Skip to main content
Top
Published in: Neuroradiology 11/2008

01-11-2008 | Diagnostic Neuroradiology

Perfusion-weighted MRI to evaluate cerebral autoregulation in aneurysmal subarachnoid haemorrhage

Authors: Elke Hattingen, Stella Blasel, Edgar Dettmann, Hartmut Vatter, Ulrich Pilatus, Volker Seifert, Friedhelm E. Zanella, Stefan Weidauer

Published in: Neuroradiology | Issue 11/2008

Login to get access

Abstract

Introduction

The aim of this study was to evaluate autoregulatory mechanisms in different vascular territories within the first week after aneurysmal subarachnoid haemorrhage (SAH) by perfusion-weighted magnetic resonance imaging (PW-MRI). For this purpose, regional cerebral blood flow and volume (rCVF and rCBV) were measured in relation to different degrees of angiographically visible cerebral vasospasm (CVS).

Materials and methods

In 51 SAH patients, PW-MRI and digital subtraction angiography were performed about 5 days after onset of SAH. Regional CBF and rCBV were analysed in the territories of the anterior cerebral artery (ACA), the middle cerebral artery (MCA) and the basal ganglia of each hemisphere in relationship to the degree of CVS in the particular territory. Correlations between rCBF, rCBV and CVS were analysed.

Results

CVS was found in 22 out of 51 patients in at least one territory. In all territories, rCBV decreased with increasing degree of CVS, correlated with a decrease of rCBF. In the ACA territories, SAH patients with severe CVS had significantly lower rCBF compared to healthy subjects and to SAH patients without CVS. In the basal ganglia, rCBF and rCBV of the control group were significantly higher compared to the patients without and with moderate vasospasms.

