Skip to main content
Top
Published in: Neuroradiology 1/2017

01-01-2017 | Functional Neuroradiology

Perfusion imaging of brain gliomas using arterial spin labeling: correlation with histopathological vascular density in MRI-guided biopsies

Authors: Di Ningning, Pang Haopeng, Dang Xuefei, Cheng Wenna, Ren Yan, Wu Jingsong, Yao Chengjun, Yao Zhenwei, Feng Xiaoyuan

Published in: Neuroradiology | Issue 1/2017

Login to get access

Abstract

Introduction

This study was designed to determine if cerebral blood flow (CBF) derived from arterial spin labeling (ASL) perfusion imaging could be used to quantitatively evaluate the microvascular density (MVD) of brain gliomas on a “point-to-point” basis by matching CBF areas and surgical biopsy sites as accurate as possible.

Methods

The study enrolled 47 patients with treatment-naive brain gliomas who underwent preoperative ASL, 3D T1-weighted imaging with gadolinium contrast enhancement (3D T1C+), and T2 fluid acquisition of inversion recovery (T2FLAIR) sequences before stereotactic surgery. We histologically quantified MVD from CD34-stained sections of stereotactic biopsies and co-registered biopsy locations with localized CBF measurements. The correlation between CBF and MVD was determined using Spearman’s correlation coefficient. P ≤ .05 was considered statistically significant.

Results

Of the 47 patients enrolled in the study, 6 were excluded from the analysis because of brain shift or poor co-registration and localization of the biopsy site during surgery. Finally, 84 biopsies from 41 subjects were included in the analysis. CBF showed a statistically significant positive correlation with MVD (ρ = 0.567; P = .029).

