Skip to main content
Top
Published in: Neuroradiology 8/2014

01-08-2014 | Diagnostic Neuroradiology

Intravoxel incoherent motion perfusion imaging in acute stroke: initial clinical experience

Authors: C. Federau, S. Sumer, F. Becce, P. Maeder, K. O’Brien, R. Meuli, M. Wintermark

Published in: Neuroradiology | Issue 8/2014

Login to get access

Abstract

Introduction

Intravoxel incoherent motion (IVIM) imaging is an MRI perfusion technique that uses a diffusion-weighted sequence with multiple b values and a bi-compartmental signal model to measure the so-called pseudo-diffusion of blood caused by its passage through the microvascular network. The goal of the current study was to assess the feasibility of IVIM perfusion fraction imaging in patients with acute stroke.

Methods

Images were collected in 17 patients with acute stroke. Exclusion criteria were onset of symptoms to imaging >5 days, hemorrhagic transformation, infratentorial lesions, small lesions <0.5 cm in minimal diameter and hemodynamic instability. IVIM imaging was performed at 3 T, using a standard spin-echo Stejskal-Tanner pulsed gradients diffusion-weighted sequence, using 16 b values from 0 to 900 s/mm2. Image quality was assessed by two radiologists, and quantitative analysis was performed in regions of interest placed in the stroke area, defined by thresholding the apparent diffusion coefficient maps, as well as in the contralateral region.

Results

IVIM perfusion fraction maps showed an area of decreased perfusion fraction f in the region of decreased apparent diffusion coefficient. Quantitative analysis showed a statistically significant decrease in both IVIM perfusion fraction f (0.026 ± 0.019 vs. 0.056 ± 0.025, p = 2.2 · 10−6) and diffusion coefficient D compared with the contralateral side (3.9 ± 0.79 · 10−4 vs. 7.5 ± 0.86 · 10−4 mm2/s, p = 1.3 · 10−20).