Conclusion

PW-MRI showed simultaneous decrease of rCBF and rCBV in patients with SAH. The fact that rCBV did not increase in territories with CVS to maintain rCBF reveals dysfunctional vascular autoregulation. Vasospasms in the microvasculature are most evident in the basal ganglia, showing decreased rCBV and rCBF even in SAH patients without CVS.
Literature
1.
go back to reference Ohkuma H, Manabe H, Tanaka M, Suzuki S (2000) Impact of cerebral microcirculatory changes on cerebral blood flow during cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke 31:1621–1627PubMed Ohkuma H, Manabe H, Tanaka M, Suzuki S (2000) Impact of cerebral microcirculatory changes on cerebral blood flow during cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke 31:1621–1627PubMed
2.
go back to reference Géraud G, Tremoulet M, Guell A, Bes A (1984) The prognostic value of noninvasive CBF measurement in subarachnoid hemorrhage. Stroke 5:301–305 Géraud G, Tremoulet M, Guell A, Bes A (1984) The prognostic value of noninvasive CBF measurement in subarachnoid hemorrhage. Stroke 5:301–305
3.
go back to reference Powsner RA, O'Tuama LA, Jabre A, Melhem ER (1998) SPECT imaging in cerebral vasospasm following subarachnoid hemorrhage. J Nucl Med 39:765–769PubMed Powsner RA, O'Tuama LA, Jabre A, Melhem ER (1998) SPECT imaging in cerebral vasospasm following subarachnoid hemorrhage. J Nucl Med 39:765–769PubMed
4.
go back to reference Jakobsen M, Enevoldsen E, Bjerre P (1990) Cerebral blood flow and metabolism following subarachnoid haemorrhage: cerebral oxygen uptake and global blood flow during the acute period in patients with SAH. Acta Neurol Scand 82:174–182PubMed Jakobsen M, Enevoldsen E, Bjerre P (1990) Cerebral blood flow and metabolism following subarachnoid haemorrhage: cerebral oxygen uptake and global blood flow during the acute period in patients with SAH. Acta Neurol Scand 82:174–182PubMed
5.
go back to reference Kawamura S, Sayama I, Yasui N, Uemura K (1992) Sequential changes in cerebral blood flow and metabolism in patients with subarachnoid haemorrhage. Acta Neurochir 114:12–15CrossRef Kawamura S, Sayama I, Yasui N, Uemura K (1992) Sequential changes in cerebral blood flow and metabolism in patients with subarachnoid haemorrhage. Acta Neurochir 114:12–15CrossRef
6.
go back to reference Ishii R (1979) Regional cerebral blood flow in patients with ruptured intracranial aneurysms. J Neurosurg 50:587–594PubMed Ishii R (1979) Regional cerebral blood flow in patients with ruptured intracranial aneurysms. J Neurosurg 50:587–594PubMed
7.
go back to reference Voldby B, Enevoldsen EM, Jensen FT (1985) Cerebrovascular reactivity in patients with ruptured intracranial aneurysms. J Neurosurg 62:59–67PubMedCrossRef Voldby B, Enevoldsen EM, Jensen FT (1985) Cerebrovascular reactivity in patients with ruptured intracranial aneurysms. J Neurosurg 62:59–67PubMedCrossRef
8.
go back to reference Hassler W, Chioffi F (1989) CO2 reactivity of cerebral vasospasm after aneurysmal subarachnoid haemorrhage. Acta Neurochir 98:167–175CrossRef Hassler W, Chioffi F (1989) CO2 reactivity of cerebral vasospasm after aneurysmal subarachnoid haemorrhage. Acta Neurochir 98:167–175CrossRef
9.
go back to reference Shinoda J, Kimura T, Funakoshi T, Araki Y, Imao Y (1991) Acetazolamide reactivity on cerebral blood flow in patients with subarachnoid haemorrhage. Acta Neurochir 109:102–108CrossRef Shinoda J, Kimura T, Funakoshi T, Araki Y, Imao Y (1991) Acetazolamide reactivity on cerebral blood flow in patients with subarachnoid haemorrhage. Acta Neurochir 109:102–108CrossRef
10.
go back to reference Lam JM, Smielewski P, Czosnyka M Pickard JD, Kirkpatrick PJ (2000) Predicting delayed ischemic deficits after aneurysmal subarachnoid hemorrhage using a transient hyperemic response test of cerebral autoregulation. Neurosurgery 47:819–825PubMedCrossRef Lam JM, Smielewski P, Czosnyka M Pickard JD, Kirkpatrick PJ (2000) Predicting delayed ischemic deficits after aneurysmal subarachnoid hemorrhage using a transient hyperemic response test of cerebral autoregulation. Neurosurgery 47:819–825PubMedCrossRef
11.
go back to reference Rätsep T, Asser T (2001) Cerebral hemodynamic impairment after aneurysmal subarachnoid hemorrhage as evaluated using transcranial Doppler ultrasonography: relationship to delayed cerebral ischemia and clinical outcome. J Neurosurg 95:393–401PubMed Rätsep T, Asser T (2001) Cerebral hemodynamic impairment after aneurysmal subarachnoid hemorrhage as evaluated using transcranial Doppler ultrasonography: relationship to delayed cerebral ischemia and clinical outcome. J Neurosurg 95:393–401PubMed
12.
go back to reference Grubb RL Jr, Raichle ME, Eichling JO, Gado MH (1977) Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow, and oxygen utilization in humans. J Neurosurg 46:446–453PubMed Grubb RL Jr, Raichle ME, Eichling JO, Gado MH (1977) Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow, and oxygen utilization in humans. J Neurosurg 46:446–453PubMed
13.
go back to reference Martin WR, Baker RP, Grubb RL, Raichle ME (1984) Cerebral blood volume, blood flow, and oxygen metabolism in cerebral ischaemia and subarachnoid haemorrhage: an in-vivo study using positron emission tomography. Acta Neurochir 70:3–9CrossRef Martin WR, Baker RP, Grubb RL, Raichle ME (1984) Cerebral blood volume, blood flow, and oxygen metabolism in cerebral ischaemia and subarachnoid haemorrhage: an in-vivo study using positron emission tomography. Acta Neurochir 70:3–9CrossRef
14.
go back to reference Hino A, Mizukawa N, Tenjin H, Imahori Y, Taketomo S, Yano I, Nakahashi H, Hirakawa K (1989) Postoperative hemodynamic and metabolic changes in patients with subarachnoid hemorrhage. Stroke 20:1504–1510PubMed Hino A, Mizukawa N, Tenjin H, Imahori Y, Taketomo S, Yano I, Nakahashi H, Hirakawa K (1989) Postoperative hemodynamic and metabolic changes in patients with subarachnoid hemorrhage. Stroke 20:1504–1510PubMed
15.
go back to reference Carpenter DA, Grubb RL Jr, Tempel LW, Powers WJ (1991) Cerebral oxygen metabolism after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 11:837–844PubMed Carpenter DA, Grubb RL Jr, Tempel LW, Powers WJ (1991) Cerebral oxygen metabolism after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 11:837–844PubMed
16.
go back to reference Yundt KD, Grubb RL Jr, Diringer MN, Powers WJ (1998) Autoregulatory vasodilation of parenchymal vessels is impaired during cerebral vasospasm. J Cereb Blood Flow Metab 18:419–424PubMedCrossRef Yundt KD, Grubb RL Jr, Diringer MN, Powers WJ (1998) Autoregulatory vasodilation of parenchymal vessels is impaired during cerebral vasospasm. J Cereb Blood Flow Metab 18:419–424PubMedCrossRef
17.
go back to reference Weidauer S, Lanfermann H, Raabe A, Zanella F, Seifert V, Beck J (2007) Impairment of cerebral perfusion and infarct patterns attributable to vasospasm after aneurysmal subarachnoid hemorrhage: a prospective MRI and DSA study. Stroke 38:1831–1836PubMedCrossRef Weidauer S, Lanfermann H, Raabe A, Zanella F, Seifert V, Beck J (2007) Impairment of cerebral perfusion and infarct patterns attributable to vasospasm after aneurysmal subarachnoid hemorrhage: a prospective MRI and DSA study. Stroke 38:1831–1836PubMedCrossRef
18.
go back to reference Origitano TC, Wascher TM, Reichman OH, Anderson DE (1990) Sustained increased cerebral blood flow with prophylactic hypertensive hypervolemic hemodilution (“triple-H” therapy) after subarachnoid hemorrhage. Neurosurgery 27:729–739PubMedCrossRef Origitano TC, Wascher TM, Reichman OH, Anderson DE (1990) Sustained increased cerebral blood flow with prophylactic hypertensive hypervolemic hemodilution (“triple-H” therapy) after subarachnoid hemorrhage. Neurosurgery 27:729–739PubMedCrossRef