Conclusion

ASL can be a useful noninvasive perfusion MR method for quantitative evaluation of the MVD of brain gliomas.
Literature
1.
go back to reference Provenzale JM, Mukundan S, Barboriak DP (2006) Diffusion weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 239:632–649CrossRefPubMed Provenzale JM, Mukundan S, Barboriak DP (2006) Diffusion weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 239:632–649CrossRefPubMed
3.
go back to reference Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE (2007) Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 242:647–649CrossRefPubMed Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE (2007) Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 242:647–649CrossRefPubMed
4.
go back to reference Warmuth C, Gunther M, Zimmer C (2003) Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 228:523–532CrossRefPubMed Warmuth C, Gunther M, Zimmer C (2003) Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 228:523–532CrossRefPubMed
5.
go back to reference Hirai T, Kitajima M, Nakamura H et al (2011) Quantitative blood flow measurements in gliomas using arterial spin-labeling at 3T: intermodality agreement and inter- and intraobserver reproducibility study. AJNR Am J Neuroradiol 32:2073–2079CrossRefPubMed Hirai T, Kitajima M, Nakamura H et al (2011) Quantitative blood flow measurements in gliomas using arterial spin-labeling at 3T: intermodality agreement and inter- and intraobserver reproducibility study. AJNR Am J Neuroradiol 32:2073–2079CrossRefPubMed
6.
go back to reference Nael K, Meshksar A, Liebeskind DS, Coull BM, Krupinski EA, Villablanca JP (2013) Quantitative analysis of hypoperfusion in acute stroke: arterial spin labeling versus dynamic susceptibility contrast. Stroke 44:3090–3096CrossRefPubMedPubMedCentral Nael K, Meshksar A, Liebeskind DS, Coull BM, Krupinski EA, Villablanca JP (2013) Quantitative analysis of hypoperfusion in acute stroke: arterial spin labeling versus dynamic susceptibility contrast. Stroke 44:3090–3096CrossRefPubMedPubMedCentral
7.
go back to reference Chen J, Zhao B, Bu C, Xie G (2014) Relationship between the hemodynamic changes on multi-Td pulsed arterial spin labeling images and the degrees of cerebral artery stenosis. Magn Reson Imaging 32:1277–1283CrossRefPubMed Chen J, Zhao B, Bu C, Xie G (2014) Relationship between the hemodynamic changes on multi-Td pulsed arterial spin labeling images and the degrees of cerebral artery stenosis. Magn Reson Imaging 32:1277–1283CrossRefPubMed
8.
go back to reference Mak HK, Qian W, Ng KS et al (2014) Combination of MRI hippocampal volumetry and arterial spin labeling MR perfusion at 3-Tesla improves the efficacy in discriminating Alzheimer’s disease from cognitively normal elderly adults. J Alzheimers Dis 41:749–758PubMed Mak HK, Qian W, Ng KS et al (2014) Combination of MRI hippocampal volumetry and arterial spin labeling MR perfusion at 3-Tesla improves the efficacy in discriminating Alzheimer’s disease from cognitively normal elderly adults. J Alzheimers Dis 41:749–758PubMed
9.
go back to reference Dangouloff-Ros V, Deroulers C, Foissac F et al (2016) Arterial spin labeling to predict brain tumor grading in children: correlations between histopathologic vascular density and perfusion MR imaging. Radiology 281:1–14CrossRef Dangouloff-Ros V, Deroulers C, Foissac F et al (2016) Arterial spin labeling to predict brain tumor grading in children: correlations between histopathologic vascular density and perfusion MR imaging. Radiology 281:1–14CrossRef
10.
go back to reference Noguchi T, Yoshiura T, Hiwatashi A et al (2008) Perfusion imaging of brain tumors using arterial spin-labeling: correlation with histopathologic vascular density. AJNR Am J Neuroradiol 29:688–693CrossRefPubMed Noguchi T, Yoshiura T, Hiwatashi A et al (2008) Perfusion imaging of brain tumors using arterial spin-labeling: correlation with histopathologic vascular density. AJNR Am J Neuroradiol 29:688–693CrossRefPubMed
11.
go back to reference Kimura H, Takeuchi H, Koshimoto Y et al (2006) Perfusion imaging of meningioma by using continuous arterial spin-labeling: comparison with dynamic susceptibility-weighted contrast-enhanced MR images and histopathologic features. AJNR Am J Neuroradiol 27:85–93PubMed Kimura H, Takeuchi H, Koshimoto Y et al (2006) Perfusion imaging of meningioma by using continuous arterial spin-labeling: comparison with dynamic susceptibility-weighted contrast-enhanced MR images and histopathologic features. AJNR Am J Neuroradiol 27:85–93PubMed
12.
go back to reference Yamamoto T, Takeuchi H, Kinoshita K, Kosaka N, Kimura H (2014) Assessment of tumor blood flow and its correlation with histopathologic features in skull base meningiomas and schwannomas by using pseudo-continuous arterial spin labeling images. Eur J Radiol 83:817–823CrossRefPubMed Yamamoto T, Takeuchi H, Kinoshita K, Kosaka N, Kimura H (2014) Assessment of tumor blood flow and its correlation with histopathologic features in skull base meningiomas and schwannomas by using pseudo-continuous arterial spin labeling images. Eur J Radiol 83:817–823CrossRefPubMed