Conclusion

IVIM perfusion fraction imaging is feasible in acute stroke. IVIM perfusion fraction is significantly reduced in the visible infarct. Further studies should evaluate the potential for IVIM to predict clinical outcome and treatment response.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lev MH (2013) Perfusion imaging of acute stroke: its role in current and future clinical practice. Radiology 266:22–27PubMedCrossRef Lev MH (2013) Perfusion imaging of acute stroke: its role in current and future clinical practice. Radiology 266:22–27PubMedCrossRef
2.
go back to reference Goyal M, Menon BK, Derdeyn CP (2013) Perfusion imaging in acute ischemic stroke: let us improve the science before changing clinical practice. Radiology 266:16–21PubMedCrossRef Goyal M, Menon BK, Derdeyn CP (2013) Perfusion imaging in acute ischemic stroke: let us improve the science before changing clinical practice. Radiology 266:16–21PubMedCrossRef
3.
go back to reference Wintermark M, Sanelli PC, Albers GW et al (2013) Imaging recommendations for acute stroke and transient ischemic attack patients: a joint statement by the American Society of Neuroradiology, the American College of Radiology, and the Society of NeuroInterventional Surgery. AJNR Am J Neuroradiol 10:828–832 Wintermark M, Sanelli PC, Albers GW et al (2013) Imaging recommendations for acute stroke and transient ischemic attack patients: a joint statement by the American Society of Neuroradiology, the American College of Radiology, and the Society of NeuroInterventional Surgery. AJNR Am J Neuroradiol 10:828–832
4.
go back to reference Wintermark M, Warach SJ, STIR et al (2013) Acute stroke imaging research roadmap II and international survey of acute stroke imaging capabilities: we need your help! AJNR Am J Neuroradiol 34:1671PubMedCrossRef Wintermark M, Warach SJ, STIR et al (2013) Acute stroke imaging research roadmap II and international survey of acute stroke imaging capabilities: we need your help! AJNR Am J Neuroradiol 34:1671PubMedCrossRef
5.
go back to reference Albers GW, Thijs VN, Wechsler L et al (2006) Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 60:508–517PubMedCrossRef Albers GW, Thijs VN, Wechsler L et al (2006) Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 60:508–517PubMedCrossRef
6.
go back to reference Lansberg MG, Straka M, Kemp S et al (2012) MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study. Lancet Neurol 11:860–867PubMedCentralPubMedCrossRef Lansberg MG, Straka M, Kemp S et al (2012) MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study. Lancet Neurol 11:860–867PubMedCentralPubMedCrossRef
7.
go back to reference Davis SM, Donnan GA, Parsons MW et al (2008) Effects of alteplase beyond 3h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol 7:299–309PubMedCrossRef Davis SM, Donnan GA, Parsons MW et al (2008) Effects of alteplase beyond 3h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol 7:299–309PubMedCrossRef
8.
go back to reference Hacke W, Furlan AJ, Al-Rawi Y et al (2009) Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol 8:141–150PubMedCentralPubMedCrossRef Hacke W, Furlan AJ, Al-Rawi Y et al (2009) Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol 8:141–150PubMedCentralPubMedCrossRef
9.
10.
go back to reference Menon BK, Smith EE, Modi J et al (2011) Regional leptomeningeal score on CT angiography predicts clinical and imaging outcomes in patients with acute anterior circulation occlusions. AJNR Am J Neuroradiol 32:1640–1645PubMedCrossRef Menon BK, Smith EE, Modi J et al (2011) Regional leptomeningeal score on CT angiography predicts clinical and imaging outcomes in patients with acute anterior circulation occlusions. AJNR Am J Neuroradiol 32:1640–1645PubMedCrossRef
11.
go back to reference Calamante F, Willats L, Gadian DG et al (2006) Bolus delay and dispersion in perfusion MRI: implications for tissue predictor models in stroke. Magn Reson Med 55:1180–1185PubMedCrossRef Calamante F, Willats L, Gadian DG et al (2006) Bolus delay and dispersion in perfusion MRI: implications for tissue predictor models in stroke. Magn Reson Med 55:1180–1185PubMedCrossRef
12.
go back to reference Chalela JA, Alsop DC, Gonzalez-Atavales JB et al (2000) Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 31:680–687PubMedCrossRef Chalela JA, Alsop DC, Gonzalez-Atavales JB et al (2000) Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 31:680–687PubMedCrossRef
13.
go back to reference Calamante F, Williams SR, van Bruggen N et al (1996) A model for quantification of perfusion in pulsed labelling techniques. NMR Biomed 9:79–83PubMedCrossRef Calamante F, Williams SR, van Bruggen N et al (1996) A model for quantification of perfusion in pulsed labelling techniques. NMR Biomed 9:79–83PubMedCrossRef
14.
go back to reference Alsop DC, Detre JA (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 16:1236–1249PubMedCrossRef Alsop DC, Detre JA (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 16:1236–1249PubMedCrossRef
15.
go back to reference Bokkers RP, van Laar PJ, van de Ven KC et al (2008) Arterial spin-labeling MR imaging measurements of timing parameters in patients with a carotid artery occlusion. AJNR Am J Neuroradiol 29:1698–1703PubMedCrossRef Bokkers RP, van Laar PJ, van de Ven KC et al (2008) Arterial spin-labeling MR imaging measurements of timing parameters in patients with a carotid artery occlusion. AJNR Am J Neuroradiol 29:1698–1703PubMedCrossRef
16.
go back to reference Le Bihan D, Breton E, Lallemand D et al (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505PubMedCrossRef Le Bihan D, Breton E, Lallemand D et al (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505PubMedCrossRef
17.
go back to reference Federau C, Hagmann P, Maeder P, et al. (2013) Dependence of brain intravoxel Incoherent motion perfusion parameters on the cardiac cycle. PLoS One 8:e72856 Federau C, Hagmann P, Maeder P, et al. (2013) Dependence of brain intravoxel Incoherent motion perfusion parameters on the cardiac cycle. PLoS One 8:e72856
18.
go back to reference Federau C, O’Brien K, Meuli R et al (2014) Measuring brain perfusion with intravoxel incoherent motion (IVIM): initial clinical experience. J Magn Reson Imaging 39:624–632 Federau C, O’Brien K, Meuli R et al (2014) Measuring brain perfusion with intravoxel incoherent motion (IVIM): initial clinical experience. J Magn Reson Imaging 39:624–632
