Skip to main content
Top
Published in: Neuroradiology 6/2007

01-06-2007 | Functional Neuroradiology

MR-based imaging of neural stem cells

Author: Letterio S. Politi

Published in: Neuroradiology | Issue 6/2007

Login to get access

Abstract

The efficacy of therapies based on neural stem cells (NSC) has been demonstrated in preclinical models of several central nervous system (CNS) diseases. Before any potential human application of such promising therapies can be envisaged, there are some important issues that need to be solved. The most relevant one is the requirement for a noninvasive technique capable of monitoring NSC delivery, homing to target sites and trafficking. Knowledge of the location and temporospatial migration of either transplanted or genetically modified NSC is of the utmost importance in analyzing mechanisms of correction and cell distribution. Further, such a technique may represent a crucial step toward clinical application of NSC-based approaches in humans, for both designing successful protocols and monitoring their outcome. Among the diverse imaging approaches available for noninvasive cell tracking, such as nuclear medicine techniques, fluorescence and bioluminescence, magnetic resonance imaging (MRI) has unique advantages. Its high temporospatial resolution, high sensitivity and specificity render MRI one of the most promising imaging modalities available, since it allows dynamic visualization of migration of transplanted cells in animal models and patients during clinically useful time periods. Different cellular and molecular labeling approaches for MRI depiction of NSC are described and discussed in this review, as well as the most relevant issues to be considered in optimizing molecular imaging techniques for clinical application.
Literature
1.
go back to reference Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–489PubMedCrossRef Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–489PubMedCrossRef
2.
go back to reference Biffi A, De Palma M, Quattrini A et al (2004) Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J Clin Invest 113:1118–1129PubMedCrossRef Biffi A, De Palma M, Quattrini A et al (2004) Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J Clin Invest 113:1118–1129PubMedCrossRef
3.
go back to reference Biffi A, Capotondo A, Fasano S et al (2006) Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. J Clin Invest 116:3070–3082PubMedCrossRef Biffi A, Capotondo A, Fasano S et al (2006) Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. J Clin Invest 116:3070–3082PubMedCrossRef
4.
go back to reference Escolar ML, Poe MD, Provenzale JM et al (2005) Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N Engl J Med 352:2069–2081PubMedCrossRef Escolar ML, Poe MD, Provenzale JM et al (2005) Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N Engl J Med 352:2069–2081PubMedCrossRef
5.
go back to reference Bang OY, Lee JS, Lee PH et al (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57:874–882PubMedCrossRef Bang OY, Lee JS, Lee PH et al (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57:874–882PubMedCrossRef
6.
go back to reference Lacorazza HD, Flax JD, Snyder EY et al (1996) Expression of human beta-hexosaminidase alpha-subunit gene (the gene defect of Tay-Sachs disease) in mouse brains upon engraftment of transduced progenitor cells. Nat Med 2:424–429PubMedCrossRef Lacorazza HD, Flax JD, Snyder EY et al (1996) Expression of human beta-hexosaminidase alpha-subunit gene (the gene defect of Tay-Sachs disease) in mouse brains upon engraftment of transduced progenitor cells. Nat Med 2:424–429PubMedCrossRef
7.
go back to reference Snyder EY, Yoon C, Flax JD et al (1997) Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc Natl Acad Sci USA 94:11663–11668PubMedCrossRef Snyder EY, Yoon C, Flax JD et al (1997) Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc Natl Acad Sci USA 94:11663–11668PubMedCrossRef
8.
go back to reference Flax JD, Aurora S, Yang C et al (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol 16:1033–1039PubMedCrossRef Flax JD, Aurora S, Yang C et al (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol 16:1033–1039PubMedCrossRef
9.
go back to reference Ourednik J, Ourednik V, Lynch WP et al (2002) Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat Biotechnol 2002:1103–1110CrossRef Ourednik J, Ourednik V, Lynch WP et al (2002) Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat Biotechnol 2002:1103–1110CrossRef
11.
13.
go back to reference Park KI, Ourednik J, Ourednik V et al (2002) Global gene and cell replacement strategies via stem cells. Gene Ther 9:613–624PubMedCrossRef Park KI, Ourednik J, Ourednik V et al (2002) Global gene and cell replacement strategies via stem cells. Gene Ther 9:613–624PubMedCrossRef
14.
go back to reference Yandava BD, Billinghurst LL, Snyder EY (1999) “Global” cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc Natl Acad Sci USA 96:7029–7034PubMedCrossRef Yandava BD, Billinghurst LL, Snyder EY (1999) “Global” cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc Natl Acad Sci USA 96:7029–7034PubMedCrossRef
15.
go back to reference Martino G, Pluchino S (2006) The therapeutic potential of neural stem cells. Nat Rev Neurosci 7:395–406PubMedCrossRef Martino G, Pluchino S (2006) The therapeutic potential of neural stem cells. Nat Rev Neurosci 7:395–406PubMedCrossRef
16.
go back to reference Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096PubMedCrossRef Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096PubMedCrossRef
17.
go back to reference Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders – how to make it work. Nat Med 10:42–50CrossRef Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders – how to make it work. Nat Med 10:42–50CrossRef
18.
go back to reference McDonald JW, Liu XZ, Qu Y et al (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5:1410–1412PubMedCrossRef McDonald JW, Liu XZ, Qu Y et al (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5:1410–1412PubMedCrossRef
19.
go back to reference Tarasenko YI, Gao J, Nie L et al (2007) Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior. J Neurosci Res 85:47–57PubMedCrossRef Tarasenko YI, Gao J, Nie L et al (2007) Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior. J Neurosci Res 85:47–57PubMedCrossRef
20.
go back to reference Ziv Y, Avidan H, Pluchino S et al (2006) Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc Natl Acad Sci USA 103:13174–13179PubMedCrossRef Ziv Y, Avidan H, Pluchino S et al (2006) Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc Natl Acad Sci USA 103:13174–13179PubMedCrossRef
21.
go back to reference Chu K, Kim M, Park KI et al (2004) Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Res 1016:145–153PubMedCrossRef Chu K, Kim M, Park KI et al (2004) Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Res 1016:145–153PubMedCrossRef
22.
go back to reference Jeong SW, Chu K, Jung KH et al (2003) Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke 34:2258–2263PubMedCrossRef Jeong SW, Chu K, Jung KH et al (2003) Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke 34:2258–2263PubMedCrossRef
23.
go back to reference Pluchino S, Quattrini A, Brambilla E et al (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422:688–694PubMedCrossRef Pluchino S, Quattrini A, Brambilla E et al (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422:688–694PubMedCrossRef
24.
go back to reference Pluchino S, Zanotti L, Rossi B et al (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436:266–271PubMedCrossRef Pluchino S, Zanotti L, Rossi B et al (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436:266–271PubMedCrossRef
25.
go back to reference Fallon J, Reid S, Kinyamu R et al (2000) In vivo induction of massive proliferation, directed migration and differentiation of neural cells in the adult mammalian brain. Proc Natl Acad Sci USA 19:14686–14691CrossRef Fallon J, Reid S, Kinyamu R et al (2000) In vivo induction of massive proliferation, directed migration and differentiation of neural cells in the adult mammalian brain. Proc Natl Acad Sci USA 19:14686–14691CrossRef
26.
go back to reference Nakatomi H, Kuriu T, Okabe S et al (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110:429–441PubMedCrossRef Nakatomi H, Kuriu T, Okabe S et al (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110:429–441PubMedCrossRef
27.
go back to reference Consiglio A, Gritti A, Dolcetta D et al (2004) Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. Proc Natl Acad Sci USA 101:14835–14840PubMedCrossRef Consiglio A, Gritti A, Dolcetta D et al (2004) Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. Proc Natl Acad Sci USA 101:14835–14840PubMedCrossRef
28.
go back to reference Kraitchman DL, Heldman AW, Atalar E et al (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293PubMedCrossRef Kraitchman DL, Heldman AW, Atalar E et al (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293PubMedCrossRef
29.
go back to reference Blocklet D, Toungouz M, Kiss R et al (2003) 111In-oxine and 99 mTc-HMPAO labelling of antigen-loaded dendritic cells: in vivo imaging and influence on motility and actin content. Eur J Nucl Med Mol Imaging 30:440–447PubMedCrossRef Blocklet D, Toungouz M, Kiss R et al (2003) 111In-oxine and 99 mTc-HMPAO labelling of antigen-loaded dendritic cells: in vivo imaging and influence on motility and actin content. Eur J Nucl Med Mol Imaging 30:440–447PubMedCrossRef
30.
go back to reference Mendez I, Sanchez-Pernaute R, Cooper O et al (2005) Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain 128:1498–1510PubMedCrossRef Mendez I, Sanchez-Pernaute R, Cooper O et al (2005) Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain 128:1498–1510PubMedCrossRef
31.
32.
go back to reference de Vries IJ, Lesterhuis WJ, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring cellular therapy. Nat Biotechnol 23:1407–1413PubMedCrossRef de Vries IJ, Lesterhuis WJ, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring cellular therapy. Nat Biotechnol 23:1407–1413PubMedCrossRef
33.
go back to reference Kim DE, Schellingerhout D, Ishii K et al (2004) Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke 35:952–957PubMedCrossRef Kim DE, Schellingerhout D, Ishii K et al (2004) Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke 35:952–957PubMedCrossRef
34.
go back to reference Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580PubMedCrossRef Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580PubMedCrossRef
35.
go back to reference Shreve P, Aisen AM (1986) Monoclonal antibodies labelled with polymeric paramagnetic iron chelates. Magn Reson Med 3:336–340PubMedCrossRef Shreve P, Aisen AM (1986) Monoclonal antibodies labelled with polymeric paramagnetic iron chelates. Magn Reson Med 3:336–340PubMedCrossRef
36.
go back to reference Kabalka G, Buonocore E, Hubner K et al (1987) Gadolinium-labelled liposomes: targeted MR contrast agents for the liver and spleen. Radiology 163:255–258PubMed Kabalka G, Buonocore E, Hubner K et al (1987) Gadolinium-labelled liposomes: targeted MR contrast agents for the liver and spleen. Radiology 163:255–258PubMed
37.
go back to reference Bryant LH, Brechbiel MW, Wu C et al (1999) Synthesis and relaxometry of high-generation (G = 5, 7, 9, and 10) PAMAM dendrimer-DOTA-gadolinium chelates. J Magn Reson Imaging 9:348–352PubMedCrossRef Bryant LH, Brechbiel MW, Wu C et al (1999) Synthesis and relaxometry of high-generation (G = 5, 7, 9, and 10) PAMAM dendrimer-DOTA-gadolinium chelates. J Magn Reson Imaging 9:348–352PubMedCrossRef
38.
go back to reference Botnar RM, Perez AS, Witte S et al (2004) In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation 109:2023–2029PubMedCrossRef Botnar RM, Perez AS, Witte S et al (2004) In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation 109:2023–2029PubMedCrossRef
39.
go back to reference Daldrup-Link HE, Rudelius M, Oostendorp RA et al (2003) Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology 228:760–767PubMedCrossRef Daldrup-Link HE, Rudelius M, Oostendorp RA et al (2003) Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology 228:760–767PubMedCrossRef
40.
go back to reference Wang YX, Hussian SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331PubMedCrossRef Wang YX, Hussian SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331PubMedCrossRef
41.
go back to reference Helmberger T, Semelka RC (2001) New contrast agents for imaging the liver. Magn Reson Imaging Clin N Am 9:745–766PubMed Helmberger T, Semelka RC (2001) New contrast agents for imaging the liver. Magn Reson Imaging Clin N Am 9:745–766PubMed
42.
go back to reference Manninger SP, Muldoon LL, Nesbit G et al (2005) An exploratory study of ferumoxtran-10 nanoparticles as a blood-brain barrier imaging agent targeting phagocytic cells in CNS inflammatory lesions. AJNR Am J Neuroradiol 26:2290–2300PubMed Manninger SP, Muldoon LL, Nesbit G et al (2005) An exploratory study of ferumoxtran-10 nanoparticles as a blood-brain barrier imaging agent targeting phagocytic cells in CNS inflammatory lesions. AJNR Am J Neuroradiol 26:2290–2300PubMed
43.
go back to reference Bulte JW, Doulglas T, Witwer B et al (2001) Magnetodendrimers allow endosomal magnetic labelling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147PubMedCrossRef Bulte JW, Doulglas T, Witwer B et al (2001) Magnetodendrimers allow endosomal magnetic labelling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147PubMedCrossRef
44.
go back to reference Lewin M, Carleso N, Tung CH et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414PubMedCrossRef Lewin M, Carleso N, Tung CH et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414PubMedCrossRef
45.
go back to reference Frank JA, Miller BR, Arbab AS et al (2003) Clinically applicable labelling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228:480–487PubMedCrossRef Frank JA, Miller BR, Arbab AS et al (2003) Clinically applicable labelling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228:480–487PubMedCrossRef
46.
go back to reference Medina-Kauwe LK, Xie J, Hamm-Alvarez S (2005) Intracellular trafficking of nonviral vectors. Gene Ther 12:1734–1751PubMedCrossRef Medina-Kauwe LK, Xie J, Hamm-Alvarez S (2005) Intracellular trafficking of nonviral vectors. Gene Ther 12:1734–1751PubMedCrossRef
47.
go back to reference Arbab AS, Yocum GT, Wilson LB et al (2004) Comparison of transfection agents in forming complexes with ferumoxides, cell labelling efficiency, and cellular viability. Mol Imaging 3:24–32PubMedCrossRef Arbab AS, Yocum GT, Wilson LB et al (2004) Comparison of transfection agents in forming complexes with ferumoxides, cell labelling efficiency, and cellular viability. Mol Imaging 3:24–32PubMedCrossRef
48.
go back to reference Arbab AS, Yocum GT, Kalish H et al (2004) Efficient magnetic cell labelling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104:1217–1223PubMedCrossRef Arbab AS, Yocum GT, Kalish H et al (2004) Efficient magnetic cell labelling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104:1217–1223PubMedCrossRef
49.
go back to reference Ittrich H, Lange C, Dahnke H et al (2005) Labelling of mesenchymal stem cells with different superparamagnetic particles of iron oxide and detectability with MRI at 3 T. Rofo 177:1151–1163PubMed Ittrich H, Lange C, Dahnke H et al (2005) Labelling of mesenchymal stem cells with different superparamagnetic particles of iron oxide and detectability with MRI at 3 T. Rofo 177:1151–1163PubMed
50.
go back to reference Dunning MD, Lakatos A, Loizuo L et al (2004) Superparamagnetic iron oxide-labelled Schwann cells and olfactory ensheathing cells can be traced in vivo by magnetic resonance imaging and retain functional properties after transplantation into the CNS. J Neurosci 24:9799–9810PubMedCrossRef Dunning MD, Lakatos A, Loizuo L et al (2004) Superparamagnetic iron oxide-labelled Schwann cells and olfactory ensheathing cells can be traced in vivo by magnetic resonance imaging and retain functional properties after transplantation into the CNS. J Neurosci 24:9799–9810PubMedCrossRef
51.
go back to reference Walczak P, Kedziorek DA, Gilad AA et al (2005) Instant MR labelling of stem cells using magneto-electroporation. Magn Reson Med 54:769–774PubMedCrossRef Walczak P, Kedziorek DA, Gilad AA et al (2005) Instant MR labelling of stem cells using magneto-electroporation. Magn Reson Med 54:769–774PubMedCrossRef
52.
go back to reference Shapiro EM, Skrtic S, Koretsky AP (2005) Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 53:329–338PubMedCrossRef Shapiro EM, Skrtic S, Koretsky AP (2005) Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 53:329–338PubMedCrossRef
53.
go back to reference Shapiro EM, Gonzalez-Perez O, Manuel Garcia-Verdugo J et al (2006) Magnetic resonance imaging of the migration of neuronal precursors generated in the adult rodent brain. Neuroimage 32:1150–1157PubMedCrossRef Shapiro EM, Gonzalez-Perez O, Manuel Garcia-Verdugo J et al (2006) Magnetic resonance imaging of the migration of neuronal precursors generated in the adult rodent brain. Neuroimage 32:1150–1157PubMedCrossRef
54.
go back to reference McMahon MT, Gilad AA, Zhou J et al (2006) Quantifying exchange rates in chemical exchange saturation transfer agents using the saturation time and saturation power dependencies of the magnetization transfer effect on the magnetic resonance imaging signal (QUEST and QUESP): Ph calibration for poly-L-lysine and a starburst dendrimer. Magn Reson Med 55:836–847PubMedCrossRef McMahon MT, Gilad AA, Zhou J et al (2006) Quantifying exchange rates in chemical exchange saturation transfer agents using the saturation time and saturation power dependencies of the magnetization transfer effect on the magnetic resonance imaging signal (QUEST and QUESP): Ph calibration for poly-L-lysine and a starburst dendrimer. Magn Reson Med 55:836–847PubMedCrossRef
55.
go back to reference Stroh A, Faber C, Neuberger T et al (2005) In vivo detection limits of magnetically labelled embryonic stem cells in the rat brain using high-field (17.6 T) magnetic resonance imaging. Neuroimage 24:635–645PubMedCrossRef Stroh A, Faber C, Neuberger T et al (2005) In vivo detection limits of magnetically labelled embryonic stem cells in the rat brain using high-field (17.6 T) magnetic resonance imaging. Neuroimage 24:635–645PubMedCrossRef
56.
go back to reference Hinds KA, Hill JM, Shapiro EM et al (2003) Highly efficient endosomal labelling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102:867–872PubMedCrossRef Hinds KA, Hill JM, Shapiro EM et al (2003) Highly efficient endosomal labelling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102:867–872PubMedCrossRef
57.
go back to reference Shapiro EM, Skrtic S, Sharer K et al (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci USA 101:10901–10906PubMedCrossRef Shapiro EM, Skrtic S, Sharer K et al (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci USA 101:10901–10906PubMedCrossRef
58.
go back to reference Daldrup-Link HE, Rudelius M, Piontek G et al (2005) Migration of iron oxide-labelled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1.5-T MR imaging equipment. Radiology 234:197–205PubMedCrossRef Daldrup-Link HE, Rudelius M, Piontek G et al (2005) Migration of iron oxide-labelled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1.5-T MR imaging equipment. Radiology 234:197–205PubMedCrossRef
59.
go back to reference Heyn C, Ronald JA, Mackenzie LT et al (2006) In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn Reson Med 55:23–29PubMedCrossRef Heyn C, Ronald JA, Mackenzie LT et al (2006) In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn Reson Med 55:23–29PubMedCrossRef
60.
go back to reference Shapiro EM, Sharer K, Skrtic S et al (2006) In vivo detection of single cells by MRI. Magn Reson Med 55:242–249PubMedCrossRef Shapiro EM, Sharer K, Skrtic S et al (2006) In vivo detection of single cells by MRI. Magn Reson Med 55:242–249PubMedCrossRef
61.
go back to reference Mani V, Briley-Saebo KC, Itskovich VV et al (2006) Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5 T and 3 T. Magn Reson Med 55:126–135PubMedCrossRef Mani V, Briley-Saebo KC, Itskovich VV et al (2006) Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5 T and 3 T. Magn Reson Med 55:126–135PubMedCrossRef
62.
go back to reference Daldrup-Link HE, Rudelius M, Oostendorp RA et al (2005) Comparison of iron oxide labelling properties of hematopoietic progenitor cells from umbilical cord blood and from peripheral blood for subsequent in vivo tracking in a xenotransplant mouse model XXX. Acad Radiol 12:502–510PubMedCrossRef Daldrup-Link HE, Rudelius M, Oostendorp RA et al (2005) Comparison of iron oxide labelling properties of hematopoietic progenitor cells from umbilical cord blood and from peripheral blood for subsequent in vivo tracking in a xenotransplant mouse model XXX. Acad Radiol 12:502–510PubMedCrossRef
63.
go back to reference Vymazal J, Brooks RA, Baumgarner C et al (1996) The relation between brain iron and NMR relaxation times: an in vitro study. Magn Reson Med 35:56–61PubMedCrossRef Vymazal J, Brooks RA, Baumgarner C et al (1996) The relation between brain iron and NMR relaxation times: an in vitro study. Magn Reson Med 35:56–61PubMedCrossRef
64.
go back to reference Dahnke H, Schaeffter T (2005) Limits of detection of SPIO at 3.0 T using T2* relaxometry. Magn Reson Med 53:1202–1206PubMedCrossRef Dahnke H, Schaeffter T (2005) Limits of detection of SPIO at 3.0 T using T2* relaxometry. Magn Reson Med 53:1202–1206PubMedCrossRef
65.
go back to reference Jensen JH, Chandra R, Ramani A et al (2006) Magnetic field correlation imaging. Magn Reson Med 55:1350–1361PubMedCrossRef Jensen JH, Chandra R, Ramani A et al (2006) Magnetic field correlation imaging. Magn Reson Med 55:1350–1361PubMedCrossRef
66.
go back to reference Lebel RM, Menon RS, Bowen CV (2006) Relaxometry model of strong dipolar perturbers for balanced-SSFP: application to quantification of SPIO loaded cells. Magn Reson Med 55:583–591PubMedCrossRef Lebel RM, Menon RS, Bowen CV (2006) Relaxometry model of strong dipolar perturbers for balanced-SSFP: application to quantification of SPIO loaded cells. Magn Reson Med 55:583–591PubMedCrossRef
67.
go back to reference Hagell P, Piccini P, Bjorklund A et al (2002) Dyskinesias following neural transplantation in Parkinson’s disease. Nat Neurosci 5:627–628PubMed Hagell P, Piccini P, Bjorklund A et al (2002) Dyskinesias following neural transplantation in Parkinson’s disease. Nat Neurosci 5:627–628PubMed
68.
go back to reference Zhang ZG, Jiang Q, Zhang R et al (2003) Magnetic resonance imaging and neurosphere therapy of stroke in rat. Ann Neurol 53:259–263PubMedCrossRef Zhang ZG, Jiang Q, Zhang R et al (2003) Magnetic resonance imaging and neurosphere therapy of stroke in rat. Ann Neurol 53:259–263PubMedCrossRef
69.
go back to reference Hoehn M, Kustermann E, Blunk J et al (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA 99:16267–16272PubMedCrossRef Hoehn M, Kustermann E, Blunk J et al (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA 99:16267–16272PubMedCrossRef
70.
go back to reference Zhang Z, Jiang Q, Jiang F et al (2004) In vivo magnetic resonance imaging tracks adult neural progenitor cell targeting of brain tumor. Neuroimage 23:281–287PubMedCrossRef Zhang Z, Jiang Q, Jiang F et al (2004) In vivo magnetic resonance imaging tracks adult neural progenitor cell targeting of brain tumor. Neuroimage 23:281–287PubMedCrossRef
71.
go back to reference Lee IH, Bulte JW, Schweinhardt P et al (2004) In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord. Exp Neurol 187:509–516PubMedCrossRef Lee IH, Bulte JW, Schweinhardt P et al (2004) In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord. Exp Neurol 187:509–516PubMedCrossRef
72.
go back to reference Ben-Hur T, Bulte JW (2004) In vivo MR tracking of magnetically labelled neural spheres transplanted in chronic EAE mice: relation between cell migration and inflammation. Proc Int Soc Magn Reson Med 12:159 Ben-Hur T, Bulte JW (2004) In vivo MR tracking of magnetically labelled neural spheres transplanted in chronic EAE mice: relation between cell migration and inflammation. Proc Int Soc Magn Reson Med 12:159
73.
go back to reference Ben-Hur T, Einstein O, Mizrachi-Kol R et al (2003) Transplanted multipotential neural precursor cells migrate into inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia 41:73–80PubMedCrossRef Ben-Hur T, Einstein O, Mizrachi-Kol R et al (2003) Transplanted multipotential neural precursor cells migrate into inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia 41:73–80PubMedCrossRef
74.
go back to reference Bulte JW, Zhang S, van Gelderen P et al (1999) Neurotransplantation of magnetically labelled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Sci USA 96:15256–15261CrossRef Bulte JW, Zhang S, van Gelderen P et al (1999) Neurotransplantation of magnetically labelled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Sci USA 96:15256–15261CrossRef
75.
go back to reference Bos C, Delmas Y, Desmouliere A et al (2004) In vivo MR imaging of intravascularly injected magnetically labelled mesenchymal stem cells in rat kidney and liver. Radiology 233:781–789PubMedCrossRef Bos C, Delmas Y, Desmouliere A et al (2004) In vivo MR imaging of intravascularly injected magnetically labelled mesenchymal stem cells in rat kidney and liver. Radiology 233:781–789PubMedCrossRef
76.
go back to reference Magnitsky S, Watson DJ, Walton RM et al (2005) In vivo and ex vivo MRI detection of localized and disseminated neural stem cell grafts in the mouse brain. Neuroimage 26:744–754PubMedCrossRef Magnitsky S, Watson DJ, Walton RM et al (2005) In vivo and ex vivo MRI detection of localized and disseminated neural stem cell grafts in the mouse brain. Neuroimage 26:744–754PubMedCrossRef
77.
go back to reference Naldini L, Blomer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267PubMedCrossRef Naldini L, Blomer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267PubMedCrossRef
78.
go back to reference Shah K, Weissleder R (2005) Molecular optical imaging: applications leading to the development of present day therapeutics. NeuroRx 2:215–225PubMedCrossRef Shah K, Weissleder R (2005) Molecular optical imaging: applications leading to the development of present day therapeutics. NeuroRx 2:215–225PubMedCrossRef
79.
go back to reference Amendola M, Venneri MA, Biffi A et al (2005) Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 23:108–116PubMedCrossRef Amendola M, Venneri MA, Biffi A et al (2005) Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 23:108–116PubMedCrossRef
80.
go back to reference Louie AY, Huber MM, Ahrens ET et al (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18:321–325PubMedCrossRef Louie AY, Huber MM, Ahrens ET et al (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18:321–325PubMedCrossRef
81.
go back to reference Weissleder R, Moore A, Mahmood U et al (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351–355PubMedCrossRef Weissleder R, Moore A, Mahmood U et al (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351–355PubMedCrossRef
82.
go back to reference Gilad AA, McMahon MT, Winnard PT et al (2005) MRI reporter gene providing contrast based on chemical exchange saturation transfer (CEST) (abstract 363). Proceedings of the 13th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, 7–13 May, Miami Gilad AA, McMahon MT, Winnard PT et al (2005) MRI reporter gene providing contrast based on chemical exchange saturation transfer (CEST) (abstract 363). Proceedings of the 13th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, 7–13 May, Miami
83.
go back to reference Cohen B, Dafni H, Meir G et al (2005) Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 7:109–117PubMedCrossRef Cohen B, Dafni H, Meir G et al (2005) Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 7:109–117PubMedCrossRef
84.
go back to reference Genove G, DeMarco U, Xu H et al (2005) A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 11:450–454PubMedCrossRef Genove G, DeMarco U, Xu H et al (2005) A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 11:450–454PubMedCrossRef
85.
go back to reference Alfke H, Stoppler H, Nocken F et al (2003) In vitro MR imaging of regulated gene expression. Radiology 228:488–492PubMedCrossRef Alfke H, Stoppler H, Nocken F et al (2003) In vitro MR imaging of regulated gene expression. Radiology 228:488–492PubMedCrossRef
86.
go back to reference Einstein O, Karussis D, Grigoriadis N et al (2003) Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis. Mol Cell Neurosci 24:1074–1082PubMedCrossRef Einstein O, Karussis D, Grigoriadis N et al (2003) Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis. Mol Cell Neurosci 24:1074–1082PubMedCrossRef
87.
go back to reference Rafuse VF, Soundararajan P, Leopold C et al (2005) Neuroprotective properties of cultured neural progenitor cells are associated with the production of sonic hedgehog. Neuroscience 131:899–916PubMed Rafuse VF, Soundararajan P, Leopold C et al (2005) Neuroprotective properties of cultured neural progenitor cells are associated with the production of sonic hedgehog. Neuroscience 131:899–916PubMed
88.
go back to reference Richardson RM, Broaddus WC, Holloway KL et al (2005) Grafts of adult subependymal zone neuronal progenitor cells rescue hemiparkinsonian behavioral decline. Brain Res 1032:11–22PubMedCrossRef Richardson RM, Broaddus WC, Holloway KL et al (2005) Grafts of adult subependymal zone neuronal progenitor cells rescue hemiparkinsonian behavioral decline. Brain Res 1032:11–22PubMedCrossRef
89.
go back to reference Ryu JK, Choi HB, McLarnor JG (2005) Peripheral benzodiazepine receptor ligand PK11195 reduces microglial activation and neuronal death in quinolinic acid-injected rat striatum. Neurobiol Dis 20:550–561PubMedCrossRef Ryu JK, Choi HB, McLarnor JG (2005) Peripheral benzodiazepine receptor ligand PK11195 reduces microglial activation and neuronal death in quinolinic acid-injected rat striatum. Neurobiol Dis 20:550–561PubMedCrossRef
90.
go back to reference McBride JL, Behrstock SP, Chen EY et al (2004) Human neural stem cell transplants improve motor function in a rat model of Huntington’s disease. J Comp Neurol 475:211–219PubMedCrossRef McBride JL, Behrstock SP, Chen EY et al (2004) Human neural stem cell transplants improve motor function in a rat model of Huntington’s disease. J Comp Neurol 475:211–219PubMedCrossRef
91.
go back to reference Katawabata K, Migita M, Mochizuki H et al (2006) Ex vivo cell-mediated gene therapy for metachromatic leukodystrophy using neurospheres. Brain Res 1094:13–23CrossRef Katawabata K, Migita M, Mochizuki H et al (2006) Ex vivo cell-mediated gene therapy for metachromatic leukodystrophy using neurospheres. Brain Res 1094:13–23CrossRef
92.
go back to reference Fukuhara Y, Kitazawa Y, Inagali M et al (2006) Histopathological and behavioral improvement of murine mucopolysaccharidosis type VII by intracerebral transplantation of neural stem cells. Mol Ther 13:548–555PubMedCrossRef Fukuhara Y, Kitazawa Y, Inagali M et al (2006) Histopathological and behavioral improvement of murine mucopolysaccharidosis type VII by intracerebral transplantation of neural stem cells. Mol Ther 13:548–555PubMedCrossRef
93.
go back to reference Chu K, Kim M, Jung KH et al (2004) Human neural stem cell transplantation reduces spontaneous recurrent seizures following pilocarpine-induced status epilepticus in adult rats. Brain Res 1023:213–221PubMedCrossRef Chu K, Kim M, Jung KH et al (2004) Human neural stem cell transplantation reduces spontaneous recurrent seizures following pilocarpine-induced status epilepticus in adult rats. Brain Res 1023:213–221PubMedCrossRef
94.
go back to reference Shear DA, Tate MC, Archer DR et al (2004) Neural progenitor cell transplants promote long-term functional recovery after traumatic brain injury. Brain Res 1026:11–22PubMedCrossRef Shear DA, Tate MC, Archer DR et al (2004) Neural progenitor cell transplants promote long-term functional recovery after traumatic brain injury. Brain Res 1026:11–22PubMedCrossRef
95.
go back to reference Hofstetter CP, Holmstrom NA, Lilja JA et al (2005) Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci 8:346–353PubMedCrossRef Hofstetter CP, Holmstrom NA, Lilja JA et al (2005) Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci 8:346–353PubMedCrossRef
96.
go back to reference Cummings BJ, Uchida N, Tamaki SJ et al (2005) Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci USA 102:14069–14074PubMedCrossRef Cummings BJ, Uchida N, Tamaki SJ et al (2005) Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci USA 102:14069–14074PubMedCrossRef
97.
go back to reference Teng YD, Lavik EB, Qu X et al (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA 99:3024–3029PubMedCrossRef Teng YD, