. Int J Urol 8:S58–S62PubMedCrossRef
65.
go back to reference Thurgood LA, Sorensen ES, Ryall RL (2011) The effect of intracrystalline and surface-bound osteopontin on the attachment of calcium oxalate dihydrate crystals to MDCKII cells in ultrafiltered human urine. Br J Urol (in press) Thurgood LA, Sorensen ES, Ryall RL (2011) The effect of intracrystalline and surface-bound osteopontin on the attachment of calcium oxalate dihydrate crystals to MDCKII cells in ultrafiltered human urine. Br J Urol (in press)
66.
go back to reference Kleinman JG, Wesson JA, Hughes J (2004) Osteopontin and calcium stone formation. Nephron Physiol 98:43–47CrossRef Kleinman JG, Wesson JA, Hughes J (2004) Osteopontin and calcium stone formation. Nephron Physiol 98:43–47CrossRef
67.
go back to reference Okada A, Nomura S, Saeki Y, Higashibata Y, Hamamoto S, Hirose M, Itoh Y, Yasui T, Tozawa K, Kohri K (2008) Morphological conversion of calcium oxalate crystals into stones is regulated by osteopontin in mouse kidney. J Bone Miner Res 23:1629–1637PubMedCrossRef Okada A, Nomura S, Saeki Y, Higashibata Y, Hamamoto S, Hirose M, Itoh Y, Yasui T, Tozawa K, Kohri K (2008) Morphological conversion of calcium oxalate crystals into stones is regulated by osteopontin in mouse kidney. J Bone Miner Res 23:1629–1637PubMedCrossRef
68.
go back to reference Hamamoto S, Nomura S, Yasui T, Okada A, Hirose M, Shimizu H, Itoh Y, Tozawa K, Kohri K (2010) Effects of impaired functional domains of osteopontin on renal crystal formation: analyses of OPN-transgenic and OPN-knockout mice. J Bone Miner Res 25:2436–2447 Hamamoto S, Nomura S, Yasui T, Okada A, Hirose M, Shimizu H, Itoh Y, Tozawa K, Kohri K (2010) Effects of impaired functional domains of osteopontin on renal crystal formation: analyses of OPN-transgenic and OPN-knockout mice. J Bone Miner Res 25:2436–2447
69.
go back to reference Senger DR, Perruzzi CA, Papadopoulos A, Tenen DG (1989) Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochim Biophys Acta 996:43–48PubMedCrossRef Senger DR, Perruzzi CA, Papadopoulos A, Tenen DG (1989) Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochim Biophys Acta 996:43–48PubMedCrossRef
70.
go back to reference Christensen B, Nielsen MS, Haselmann KF, Petersen TE, Sørensen ES (2005) Post-translationally modified residues of native human osteopontin are located in clusters: identification of 36 phosphorylation and five O-glycosylation sites and their biological implications. Biochem J 390:285–292PubMedCrossRef Christensen B, Nielsen MS, Haselmann KF, Petersen TE, Sørensen ES (2005) Post-translationally modified residues of native human osteopontin are located in clusters: identification of 36 phosphorylation and five O-glycosylation sites and their biological implications. Biochem J 390:285–292PubMedCrossRef
71.
go back to reference Bautista DS, Denstedt JM, Chamber AF, Harris JF (1996) Low-molecular-weight variants of osteopontin generated by serine proteinases in urine of patients with kidney stones. J Cell Biochem 61:402–409PubMedCrossRef Bautista DS, Denstedt JM, Chamber AF, Harris JF (1996) Low-molecular-weight variants of osteopontin generated by serine proteinases in urine of patients with kidney stones. J Cell Biochem 61:402–409PubMedCrossRef
72.
go back to reference Thurgood LA, Grover PK, Ryall RL (2008) High calcium concentration and calcium oxalate crystals cause significant inaccuracies in the measurement of urinary osteopontin by enzyme linked immunosorbent assay. Urol Res 36:103–110PubMedCrossRef Thurgood LA, Grover PK, Ryall RL (2008) High calcium concentration and calcium oxalate crystals cause significant inaccuracies in the measurement of urinary osteopontin by enzyme linked immunosorbent assay. Urol Res 36:103–110PubMedCrossRef
73.
