Skip to main content
Top
Published in: Neuroradiology 11/2019

01-11-2019 | Multiple Sclerosis | Diagnostic Neuroradiology

Brain tissue and myelin volumetric analysis in multiple sclerosis at 3T MRI with various in-plane resolutions using synthetic MRI

Authors: Laetitia Saccenti, Christina Andica, Akifumi Hagiwara, Kazumasa Yokoyama, Mariko Yoshida Takemura, Shohei Fujita, Tomoko Maekawa, Koji Kamagata, Alice Le Berre, Masaaki Hori, Nobutaka Hattori, Shigeki Aoki

Published in: Neuroradiology | Issue 11/2019

Login to get access

Abstract

Purpose

Synthetic MRI (SyMRI) enables automatic brain tissue and myelin volumetry based on the quantification of R1 and R2 relaxation rates and proton density. This study aimed to determine the validity of SyMRI brain tissue and myelin volumetry using various in-plane resolutions at 3T in patients with multiple sclerosis (MS).

Methods

We scanned 19 MS patients and 10 healthy age- and gender-matched controls using a 3T MR scanner with in-plane resolutions of 0.8, 1.8, and 3.6 mm. The acquisition times were 5 min 8 s, 2 min 52 s, and 2 min 1 s, respectively. White matter (WM), gray matter (GM), cerebrospinal fluid (CSF), and myelin and non-WM/GM/CSF (NoN) volumes; brain parenchymal volume (BPV); and intracranial volume (ICV) were compared between different in-plane resolutions. These parameters were also compared between both groups, after ICV normalization.

Results

No significant differences in measured volumes were noted between the 0.8 and 1.8 mm in-plane resolutions, except in NoN and CSF for healthy controls and NoN for MS patients. Meanwhile, significant volumetric differences were noted in most brain tissues when compared between the 3.6 and 0.8 or 1.8 mm resolution for both healthy controls and MS patients. The normalized WM volume, myelin volume, and BPV showed significant differences between controls and MS patients at in-plane resolutions of 0.8 and 1.8 mm.

Conclusions

SyMRI brain tissue and myelin volumetry with in-plane resolution as low as 1.8 mm can be useful in the evaluation of MS with a short acquisition time of < 3 min.
Literature
1.
go back to reference Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O'Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69(2):292–302CrossRef Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O'Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69(2):292–302CrossRef
3.
go back to reference Lazeron RH, de Sonneville LM, Scheltens P, Polman CH, Barkhof F (2006) Cognitive slowing in multiple sclerosis is strongly associated with brain volume reduction. Mult Scler 12(6):760–768CrossRef Lazeron RH, de Sonneville LM, Scheltens P, Polman CH, Barkhof F (2006) Cognitive slowing in multiple sclerosis is strongly associated with brain volume reduction. Mult Scler 12(6):760–768CrossRef
4.
go back to reference Rocca MA, Battaglini M, Benedict RH, De Stefano N, Geurts JJ, Henry RG, Horsfield MA, Jenkinson M, Pagani E, Filippi M (2017) Brain MRI atrophy quantification in MS: from methods to clinical application. Neurology 88(4):403–413CrossRef Rocca MA, Battaglini M, Benedict RH, De Stefano N, Geurts JJ, Henry RG, Horsfield MA, Jenkinson M, Pagani E, Filippi M (2017) Brain MRI atrophy quantification in MS: from methods to clinical application. Neurology 88(4):403–413CrossRef
5.
go back to reference West J, Blystad I, Engstrom M, Warntjes JB, Lundberg P (2013) Application of quantitative MRI for brain tissue segmentation at 1.5 T and 3.0 T field strengths. PLoS One 8(9):e74795CrossRef West J, Blystad I, Engstrom M, Warntjes JB, Lundberg P (2013) Application of quantitative MRI for brain tissue segmentation at 1.5 T and 3.0 T field strengths. PLoS One 8(9):e74795CrossRef
6.
go back to reference Hagiwara A, Hori M, Cohen-Adad J, Nakazawa M, Suzuki Y, Kasahara A, Horita M, Haruyama T, Andica C, Maekawa T, Kamagata K, Kumamaru KK, Abe O, Aoki S (2019) Linearity, bias, intrascanner repeatability, and interscanner reproducibility of quantitative multidynamic multiecho sequence for rapid simultaneous relaxometry at 3 T: a validation study with a standardized phantom and healthy controls. Investig Radiol 54:39–47CrossRef Hagiwara A, Hori M, Cohen-Adad J, Nakazawa M, Suzuki Y, Kasahara A, Horita M, Haruyama T, Andica C, Maekawa T, Kamagata K, Kumamaru KK, Abe O, Aoki S (2019) Linearity, bias, intrascanner repeatability, and interscanner reproducibility of quantitative multidynamic multiecho sequence for rapid simultaneous relaxometry at 3 T: a validation study with a standardized phantom and healthy controls. Investig Radiol 54:39–47CrossRef
7.
go back to reference Krauss W, Gunnarsson M, Andersson T, Thunberg P (2015) Accuracy and reproducibility of a quantitative magnetic resonance imaging method for concurrent measurements of tissue relaxation times and proton density. Magn Reson Imaging 33(5):584–591CrossRef Krauss W, Gunnarsson M, Andersson T, Thunberg P (2015) Accuracy and reproducibility of a quantitative magnetic resonance imaging method for concurrent measurements of tissue relaxation times and proton density. Magn Reson Imaging 33(5):584–591CrossRef
8.
go back to reference West J, Warntjes JB, Lundberg P (2012) Novel whole brain segmentation and volume estimation using quantitative MRI. Eur Radiol 22(5):998–1007CrossRef West J, Warntjes JB, Lundberg P (2012) Novel whole brain segmentation and volume estimation using quantitative MRI. Eur Radiol 22(5):998–1007CrossRef
9.
go back to reference Warntjes M, Engstrom M, Tisell A, Lundberg P (2016) Modeling the presence of myelin and edema in the brain based on multi-parametric quantitative MRI. Front Neurol 7:16CrossRef Warntjes M, Engstrom M, Tisell A, Lundberg P (2016) Modeling the presence of myelin and edema in the brain based on multi-parametric quantitative MRI. Front Neurol 7:16CrossRef
10.
go back to reference Andica C, Hagiwara A, Hori M, Nakazawa M, Goto M, Koshino S, Kamagata K, Kumamaru KK, Aoki S (2018) Automated brain tissue and myelin volumetry based on quantitative MR imaging with various in-plane resolutions. J Neuroradiol 45(3):164–168CrossRef Andica C, Hagiwara A, Hori M, Nakazawa M, Goto M, Koshino S, Kamagata K, Kumamaru KK, Aoki S (2018) Automated brain tissue and myelin volumetry based on quantitative MR imaging with various in-plane resolutions. J Neuroradiol 45(3):164–168CrossRef
11.
go back to reference Hagiwara A, Hori M, Yokoyama K, Takemura MY, Andica C, Kumamaru KK, Nakazawa M, Takano N, Kawasaki H, Sato S, Hamasaki N, Kunimatsu A, Aoki S (2017) Utility of a multiparametric quantitative MRI model that assesses myelin and edema for evaluating plaques, periplaque white matter, and normal-appearing white matter in patients with multiple sclerosis: a feasibility study. AJNR Am J Neuroradiol 38(2):237–242CrossRef Hagiwara A, Hori M, Yokoyama K, Takemura MY, Andica C, Kumamaru KK, Nakazawa M, Takano N, Kawasaki H, Sato S, Hamasaki N, Kunimatsu A, Aoki S (2017) Utility of a multiparametric quantitative MRI model that assesses myelin and edema for evaluating plaques, periplaque white matter, and normal-appearing white matter in patients with multiple sclerosis: a feasibility study. AJNR Am J Neuroradiol 38(2):237–242CrossRef
12.
go back to reference Wallaert L, Hagiwara A, Andica C, Hori M, Yamashiro K, Koshino S, Maekawa T, Kamagata K, Aoki S (2018) The advantage of synthetic MRI for the visualization of anterior temporal pole lesions on double inversion recovery (DIR), phase-sensitive inversion recovery (PSIR), and myelin images in a patient with CADASIL. Magn Reson Med Sci 17(4):275-276.CrossRef Wallaert L, Hagiwara A, Andica C, Hori M, Yamashiro K, Koshino S, Maekawa T, Kamagata K, Aoki S (2018) The advantage of synthetic MRI for the visualization of anterior temporal pole lesions on double inversion recovery (DIR), phase-sensitive inversion recovery (PSIR), and myelin images in a patient with CADASIL. Magn Reson Med Sci 17(4):275-276.CrossRef
13.
go back to reference Vagberg M, Lindqvist T, Ambarki K, Warntjes JB, Sundstrom P, Birgander R, Svenningsson A (2013) Automated determination of brain parenchymal fraction in multiple sclerosis. AJNR Am J Neuroradiol 34(3):498–504CrossRef Vagberg M, Lindqvist T, Ambarki K, Warntjes JB, Sundstrom P, Birgander R, Svenningsson A (2013) Automated determination of brain parenchymal fraction in multiple sclerosis. AJNR Am J Neuroradiol 34(3):498–504CrossRef
14.
go back to reference Traboulsee A, Simon JH, Stone L, Fisher E, Jones DE, Malhotra A, Newsome SD, Oh J, Reich DS, Richert N, Rammohan K, Khan O, Radue EW, Ford C, Halper J, Li D (2016) Revised recommendations of the consortium of MS centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis. AJNR Am J Neuroradiol 37(3):394–401CrossRef Traboulsee A, Simon JH, Stone L, Fisher E, Jones DE, Malhotra A, Newsome SD, Oh J, Reich DS, Richert N, Rammohan K, Khan O, Radue EW, Ford C, Halper J, Li D (2016) Revised recommendations of the consortium of MS centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis. AJNR Am J Neuroradiol 37(3):394–401CrossRef
15.
go back to reference Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48(3):452–458CrossRef Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48(3):452–458CrossRef
16.
go back to reference Chu R, Tauhid S, Glanz BI, Healy BC, Kim G, Oommen VV, Khalid F, Neema M, Bakshi R (2016) Whole brain volume measured from 1.5T versus 3T MRI in healthy subjects and patients with multiple sclerosis. J Neuroimaging 26(1):62–67CrossRef Chu R, Tauhid S, Glanz BI, Healy BC, Kim G, Oommen VV, Khalid F, Neema M, Bakshi R (2016) Whole brain volume measured from 1.5T versus 3T MRI in healthy subjects and patients with multiple sclerosis. J Neuroimaging 26(1):62–67CrossRef
17.
go back to reference Bermel RA, Bakshi R (2006) The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol 5(2):158–170CrossRef Bermel RA, Bakshi R (2006) The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol 5(2):158–170CrossRef
18.
go back to reference King EM, Sabatier MJ, Hoque M, Kesar TM, Backus D, Borich MR (2018) Myelin status is associated with change in functional mobility following slope walking in people with multiple sclerosis. Mult Scler J Exp Transl Clin 4(2):2055217318773540PubMedPubMedCentral King EM, Sabatier MJ, Hoque M, Kesar TM, Backus D, Borich MR (2018) Myelin status is associated with change in functional mobility following slope walking in people with multiple sclerosis. Mult Scler J Exp Transl Clin 4(2):2055217318773540PubMedPubMedCentral
19.
go back to reference Warntjes JBM, Persson A, Berge J, Zech W (2017) Myelin detection using rapid quantitative MR imaging correlated to macroscopically registered Luxol fast blue-stained brain specimens. AJNR Am J Neuroradiol 38(6):1096–1102CrossRef Warntjes JBM, Persson A, Berge J, Zech W (2017) Myelin detection using rapid quantitative MR imaging correlated to macroscopically registered Luxol fast blue-stained brain specimens. AJNR Am J Neuroradiol 38(6):1096–1102CrossRef
20.
go back to reference Hagiwara A, Hori M, Kamagata K, Warntjes M, Matsuyoshi D, Nakazawa M, Ueda R, Andica C, Koshino S, Maekawa T, Irie R, Takamura T, Kumamaru KK, Abe O, Aoki S (2018) Myelin measurement: comparison between simultaneous tissue Relaxometry, magnetization transfer saturation index, and T1w/T2w ratio methods. Sci Rep 8(1):10554CrossRef Hagiwara A, Hori M, Kamagata K, Warntjes M, Matsuyoshi D, Nakazawa M, Ueda R, Andica C, Koshino S, Maekawa T, Irie R, Takamura T, Kumamaru KK, Abe O, Aoki S (2018) Myelin measurement: comparison between simultaneous tissue Relaxometry, magnetization transfer saturation index, and T1w/T2w ratio methods. Sci Rep 8(1):10554CrossRef
21.
go back to reference Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. NeuroImage 11(6 pt 1):805–821CrossRef Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. NeuroImage 11(6 pt 1):805–821CrossRef
22.
go back to reference Wonderlick JS, Ziegler DA, Hosseini-Varnamkhasti P, Locascio JJ, Bakkour A, van der Kouwe A, Triantafyllou C, Corkin S, Dickerson BC (2009) Reliability of MRI-derived cortical and subcortical morphometric measures: effects of pulse sequence, voxel geometry, and parallel imaging. NeuroImage 44(4):1324–1333CrossRef Wonderlick JS, Ziegler DA, Hosseini-Varnamkhasti P, Locascio JJ, Bakkour A, van der Kouwe A, Triantafyllou C, Corkin S, Dickerson BC (2009) Reliability of MRI-derived cortical and subcortical morphometric measures: effects of pulse sequence, voxel geometry, and parallel imaging. NeuroImage 44(4):1324–1333CrossRef
23.
go back to reference Fujita S, Hagiwara A, Hori M, Warntjles M, Kamagata K, Fukunaga I, Goto M, Takuya H, Takasu K, Andica C, Maekawa T, Takemura MY, Irie R, Wada A, Suzuki M, Aoki S (2019) 3D quantitative synthetic MRI-derived cortical thickness and subcortical brain volumes: scan-rescan repeatability and comparison with conventional T1-weighted images. J Magn Reson Imaging [Epub ahead of print]. https://doi.org/10.1002/jmri.26744 CrossRef Fujita S, Hagiwara A, Hori M, Warntjles M, Kamagata K, Fukunaga I, Goto M, Takuya H, Takasu K, Andica C, Maekawa T, Takemura MY, Irie R, Wada A, Suzuki M, Aoki S (2019) 3D quantitative synthetic MRI-derived cortical thickness and subcortical brain volumes: scan-rescan repeatability and comparison with conventional T1-weighted images. J Magn Reson Imaging [Epub ahead of print]. https://​doi.​org/​10.​1002/​jmri.​26744 CrossRef
24.
go back to reference Vågberg M, Ambarki K, Lindqvist T, Birgander R, Svenningsson A (2016) Brain parenchymal fraction in an age-stratified healthy population – determined by MRI using manual segmentation and three automated segmentation methods. J Neuroradiol 43(6):384–391CrossRef Vågberg M, Ambarki K, Lindqvist T, Birgander R, Svenningsson A (2016) Brain parenchymal fraction in an age-stratified healthy population – determined by MRI using manual segmentation and three automated segmentation methods. J Neuroradiol 43(6):384–391CrossRef
25.
go back to reference Bonar DC, Schaper KA, Anderson JR, Rottenberg DA, Strother SC (1993) Graphical analysis of MR feature space for measurement of CSF, gray-matter, and white-matter volumes. J Comput Assist Tomogr 17(3):461–470CrossRef Bonar DC, Schaper KA, Anderson JR, Rottenberg DA, Strother SC (1993) Graphical analysis of MR feature space for measurement of CSF, gray-matter, and white-matter volumes. J Comput Assist Tomogr 17(3):461–470CrossRef
26.
go back to reference Granberg T, Uppman M, Hashim F, Cananau C, Nordin LE, Shams S, Berglund J, Forslin Y, Aspelin P, Fredrikson S, Kristoffersen-Wiberg M (2016) Clinical feasibility of synthetic MRI in multiple sclerosis: a diagnostic and volumetric validation study. AJNR Am J Neuroradiol 37(6):1023–1029CrossRef Granberg T, Uppman M, Hashim F, Cananau C, Nordin LE, Shams S, Berglund J, Forslin Y, Aspelin P, Fredrikson S, Kristoffersen-Wiberg M (2016) Clinical feasibility of synthetic MRI in multiple sclerosis: a diagnostic and volumetric validation study. AJNR Am J Neuroradiol 37(6):1023–1029CrossRef
Metadata
Title
Brain tissue and myelin volumetric analysis in multiple sclerosis at 3T MRI with various in-plane resolutions using synthetic MRI
Authors
Laetitia Saccenti
Christina Andica
Akifumi Hagiwara
Kazumasa Yokoyama
Mariko Yoshida Takemura
Shohei Fujita
Tomoko Maekawa
Koji Kamagata
Alice Le Berre
Masaaki Hori
Nobutaka Hattori
Shigeki Aoki
Publication date
01-11-2019
Publisher
Springer Berlin Heidelberg
Published in
Neuroradiology / Issue 11/2019
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-019-02241-w

Other articles of this Issue 11/2019

Neuroradiology 11/2019 Go to the issue