19.
go back to reference Federau C, Meuli R, O’Brien K et al (2014) Perfusion measurement in brain gliomas with intravoxel incoherent motion MRI. AJNR Am J Neuroradiol 35:256–262 Federau C, Meuli R, O’Brien K et al (2014) Perfusion measurement in brain gliomas with intravoxel incoherent motion MRI. AJNR Am J Neuroradiol 35:256–262
20.
go back to reference Kim HS, Suh CH, Kim N et al (2014) Histogram analysis of intravoxel incoherent motion for differentiating recurrent tumor from treatment effect in patients with glioblastoma: initial clinical experience. AJNR Am J Neuroradiol 35:490–497PubMedCrossRef Kim HS, Suh CH, Kim N et al (2014) Histogram analysis of intravoxel incoherent motion for differentiating recurrent tumor from treatment effect in patients with glioblastoma: initial clinical experience. AJNR Am J Neuroradiol 35:490–497PubMedCrossRef
21.
go back to reference Bisdas S, Koh TS, Roder C et al (2013) Intravoxel incoherent motion diffusion-weighted MR imaging of gliomas: feasibility of the method and initial results. Neuroradiology 55:1189–1196PubMedCrossRef Bisdas S, Koh TS, Roder C et al (2013) Intravoxel incoherent motion diffusion-weighted MR imaging of gliomas: feasibility of the method and initial results. Neuroradiology 55:1189–1196PubMedCrossRef
22.
go back to reference Le Bihan D, Turner R (1992) The capillary network: a link between IVIM and classical perfusion. Magn Reson Med 27:171–178PubMedCrossRef Le Bihan D, Turner R (1992) The capillary network: a link between IVIM and classical perfusion. Magn Reson Med 27:171–178PubMedCrossRef
23.
go back to reference Wirestam R, Brockstedt S, Lindgren A et al (1997) The perfusion fraction in volunteers and in patients with ischaemic stroke. Acta Radiol 38:961–964PubMedCrossRef Wirestam R, Brockstedt S, Lindgren A et al (1997) The perfusion fraction in volunteers and in patients with ischaemic stroke. Acta Radiol 38:961–964PubMedCrossRef
24.
go back to reference Fiehler J, Foth M, Kucinski T et al (2002) Severe ADC decreases do not predict irreversible tissue damage in humans. Stroke 33:79–86PubMedCrossRef Fiehler J, Foth M, Kucinski T et al (2002) Severe ADC decreases do not predict irreversible tissue damage in humans. Stroke 33:79–86PubMedCrossRef
25.
go back to reference Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292 Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292
26.
go back to reference Turner R, Le Bihan D, Maier J et al (1990) Echo-planar imaging of intravoxel incoherent motion. Radiology 177:407–414PubMedCrossRef Turner R, Le Bihan D, Maier J et al (1990) Echo-planar imaging of intravoxel incoherent motion. Radiology 177:407–414PubMedCrossRef
27.
go back to reference Seber GA, Wild CJ (2003) Nonlinear regression. Wiley, Hoboken Seber GA, Wild CJ (2003) Nonlinear regression. Wiley, Hoboken
28.
go back to reference Federau C, Maeder P, O’Brien K et al (2012) Quantitative measurement of brain perfusion with intravoxel incoherent motion MR imaging. Radiology 265:874–881PubMedCrossRef Federau C, Maeder P, O’Brien K et al (2012) Quantitative measurement of brain perfusion with intravoxel incoherent motion MR imaging. Radiology 265:874–881PubMedCrossRef
29.
go back to reference Schaefer PW, Copen WA, Lev MH et al (2005) Diffusion-weighted imaging in acute stroke. Neuroimaging Clin N Am 15:503–530, ix-xPubMedCrossRef Schaefer PW, Copen WA, Lev MH et al (2005) Diffusion-weighted imaging in acute stroke. Neuroimaging Clin N Am 15:503–530, ix-xPubMedCrossRef
30.
go back to reference Fleiss JL (1986) The design and analysis of clinical experiments. Wiley, New York Fleiss JL (1986) The design and analysis of clinical experiments. Wiley, New York
31.
go back to reference Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMedCrossRef Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMedCrossRef
32.
go back to reference Kwong KK, McKinstry RC, Chien D et al (1991) CSF-suppressed quantitative single-shot diffusion imaging. Magn Reson Med 21:157–163 Kwong KK, McKinstry RC, Chien D et al (1991) CSF-suppressed quantitative single-shot diffusion imaging. Magn Reson Med 21:157–163
33.
go back to reference Federau C, O’Brien K (2014) Increased IVIM perfusion contrast in the brain with T2 magnetization preparation. # 3369, Proc Int Soc Magn Res Med, Milan Federau C, O’Brien K (2014) Increased IVIM perfusion contrast in the brain with T2 magnetization preparation. # 3369, Proc Int Soc Magn Res Med, Milan
34.
go back to reference Pekar J, Moonen T, Van Zijl P (1992) On the precision of diffusion/perfusion imaging by gradient sensitization. Magn Reson Med 23:122–129 Pekar J, Moonen T, Van Zijl P (1992) On the precision of diffusion/perfusion imaging by gradient sensitization. Magn Reson Med 23:122–129
35.
go back to reference King MD, vam Bruggen N, Busza AL (1992) Perfusion and diffusion MR imaging. Magn Reson Med 24:288–301 King MD, vam Bruggen N, Busza AL (1992) Perfusion and diffusion MR imaging. Magn Reson Med 24:288–301
36.
go back to reference Tso MK, McDonald RL (2013) Acute microvascular changes after subarachnoid hemorrhage and transient global cerebral ischemia. Stroke Res Treat 2013:425281PubMedCentralPubMed Tso MK, McDonald RL (2013) Acute microvascular changes after subarachnoid hemorrhage and transient global cerebral ischemia. Stroke Res Treat 2013:425281PubMedCentralPubMed
37.
go back to reference Theilen H, Schröck H, Kuschinsky W (1993) Capillary perfusion during incomplete forebrain ischemia and reperfusion in rat brain. Am J Physiol 265:H642–H648PubMed Theilen H, Schröck H, Kuschinsky W (1993) Capillary perfusion during incomplete forebrain ischemia and reperfusion in rat brain. Am J Physiol 265:H642–H648PubMed
Metadata
Title
Intravoxel incoherent motion perfusion imaging in acute stroke: initial clinical experience
Authors
C. Federau
S. Sumer
F. Becce
P. Maeder
K. O’Brien
R. Meuli
M. Wintermark
Publication date
01-08-2014
Publisher
Springer Berlin Heidelberg
Published in
Neuroradiology / Issue 8/2014
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-014-1370-y

Other articles of this Issue 8/2014

Neuroradiology 8/2014 Go to the issue