Skip to main content
Top
Published in: Neuroradiology 8/2010

01-08-2010 | Topic Article

Computational analysis of cerebral cortex

Authors: Hidemasa Takao, Osamu Abe, Kuni Ohtomo

Published in: Neuroradiology | Issue 8/2010

Login to get access

Abstract

Introduction

Magnetic resonance imaging (MRI) has been used in many in vivo anatomical studies of the brain. Computational neuroanatomy is an expanding field of research, and a number of automated, unbiased, objective techniques have been developed to characterize structural changes in the brain using structural MRI without the need for time-consuming manual measurements. Voxel-based morphometry is one of the most widely used automated techniques to examine patterns of brain changes. Cortical thickness analysis is also becoming increasingly used as a tool for the study of cortical anatomy. Both techniques can be relatively easily used with freely available software packages. MRI data quality is important in order for the processed data to be accurate.

Discussion

In this review, we describe MRI data acquisition and preprocessing for morphometric analysis of the brain and present a brief summary of voxel-based morphometry and cortical thickness analysis.
Literature
2.
go back to reference Abe O, Yamasue H, Yamada H, Masutani Y, Kabasawa H, Sasaki H, Takei K, Suga M, Kasai K, Aoki S, Ohtomo K Sex dimorphism in gray/white matter volume and diffusion tensor during normal aging. NMR Biomed. doi:10.1002/nbm.1479 (in press) Abe O, Yamasue H, Yamada H, Masutani Y, Kabasawa H, Sasaki H, Takei K, Suga M, Kasai K, Aoki S, Ohtomo K Sex dimorphism in gray/white matter volume and diffusion tensor during normal aging. NMR Biomed. doi:10.​1002/​nbm.​1479 (in press)
4.
go back to reference Takao H, Abe O, Yamasue H, Aoki S, Kasai K, Ohtomo K (2010) Cerebral asymmetry in patients with schizophrenia: a voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) study. J Magn Reson Imaging 31(1):221–226. doi:10.1002/jmri.22017 CrossRefPubMed Takao H, Abe O, Yamasue H, Aoki S, Kasai K, Ohtomo K (2010) Cerebral asymmetry in patients with schizophrenia: a voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) study. J Magn Reson Imaging 31(1):221–226. doi:10.​1002/​jmri.​22017 CrossRefPubMed
6.
go back to reference Ashburner J, Csernansky JG, Davatzikos C, Fox NC, Frisoni GB, Thompson PM (2003) Computer-assisted imaging to assess brain structure in healthy and diseased brains. Lancet Neurol 2(2):79–88. doi:S1474442203003041 CrossRefPubMed Ashburner J, Csernansky JG, Davatzikos C, Fox NC, Frisoni GB, Thompson PM (2003) Computer-assisted imaging to assess brain structure in healthy and diseased brains. Lancet Neurol 2(2):79–88. doi:S147444220300304​1 CrossRefPubMed
12.
go back to reference Camara-Rey O, Sneller BI, Ridgway GR, Garde E, Fox NC, Hill DL (2006) Simulation of acquisition artefacts in MR scans: effects on automatic measures of brain atrophy. Med Image Comput Comput Assist Interv 9(Pt 1):272–280CrossRefPubMed Camara-Rey O, Sneller BI, Ridgway GR, Garde E, Fox NC, Hill DL (2006) Simulation of acquisition artefacts in MR scans: effects on automatic measures of brain atrophy. Med Image Comput Comput Assist Interv 9(Pt 1):272–280CrossRefPubMed
15.
go back to reference Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A, Gollub R, Kennedy D, Schmitt F, Brown G, Macfall J, Fischl B, Dale A (2006) Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage 30(2):436–443. doi:10.1016/j.neuroimage.2005.09.046 CrossRefPubMed Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A, Gollub R, Kennedy D, Schmitt F, Brown G, Macfall J, Fischl B, Dale A (2006) Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage 30(2):436–443. doi:10.​1016/​j.​neuroimage.​2005.​09.​046 CrossRefPubMed
16.
go back to reference Leow AD, Klunder AD, Jack CR Jr, Toga AW, Dale AM, Bernstein MA, Britson PJ, Gunter JL, Ward CP, Whitwell JL, Borowski BJ, Fleisher AS, Fox NC, Harvey D, Kornak J, Schuff N, Studholme C, Alexander GE, Weiner MW, Thompson PM (2006) Longitudinal stability of MRI for mapping brain change using tensor-based morphometry. Neuroimage 31(2):627–640. doi:10.1016/j.neuroimage.2005.12.013 CrossRefPubMed Leow AD, Klunder AD, Jack CR Jr, Toga AW, Dale AM, Bernstein MA, Britson PJ, Gunter JL, Ward CP, Whitwell JL, Borowski BJ, Fleisher AS, Fox NC, Harvey D, Kornak J, Schuff N, Studholme C, Alexander GE, Weiner MW, Thompson PM (2006) Longitudinal stability of MRI for mapping brain change using tensor-based morphometry. Neuroimage 31(2):627–640. doi:10.​1016/​j.​neuroimage.​2005.​12.​013 CrossRefPubMed
17.
go back to reference Boyes RG, Gunter JL, Frost C, Janke AL, Yeatman T, Hill DL, Bernstein MA, Thompson PM, Weiner MW, Schuff N, Alexander GE, Killiany RJ, DeCarli C, Jack CR, Fox NC (2008) Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils. Neuroimage 39(4):1752–1762. doi:10.1016/j.neuroimage.2007.10.026 CrossRefPubMed Boyes RG, Gunter JL, Frost C, Janke AL, Yeatman T, Hill DL, Bernstein MA, Thompson PM, Weiner MW, Schuff N, Alexander GE, Killiany RJ, DeCarli C, Jack CR, Fox NC (2008) Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils. Neuroimage 39(4):1752–1762. doi:10.​1016/​j.​neuroimage.​2007.​10.​026 CrossRefPubMed
19.
go back to reference Chard DT, Parker GJ, Griffin CM, Thompson AJ, Miller DH (2002) The reproducibility and sensitivity of brain tissue volume measurements derived from an SPM-based segmentation methodology. J Magn Reson Imaging 15(3):259–267. doi:10.1002/jmri.10064 CrossRefPubMed Chard DT, Parker GJ, Griffin CM, Thompson AJ, Miller DH (2002) The reproducibility and sensitivity of brain tissue volume measurements derived from an SPM-based segmentation methodology. J Magn Reson Imaging 15(3):259–267. doi:10.​1002/​jmri.​10064 CrossRefPubMed
23.
go back to reference Takao H, Abe O, Hayashi N, Kabasawa H, Ohtomo K (2010) Effects of gradient non-linearity correction and intensity non-uniformity correction in longitudinal studies using structural image evaluation using normalization of atrophy (SIENA). J Magn Reson Imaging (in press) Takao H, Abe O, Hayashi N, Kabasawa H, Ohtomo K (2010) Effects of gradient non-linearity correction and intensity non-uniformity correction in longitudinal studies using structural image evaluation using normalization of atrophy (SIENA). J Magn Reson Imaging (in press)
26.
go back to reference Mechelli A, Price CJ, Friston KJ, Ashburner J (2005) Voxel-based morphometry of the human brain: methods and applications. Curr Med Imaging Rev 1(2):105–113CrossRef Mechelli A, Price CJ, Friston KJ, Ashburner J (2005) Voxel-based morphometry of the human brain: methods and applications. Curr Med Imaging Rev 1(2):105–113CrossRef
29.
32.
go back to reference Good CD, Scahill RI, Fox NC, Ashburner J, Friston KJ, Chan D, Crum WR, Rossor MN, Frackowiak RS (2002) Automatic differentiation of anatomical patterns in the human brain: validation with studies of degenerative dementias. Neuroimage 17(1):29–46. doi:S1053811902912024 CrossRefPubMed Good CD, Scahill RI, Fox NC, Ashburner J, Friston KJ, Chan D, Crum WR, Rossor MN, Frackowiak RS (2002) Automatic differentiation of anatomical patterns in the human brain: validation with studies of degenerative dementias. Neuroimage 17(1):29–46. doi:S105381190291202​4 CrossRefPubMed
33.
go back to reference Douaud G, Gaura V, Ribeiro MJ, Lethimonnier F, Maroy R, Verny C, Krystkowiak P, Damier P, Bachoud-Levi AC, Hantraye P, Remy P (2006) Distribution of grey matter atrophy in Huntington’s disease patients: a combined ROI-based and voxel-based morphometric study. Neuroimage 32(4):1562–1575. doi:10.1016/j.neuroimage.2006.05.057 CrossRefPubMed Douaud G, Gaura V, Ribeiro MJ, Lethimonnier F, Maroy R, Verny C, Krystkowiak P, Damier P, Bachoud-Levi AC, Hantraye P, Remy P (2006) Distribution of grey matter atrophy in Huntington’s disease patients: a combined ROI-based and voxel-based morphometric study. Neuroimage 32(4):1562–1575. doi:10.​1016/​j.​neuroimage.​2006.​05.​057 CrossRefPubMed
35.
go back to reference Bergouignan L, Chupin M, Czechowska Y, Kinkingnehun S, Lemogne C, Le Bastard G, Lepage M, Garnero L, Colliot O, Fossati P (2009) Can voxel based morphometry, manual segmentation and automated segmentation equally detect hippocampal volume differences in acute depression? Neuroimage 45(1):29–37. doi:10.1016/j.neuroimage.2008.11.006 CrossRefPubMed Bergouignan L, Chupin M, Czechowska Y, Kinkingnehun S, Lemogne C, Le Bastard G, Lepage M, Garnero L, Colliot O, Fossati P (2009) Can voxel based morphometry, manual segmentation and automated segmentation equally detect hippocampal volume differences in acute depression? Neuroimage 45(1):29–37. doi:10.​1016/​j.​neuroimage.​2008.​11.​006 CrossRefPubMed
36.
go back to reference Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ (1994) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2(4):189–210CrossRef Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ (1994) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2(4):189–210CrossRef
39.
go back to reference Henley SM, Ridgway GR, Scahill RI, Kloppel S, Tabrizi SJ, Fox NC, Kassubek J (2009) Pitfalls in the use of voxel-based morphometry as a biomarker: examples from Huntington disease. AJNR Am J Neuroradiol. doi:10.3174/ajnr.A1939 PubMed Henley SM, Ridgway GR, Scahill RI, Kloppel S, Tabrizi SJ, Fox NC, Kassubek J (2009) Pitfalls in the use of voxel-based morphometry as a biomarker: examples from Huntington disease. AJNR Am J Neuroradiol. doi:10.​3174/​ajnr.​A1939 PubMed
42.
48.
49.
go back to reference Salmond CH, Ashburner J, Vargha-Khadem F, Connelly A, Gadian DG, Friston KJ (2002) Distributional assumptions in voxel-based morphometry. Neuroimage 17(2):1027–1030. doi:S1053811902911535 CrossRefPubMed Salmond CH, Ashburner J, Vargha-Khadem F, Connelly A, Gadian DG, Friston KJ (2002) Distributional assumptions in voxel-based morphometry. Neuroimage 17(2):1027–1030. doi:S105381190291153​5 CrossRefPubMed
59.
go back to reference Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355. doi:S089662730200569X CrossRefPubMed Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355. doi:S089662730200569​X CrossRefPubMed
60.
go back to reference Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14(1):11–22CrossRefPubMed Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14(1):11–22CrossRefPubMed
Metadata
Title
Computational analysis of cerebral cortex
Authors
Hidemasa Takao
Osamu Abe
Kuni Ohtomo
Publication date
01-08-2010
Publisher
Springer-Verlag
Published in
Neuroradiology / Issue 8/2010
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-010-0715-4

Other articles of this Issue 8/2010

Neuroradiology 8/2010 Go to the issue