go back to reference Ryall RL, Grover PK, Thurgood LA, Chauvet MC, Fleming DE, van Bronswijk W (2007) The importance of a clean face: the effect of different washing procedures on the association of Tamm-Horsfall glycoprotein and other urinary proteins with calcium oxalate crystals. Urol Res 35:1–14PubMedCrossRef Ryall RL, Grover PK, Thurgood LA, Chauvet MC, Fleming DE, van Bronswijk W (2007) The importance of a clean face: the effect of different washing procedures on the association of Tamm-Horsfall glycoprotein and other urinary proteins with calcium oxalate crystals. Urol Res 35:1–14PubMedCrossRef
74.
go back to reference Verkoelen CF, van der Boom BG, Kok DJ, Houtsmuller AB, Visser P, Schröder FH, Romijn JC (1999) Cell type-specific acquired protection from crystal adherence by renal tubule cells in culture. Kidney Int 55:1426–1433PubMedCrossRef Verkoelen CF, van der Boom BG, Kok DJ, Houtsmuller AB, Visser P, Schröder FH, Romijn JC (1999) Cell type-specific acquired protection from crystal adherence by renal tubule cells in culture. Kidney Int 55:1426–1433PubMedCrossRef
75.
go back to reference Grover PK, Thurgood LA, Ryall RL (2007) Effect of urine fractionation on attachment of calcium oxalate crystals to renal epithelial cells: implications for studying renal calculogenesis. Am J Physiol Renal Physiol 292:F1396–F1403PubMedCrossRef Grover PK, Thurgood LA, Ryall RL (2007) Effect of urine fractionation on attachment of calcium oxalate crystals to renal epithelial cells: implications for studying renal calculogenesis. Am J Physiol Renal Physiol 292:F1396–F1403PubMedCrossRef
76.
go back to reference Walton RC, Kavanagh JP, Heywood BR (2003) The density and protein content of calcium oxalate crystals precipitated from human urine: a tool to investigate ultrastructure and the fractional volume occupied by organic matrix. J Struct Biol 143:2–14CrossRef Walton RC, Kavanagh JP, Heywood BR (2003) The density and protein content of calcium oxalate crystals precipitated from human urine: a tool to investigate ultrastructure and the fractional volume occupied by organic matrix. J Struct Biol 143:2–14CrossRef
77.
go back to reference Belliveau J, Griffin H (2001) The solubility of calcium oxalate in tissue culture media. Anal Biochem 291:69–73PubMedCrossRef Belliveau J, Griffin H (2001) The solubility of calcium oxalate in tissue culture media. Anal Biochem 291:69–73PubMedCrossRef
78.
go back to reference Grover PK, Thurgood LA, Wang T, Ryall RL (2010) The effects of intracrystalline and surface-bound proteins on the attachment of calcium oxalate monohydrate crystals to renal cells in undiluted human urine. Br J Urol 105:708–715CrossRef Grover PK, Thurgood LA, Wang T, Ryall RL (2010) The effects of intracrystalline and surface-bound proteins on the attachment of calcium oxalate monohydrate crystals to renal cells in undiluted human urine. Br J Urol 105:708–715CrossRef
79.
go back to reference Hsu WL, Lin MJ, Hsu JP (2009) Dissolution of solid particles in liquids: a shrinking core model. World Acad Sci Eng Technol Chem Mater Eng 2:4–8 Hsu WL, Lin MJ, Hsu JP (2009) Dissolution of solid particles in liquids: a shrinking core model. World Acad Sci Eng Technol Chem Mater Eng 2:4–8
80.
go back to reference Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry 12:980–987PubMedCrossRef Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry 12:980–987PubMedCrossRef
81.
go back to reference Qiu SR, Orme CA (2008) Dynamics of biomineral formation at the near-molecular level. Chem Rev 108:4784–4822PubMedCrossRef Qiu SR, Orme CA (2008) Dynamics of biomineral formation at the near-molecular level. Chem Rev 108:4784–4822PubMedCrossRef
83.
go back to reference White DJ, Coyle-Rees M, Nancollas GH (1988) Kinetic factors influencing the dissolution behaviour of calcium oxalate stones: a constant composition study. Calcif Tissue Int 43:319–327PubMedCrossRef White DJ, Coyle-Rees M, Nancollas GH (1988) Kinetic factors influencing the dissolution behaviour of calcium oxalate stones: a constant composition study. Calcif Tissue Int 43:319–327PubMedCrossRef
84.