13.
go back to reference Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892CrossRefPubMedPubMedCentral Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892CrossRefPubMedPubMedCentral
14.
go back to reference Goh V, Halligan S, Daley F, Wellsted DM, Guenther T, Bartram CI (2008) Colorectal tumor vascularity: quantitative assessment with multidetector CT—do tumor perfusion measurements reflect angiogenesis? Radiology 249:510–517CrossRefPubMed Goh V, Halligan S, Daley F, Wellsted DM, Guenther T, Bartram CI (2008) Colorectal tumor vascularity: quantitative assessment with multidetector CT—do tumor perfusion measurements reflect angiogenesis? Radiology 249:510–517CrossRefPubMed
15.
go back to reference Dighe S, Blake H, Jeyadevan N et al (2013) Perfusion CT vascular parameters do not correlate with immunohistochemically derived microvessel density count in colorectal tumors. Radiology 268:400–410CrossRefPubMed Dighe S, Blake H, Jeyadevan N et al (2013) Perfusion CT vascular parameters do not correlate with immunohistochemically derived microvessel density count in colorectal tumors. Radiology 268:400–410CrossRefPubMed
16.
go back to reference Weidner N (1995) Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat 36:169–180CrossRefPubMed Weidner N (1995) Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat 36:169–180CrossRefPubMed
17.
go back to reference Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 6:803–820CrossRef Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 6:803–820CrossRef
18.
19.
go back to reference Folkman J (1989) What is evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6CrossRef Folkman J (1989) What is evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6CrossRef
20.
go back to reference Sorensen AG, Emblem KE, Polaskova P et al (2012) Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion. Cancer Res 72:402–407CrossRefPubMed Sorensen AG, Emblem KE, Polaskova P et al (2012) Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion. Cancer Res 72:402–407CrossRefPubMed
21.
go back to reference Tolaney SM, Boucher Y, Duda DG et al (2015) Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc Natl Acad Sci U S A 112:14325–14330CrossRefPubMedPubMedCentral Tolaney SM, Boucher Y, Duda DG et al (2015) Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc Natl Acad Sci U S A 112:14325–14330CrossRefPubMedPubMedCentral
22.
go back to reference Knopp EA, Cha S, Johnson G et al (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211:791–798CrossRefPubMed Knopp EA, Cha S, Johnson G et al (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211:791–798CrossRefPubMed
23.
go back to reference Hu LS, Eschbacher JM, Dueck AC et al (2012) Correlations between perfusion MR imaging cerebral blood volume, microvessel quantification, and clinical outcome using stereotactic analysis in recurrent high-grade glioma. AJNR Am J Neuroradiol 33:69–76CrossRefPubMed Hu LS, Eschbacher JM, Dueck AC et al (2012) Correlations between perfusion MR imaging cerebral blood volume, microvessel quantification, and clinical outcome using stereotactic analysis in recurrent high-grade glioma. AJNR Am J Neuroradiol 33:69–76CrossRefPubMed
24.
go back to reference Ellingson B, Zaw T, Cloughesy TF et al (2012) Comparison between intensity normalization techniques for dynamic susceptibility contrast (DSC)-MRI estimates of cerebral blood volume (CBV) in human gliomas. J Magn Reson Imaging 25:1472–1477CrossRef Ellingson B, Zaw T, Cloughesy TF et al (2012) Comparison between intensity normalization techniques for dynamic susceptibility contrast (DSC)-MRI estimates of cerebral blood volume (CBV) in human gliomas. J Magn Reson Imaging 25:1472–1477CrossRef
25.
go back to reference Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 27:859–867PubMed Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 27:859–867PubMed
26.
go back to reference Boxerman JL, Prah DE, Paulson ES, Machan JT, Bedekar D, Schmainda KM (2012) The role of preload and leakage correction in gadolinium-based cerebral blood volume estimation determined by comparison with MION as a criterion standard. AJNR Am J Neuroradiol 33:1081–1087CrossRefPubMedPubMedCentral Boxerman JL, Prah DE, Paulson ES, Machan JT, Bedekar D, Schmainda KM (2012) The role of preload and leakage correction in gadolinium-based cerebral blood volume estimation determined by comparison with MION as a criterion standard. AJNR Am J Neuroradiol 33:1081–1087CrossRefPubMedPubMedCentral
27.
28.
go back to reference Golay X, Hendrikse J, Lim TC (2004) Perfusions imaging using arterial spin labeling. Top Magn Reson Imaging 15:10–27CrossRefPubMed Golay X, Hendrikse J, Lim TC (2004) Perfusions imaging using arterial spin labeling. Top Magn Reson Imaging 15:10–27CrossRefPubMed
29.