19.
go back to reference Wittsack HJ, Ritzl A, Mödder U (2002) User friendly analysis of MR investigations of the cerebral perfusion: Windows(R)-based image processing. Rofo 174:742–746 [Article in German]PubMed Wittsack HJ, Ritzl A, Mödder U (2002) User friendly analysis of MR investigations of the cerebral perfusion: Windows(R)-based image processing. Rofo 174:742–746 [Article in German]PubMed
20.
go back to reference Østergaard L, Weisskoff R, Chesler D, Gyldensted C, Rosen B (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. I. Mathematical approach and statistical analysis. Magn Reson Med 36:715–725PubMedCrossRef Østergaard L, Weisskoff R, Chesler D, Gyldensted C, Rosen B (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. I. Mathematical approach and statistical analysis. Magn Reson Med 36:715–725PubMedCrossRef
21.
go back to reference Rordorf G, Koroshetz WJ, Copen WA, Gonzalez G, Yamada K, Schaefer PW, Schwamm LH, Ogilvy CS, Sorensen AG (1999) Diffusion- and perfusion weighted imaging in vasospasm after subarachnoid hemorrhage. Stroke 30:599–605PubMed Rordorf G, Koroshetz WJ, Copen WA, Gonzalez G, Yamada K, Schaefer PW, Schwamm LH, Ogilvy CS, Sorensen AG (1999) Diffusion- and perfusion weighted imaging in vasospasm after subarachnoid hemorrhage. Stroke 30:599–605PubMed
22.
go back to reference Shimoda M, Takeuchi M, Tominaga J, Oda S, Kumasaka A, Tsugane R (2001) Asymptomatic versus symptomatic infarcts from vasospasm in patients with subarachnoid hemorrhage: serial magnetic resonance imaging. Neurosurgery 49:1341–1350PubMedCrossRef Shimoda M, Takeuchi M, Tominaga J, Oda S, Kumasaka A, Tsugane R (2001) Asymptomatic versus symptomatic infarcts from vasospasm in patients with subarachnoid hemorrhage: serial magnetic resonance imaging. Neurosurgery 49:1341–1350PubMedCrossRef
23.
go back to reference Leclerc X, Fichten A, Gauvrit JY, Riegel B, Steinling M, Lejeune JP, Pruvo JP (2002) Symptomatic vasospasm after subarachnoid hemorrhage: assessment of brain damage by diffusion and perfusion-weighted MRI and single-photon emission computed tomography. Neuroradiology 44:610–616PubMedCrossRef Leclerc X, Fichten A, Gauvrit JY, Riegel B, Steinling M, Lejeune JP, Pruvo JP (2002) Symptomatic vasospasm after subarachnoid hemorrhage: assessment of brain damage by diffusion and perfusion-weighted MRI and single-photon emission computed tomography. Neuroradiology 44:610–616PubMedCrossRef
24.
go back to reference Cronqvist M, Wirestam R, Ramgren B, Brandt L, Nilsson O, Säveland H, Holtås S, Larsson EM (2005) Diffusion and perfusion MRI in patients with ruptured and unruptured intracranial aneurysms treated by endovascular coiling: complications, procedural results, MR findings and clinical outcome. Neuroradiology 47:855–873PubMedCrossRef Cronqvist M, Wirestam R, Ramgren B, Brandt L, Nilsson O, Säveland H, Holtås S, Larsson EM (2005) Diffusion and perfusion MRI in patients with ruptured and unruptured intracranial aneurysms treated by endovascular coiling: complications, procedural results, MR findings and clinical outcome. Neuroradiology 47:855–873PubMedCrossRef
25.
go back to reference Hertel F, Walter C, Bettag M, Mörsdorf M (2005) Perfusion-weighted magnetic resonance imaging in patients with vasospasm: a useful new tool in the management of patients with subarachnoid hemorrhage. Neurosurgery 56:28–35PubMed Hertel F, Walter C, Bettag M, Mörsdorf M (2005) Perfusion-weighted magnetic resonance imaging in patients with vasospasm: a useful new tool in the management of patients with subarachnoid hemorrhage. Neurosurgery 56:28–35PubMed
26.