go back to reference Lepage L, Tawashi R (1982) Growth and characterization of calcium oxalate dihydrate crystals (weddellite). J Pharm Sci 71:1059–1062PubMedCrossRef Lepage L, Tawashi R (1982) Growth and characterization of calcium oxalate dihydrate crystals (weddellite). J Pharm Sci 71:1059–1062PubMedCrossRef
85.
go back to reference Harrell PC, McCawley LJ, Fingleton B, McIntyre JO, Matrisian LM (2005) Proliferative effects of apical, but not basal, matrix metalloproteinase-7 activity in polarized MDCK cells. Exp Cell Res 303:308–320PubMedCrossRef Harrell PC, McCawley LJ, Fingleton B, McIntyre JO, Matrisian LM (2005) Proliferative effects of apical, but not basal, matrix metalloproteinase-7 activity in polarized MDCK cells. Exp Cell Res 303:308–320PubMedCrossRef
86.
go back to reference McGwire GB, Becker RP, Skidgel RA (1999) Carboxypeptidase M, a glycosylphosphatidylinositol-anchored protein, is localized on both the apical and basolateral domains of polarized Madin-Darby canine kidney cells. J Biol Chem 274:31632–31640PubMedCrossRef McGwire GB, Becker RP, Skidgel RA (1999) Carboxypeptidase M, a glycosylphosphatidylinositol-anchored protein, is localized on both the apical and basolateral domains of polarized Madin-Darby canine kidney cells. J Biol Chem 274:31632–31640PubMedCrossRef
87.
go back to reference Gstraunthaler G, Pfaller W, Kotanko P (1985) Biochemical characterization of renal epithelial cell cultures (LLC-PK1 and MDCK). Am J Physiol 248:F536–F544PubMed Gstraunthaler G, Pfaller W, Kotanko P (1985) Biochemical characterization of renal epithelial cell cultures (LLC-PK1 and MDCK). Am J Physiol 248:F536–F544PubMed
88.
go back to reference Hackett RL, Shevock PN, Khan SR (1994) Madin-Darby canine kidney cells are injured by exposure to oxalate and to calcium oxalate crystals. Urol Res 22:197–204PubMedCrossRef Hackett RL, Shevock PN, Khan SR (1994) Madin-Darby canine kidney cells are injured by exposure to oxalate and to calcium oxalate crystals. Urol Res 22:197–204PubMedCrossRef
89.
go back to reference Richardson JC, Scalera V, Simmons NL (1981) Identification of two strains of MDCK cells which resemble separate nephron tubule segments. Biochim Biophys Acta 673:26–36PubMedCrossRef Richardson JC, Scalera V, Simmons NL (1981) Identification of two strains of MDCK cells which resemble separate nephron tubule segments. Biochim Biophys Acta 673:26–36PubMedCrossRef
90.
go back to reference Oliveira V, Ferro ES, Gomes MD, Oshiro ME, Almeida PC, Juliano MA, Juliano L (2000) Characterization of thiol-, aspartyl-, and thiol-metallo-peptidase activities in Madin-Darby canine kidney cells. J Cell Biochem 76:478–488PubMedCrossRef Oliveira V, Ferro ES, Gomes MD, Oshiro ME, Almeida PC, Juliano MA, Juliano L (2000) Characterization of thiol-, aspartyl-, and thiol-metallo-peptidase activities in Madin-Darby canine kidney cells. J Cell Biochem 76:478–488PubMedCrossRef
91.
go back to reference Shalamanova L, Kübler B, Scharf JG, Braulke T (2001) MDCK cells secrete neutral proteases cleaving insulin-like growth factor-binding protein-2 to -6. Am J Physiol Endocrinol Metab 281:E1221–E1229PubMed Shalamanova L, Kübler B, Scharf JG, Braulke T (2001) MDCK cells secrete neutral proteases cleaving insulin-like growth factor-binding protein-2 to -6. Am J Physiol Endocrinol Metab 281:E1221–E1229PubMed
92.
go back to reference Andersson G, Ek-Rylander B, Hollberg K, Ljusberg-Sjölander J, Lång P, Norgård M, Wang Y, Zhang SJ (2003) TRACP as an osteopontin phosphatase. J Bone Miner Res 18:1912–1915PubMedCrossRef Andersson G, Ek-Rylander B, Hollberg K, Ljusberg-Sjölander J, Lång P, Norgård M, Wang Y, Zhang SJ (2003) TRACP as an osteopontin phosphatase. J Bone Miner Res 18:1912–1915PubMedCrossRef
93.
go back to reference Christensen B, Schack L, Kläning E, Sørensen ES (2010) Osteopontin is cleaved at multiple sites close to its integrin-binding motifs in milk and is a novel substrate for plasmin and cathepsin D. J Biol Chem 285:7929–7937PubMedCrossRef Christensen B, Schack L, Kläning E, Sørensen ES (2010) Osteopontin is cleaved at multiple sites close to its integrin-binding motifs in milk and is a novel substrate for plasmin and cathepsin D. J Biol Chem 285:7929–7937PubMedCrossRef
94.
go back to reference Agnihotri R, Crawford HC, Haro H, Matrisian LM, Havrda MC, Liaw L (2001) Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin). J Biol Chem 276:28261–28267PubMedCrossRef Agnihotri R, Crawford HC, Haro H, Matrisian LM, Havrda MC, Liaw L (2001) Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin). J Biol Chem 276:28261–28267PubMedCrossRef
95.
go back to reference Moriyama MT, Domiki C, Miyazawa K, Tanaka T, Suzuki K (2005) Effects of oxalate exposure on Madin-Darby canine kidney cells in culture: renal prothrombin fragment-1 mRNA expression. Urol Res 33:470–475CrossRef Moriyama MT, Domiki C, Miyazawa K, Tanaka T, Suzuki K (2005) Effects of oxalate exposure on Madin-Darby canine kidney cells in culture: renal prothrombin fragment-1 mRNA expression. Urol Res 33:470–475CrossRef
96.
go back to reference Hartz PA, Wilson PD (1997) Functional defects in lysosomal enzymes in autosomal dominant polycystic kidney disease (ADPKD): abnormalities in synthesis, molecular processing, polarity, and secretion. Biochem Mol Med 60:8–26PubMedCrossRef Hartz PA, Wilson PD (1997) Functional defects in lysosomal enzymes in autosomal dominant polycystic kidney disease (ADPKD): abnormalities in synthesis, molecular processing, polarity, and secretion. Biochem Mol Med 60:8–26PubMedCrossRef
97.
go back to reference Neame PJ, Butler WT (1996) Post-translational modification in rat bone osteopontin. Connect Tissue Res 35:145–150PubMedCrossRef Neame PJ, Butler WT (1996) Post-translational modification in rat bone osteopontin. Connect Tissue Res 35:145–150PubMedCrossRef
98.
go back to reference Christensen B, Kazanecki CC, Petersen TE, Rittling SR, Denhardt DT, Sørensen ES (2007) Cell type-specific post-translational modifications of mouse osteopontin are associated with different adhesive properties. J Biol Chem 282:19463–19472PubMedCrossRef Christensen B, Kazanecki CC, Petersen TE, Rittling SR, Denhardt DT, Sørensen ES (2007) Cell type-specific post-translational modifications of mouse osteopontin are associated with different adhesive properties. J Biol Chem 282:19463–19472PubMedCrossRef
99.
go back to reference Kasemo B, Lausmaa J (1994) Material-tissue interfaces: the role of surface properties and processes. Environ Health Perspect 102(Suppl 5):41–45PubMedCrossRef Kasemo B, Lausmaa J (1994) Material-tissue interfaces: the role of surface properties and processes. Environ Health Perspect 102(Suppl 5):41–45PubMedCrossRef
100.
go back to reference Malmström J, Shipovskov S, Christensen B, Sørensen ES, Kingshott P, Sutherland DS (2009) Adsorption and enzymatic cleavage of osteopontin at interfaces with different surface chemistries. Biointerphases 4:47–55PubMedCrossRef Malmström J, Shipovskov S, Christensen B, Sørensen ES, Kingshott P, Sutherland DS (2009) Adsorption and enzymatic cleavage of osteopontin at interfaces with different surface chemistries. Biointerphases 4:47–55PubMedCrossRef
101.
go back to reference Nishiyama K, Sugawara K, Nouchi T, Kawano N, Soejima K, Abe S, Mizokami H (2008) Purification and cDNA cloning of a novel protease inhibitor secreted into culture supernatant by MDCK cells. Biologicals 36:122–133PubMedCrossRef Nishiyama K, Sugawara K, Nouchi T, Kawano N, Soejima K, Abe S, Mizokami H (2008) Purification and cDNA cloning of a novel protease inhibitor secreted into culture supernatant by MDCK cells. Biologicals 36:122–133PubMedCrossRef
102.
go back to reference Kon S, Ikesue M, Kimura C, Aoki M, Nakayama Y, Saito Y, Kurotaki D, Diao H, Matsui Y, Segawa T, Maeda M, Kojima T, Uede T (2008) Syndecan-4 protects against osteopontin-mediated acute hepatic injury by masking functional domains of osteopontin. J Exp Med 205:25–33PubMedCrossRef Kon S, Ikesue M, Kimura C, Aoki M, Nakayama Y, Saito Y, Kurotaki D, Diao H, Matsui Y, Segawa T, Maeda M, Kojima T, Uede T (2008) Syndecan-4 protects against osteopontin-mediated acute hepatic injury by masking functional domains of osteopontin. J Exp Med 205:25–33PubMedCrossRef
103.
go back to reference Shanmugam V, Chackalaparampil I, Kundu GC, Mukherjee AB, Mukherjee BB (1997) Altered sialylation of osteopontin prevents its receptor-mediated binding on the surface of oncogenically transformed TSB77 cells. Biochem 36:5729–5738CrossRef Shanmugam V, Chackalaparampil I, Kundu GC, Mukherjee AB, Mukherjee BB (1997) Altered sialylation of osteopontin prevents its receptor-mediated binding on the surface of oncogenically transformed TSB77 cells. Biochem 36:5729–5738CrossRef
104.
go back to reference Kugler P, Wolf G, Scherberich J (1985) Histochemical demonstration of peptidases in the human kidney. Histochem 83:337–341CrossRef Kugler P, Wolf G, Scherberich J (1985) Histochemical demonstration of peptidases in the human kidney. Histochem 83:337–341CrossRef
105.
go back to reference Singh AK (1993) Presence of lysosomal enzymes in the normal glomerular basement membrane matrix. Histochem J 25:562–568PubMed Singh AK (1993) Presence of lysosomal enzymes in the normal glomerular basement membrane matrix. Histochem J 25:562–568PubMed
106.
go back to reference Yokota S, Tsuji H, Kato K (1985) Immunocytochemica localization of cathepsin D in lysosomes of cortical collecting tubule cells of the rat kidney. J Histochem Cytochem 33:191–200PubMedCrossRef Yokota S, Tsuji H, Kato K (1985) Immunocytochemica localization of cathepsin D in lysosomes of cortical collecting tubule cells of the rat kidney. J Histochem Cytochem 33:191–200PubMedCrossRef
108.
go back to reference Huang HS, Chen CF, Chien CT, Chen J (2000) Possible biphasic changes of free radicals in ethylene glycol-induced nephrolithaisis in rats. BJU Int 85:1143–1149PubMedCrossRef Huang HS, Chen CF, Chien CT, Chen J (2000) Possible biphasic changes of free radicals in ethylene glycol-induced nephrolithaisis in rats. BJU Int 85:1143–1149PubMedCrossRef
109.
go back to reference Baggio B, Gambaro G, Ossi E, Favaro S, Borsatti A (1983) Increased urinary excretion of renal enzymes in idiopathic calcium oxalate nephrolithiasis. J Urol 129:1161–1162PubMed Baggio B, Gambaro G, Ossi E, Favaro S, Borsatti A (1983) Increased urinary excretion of renal enzymes in idiopathic calcium oxalate nephrolithiasis. J Urol 129:1161–1162PubMed
Metadata
Title
The effect of intracrystalline and surface-bound osteopontin on the degradation and dissolution of calcium oxalate dihydrate crystals in MDCKII cells
Authors
Lauren A. Thurgood
Esben S. Sørensen
Rosemary L. Ryall
Publication date
01-02-2012
Publisher
Springer-Verlag
Published in
Urolithiasis / Issue 1/2012
Print ISSN: 2194-7228
Electronic ISSN: 2194-7236
DOI
https://doi.org/10.1007/s00240-011-0423-5

Other articles of this Issue 1/2012

Urolithiasis 1/2012 Go to the issue