go back to reference Teeuwisse WM, Schmid S, Ghariq E, Veer IM, van Osch MJ (2014) Time-encoded pseudocontinuous arterial spin labeling: basic properties and timing strategies for human applications. Magn Reson Med 72:1712–1722CrossRefPubMed Teeuwisse WM, Schmid S, Ghariq E, Veer IM, van Osch MJ (2014) Time-encoded pseudocontinuous arterial spin labeling: basic properties and timing strategies for human applications. Magn Reson Med 72:1712–1722CrossRefPubMed
30.
go back to reference Weber MA, Zoubaa S, Schlieter M et al (2006) Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology 66:1899–1906CrossRefPubMed Weber MA, Zoubaa S, Schlieter M et al (2006) Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology 66:1899–1906CrossRefPubMed
31.
go back to reference Guo P, Imanishi Y, Cackowski FC et al (2005) Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5 gamma 2 correlates with the invasiveness of human glioma. Am J Pathol 166:877–890CrossRefPubMedPubMedCentral Guo P, Imanishi Y, Cackowski FC et al (2005) Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5 gamma 2 correlates with the invasiveness of human glioma. Am J Pathol 166:877–890CrossRefPubMedPubMedCentral
32.
go back to reference Sadeghi N, Salmon I, Decaestecker C et al (2015) Stereotactic comparison among cerebral blood volume, methionine uptake, and histopathology in brain glioma. AJNR Am J Neuroradiol 28:455–461 Sadeghi N, Salmon I, Decaestecker C et al (2015) Stereotactic comparison among cerebral blood volume, methionine uptake, and histopathology in brain glioma. AJNR Am J Neuroradiol 28:455–461
33.
go back to reference Jain R, Gutierrez J, Narang J et al (2011) In vivo correlation of tumor blood volume and permeability with histologic and molecular angiogenic markers in gliomas. AJNR Am J Neuroradiol 32:388–394CrossRefPubMed Jain R, Gutierrez J, Narang J et al (2011) In vivo correlation of tumor blood volume and permeability with histologic and molecular angiogenic markers in gliomas. AJNR Am J Neuroradiol 32:388–394CrossRefPubMed
34.
go back to reference Price SJ, Green HA, Dean AF et al (2011) Correlation of MR relative cerebral blood volume measurements with cellular density and proliferation in high-grade gliomas: an image-guided biopsy study. AJNR Am J Neuroradiol 32:501–506CrossRefPubMed Price SJ, Green HA, Dean AF et al (2011) Correlation of MR relative cerebral blood volume measurements with cellular density and proliferation in high-grade gliomas: an image-guided biopsy study. AJNR Am J Neuroradiol 32:501–506CrossRefPubMed
35.
go back to reference Christoforidis GA, Yang M, Abduljalil A et al (2012) “Tumoral pseudoblush” identified within gliomas at high-spatial-resolution ultrahigh-field-strength gradient-echo MR imaging corresponds to microvascularity at stereotactic biopsy. Radiology 264:210–217CrossRefPubMedPubMedCentral Christoforidis GA, Yang M, Abduljalil A et al (2012) “Tumoral pseudoblush” identified within gliomas at high-spatial-resolution ultrahigh-field-strength gradient-echo MR imaging corresponds to microvascularity at stereotactic biopsy. Radiology 264:210–217CrossRefPubMedPubMedCentral
36.
go back to reference Zhang Y, Kapur P, Yuan Q et al (2016) Tumor vascularity in renal masses: correlation of arterial spin-labeled and dynamic contrast-enhanced magnetic resonance imaging assessments. Clin Genitourin Cancer 14:e25–e36CrossRefPubMed Zhang Y, Kapur P, Yuan Q et al (2016) Tumor vascularity in renal masses: correlation of arterial spin-labeled and dynamic contrast-enhanced magnetic resonance imaging assessments. Clin Genitourin Cancer 14:e25–e36CrossRefPubMed
37.
go back to reference Schor-Bardach R, Alsop DC, Pedrosa I et al (2009) Does arterial spin-labeling MR imaging-measured tumor perfusion correlate with renal cell cancer response to antiangiogenic therapy in a mouse model? Radiology 251:731–742CrossRefPubMedPubMedCentral Schor-Bardach R, Alsop DC, Pedrosa I et al (2009) Does arterial spin-labeling MR imaging-measured tumor perfusion correlate with renal cell cancer response to antiangiogenic therapy in a mouse model? Radiology 251:731–742CrossRefPubMedPubMedCentral
38.
go back to reference Alexiou GA, Zikou A, Tsiouris S et al (2014) Correlation of diffusion tensor dynamic susceptibility contrast MRI and (99m)Tc-tetrofosmin brain SPECT with tumour grade and Ki-67 immunohistochemistry in glioma. Clin Neurol Neurosurg 116:41–45CrossRefPubMed Alexiou GA, Zikou A, Tsiouris S et al (2014) Correlation of diffusion tensor dynamic susceptibility contrast MRI and (99m)Tc-tetrofosmin brain SPECT with tumour grade and Ki-67 immunohistochemistry in glioma. Clin Neurol Neurosurg 116:41–45CrossRefPubMed
Metadata
Title
Perfusion imaging of brain gliomas using arterial spin labeling: correlation with histopathological vascular density in MRI-guided biopsies
Authors
Di Ningning
Pang Haopeng
Dang Xuefei
Cheng Wenna
Ren Yan
Wu Jingsong
Yao Chengjun
Yao Zhenwei
Feng Xiaoyuan
Publication date
01-01-2017
Publisher
Springer Berlin Heidelberg
Published in
Neuroradiology / Issue 1/2017
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-016-1756-0

Other articles of this Issue 1/2017

Neuroradiology 1/2017 Go to the issue