go back to reference Soustiel JF, Levy E, Bibi R, Lukaschuk S, Manor D (2001) Hemodynamic consequences of cerebral vasospasm on perforating arteries: a phantom model study. Stroke 32:629–635PubMed Soustiel JF, Levy E, Bibi R, Lukaschuk S, Manor D (2001) Hemodynamic consequences of cerebral vasospasm on perforating arteries: a phantom model study. Stroke 32:629–635PubMed
27.
go back to reference Weidauer S, Vatter H, Beck J, Raabe A, Lanfermann H, Seifert V, Zanella F (2008) Focal laminar cortical infarcts following aneurysmal subarachnoid haemorrhage. Neuroradiology 50:1–8PubMedCrossRef Weidauer S, Vatter H, Beck J, Raabe A, Lanfermann H, Seifert V, Zanella F (2008) Focal laminar cortical infarcts following aneurysmal subarachnoid haemorrhage. Neuroradiology 50:1–8PubMedCrossRef
28.
go back to reference Ohkuma H, Itoh K, Shibata S, Suzuki S (1997) Morphological changes of intraparenchymal arterioles after experimental subarachnoid hemorrhage in dogs. Neurosurgery 41:230–235PubMedCrossRef Ohkuma H, Itoh K, Shibata S, Suzuki S (1997) Morphological changes of intraparenchymal arterioles after experimental subarachnoid hemorrhage in dogs. Neurosurgery 41:230–235PubMedCrossRef
29.
go back to reference Ohkuma H, Suzuki S (1999) Histological dissociation between intra- and extraparenchymal portion of perforating small arteries after experimental subarachnoid hemorrhage in dogs. Acta Neuropathol 98:374–382PubMedCrossRef Ohkuma H, Suzuki S (1999) Histological dissociation between intra- and extraparenchymal portion of perforating small arteries after experimental subarachnoid hemorrhage in dogs. Acta Neuropathol 98:374–382PubMedCrossRef
30.
go back to reference Uhl E, Lehmberg J, Steiger HJ, Messmer K (2003) Intraoperative detection of early microvasospasm in patients with subarachnoid hemorrhage by using orthogonal polarization spectral imaging. Neurosurgery 52:1307–1315PubMedCrossRef Uhl E, Lehmberg J, Steiger HJ, Messmer K (2003) Intraoperative detection of early microvasospasm in patients with subarachnoid hemorrhage by using orthogonal polarization spectral imaging. Neurosurgery 52:1307–1315PubMedCrossRef
31.
go back to reference Dreier JP, Woitzik J, Fabricius M, Bhatia R, Major S, Drenckhahn C, Lehmann TN, Sarrafzadeh A, Willumsen L, Hartings JA, Sakowitz OW, Seemann JH, Thieme A, Lauritzen M, Strong AJ (2006) Delayed ischemic neurological deficits after subarachnoid hemorrhage are associated with clusters of spreading depolarizations. Brain 129:3224–3237PubMedCrossRef Dreier JP, Woitzik J, Fabricius M, Bhatia R, Major S, Drenckhahn C, Lehmann TN, Sarrafzadeh A, Willumsen L, Hartings JA, Sakowitz OW, Seemann JH, Thieme A, Lauritzen M, Strong AJ (2006) Delayed ischemic neurological deficits after subarachnoid hemorrhage are associated with clusters of spreading depolarizations. Brain 129:3224–3237PubMedCrossRef
32.
go back to reference Dreier JP, Sakowitz OW, Harder A, Zimmer C, Dirnagl U, Valdueza JM, Unterberg AW (2002) Focal laminar cortical MR signal abnormalities after subarachnoid hemorrhage. Ann Neurol 52:825–829PubMedCrossRef Dreier JP, Sakowitz OW, Harder A, Zimmer C, Dirnagl U, Valdueza JM, Unterberg AW (2002) Focal laminar cortical MR signal abnormalities after subarachnoid hemorrhage. Ann Neurol 52:825–829PubMedCrossRef
33.
go back to reference Østergaard L (2005) Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging 22:710–717PubMedCrossRef Østergaard L (2005) Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging 22:710–717PubMedCrossRef
Metadata
Title
Perfusion-weighted MRI to evaluate cerebral autoregulation in aneurysmal subarachnoid haemorrhage
Authors
Elke Hattingen
Stella Blasel
Edgar Dettmann
Hartmut Vatter
Ulrich Pilatus
Volker Seifert
Friedhelm E. Zanella
Stefan Weidauer
Publication date
01-11-2008
Publisher
Springer-Verlag
Published in
Neuroradiology / Issue 11/2008
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-008-0424-4

Other articles of this Issue 11/2008

Neuroradiology 11/2008 Go to the issue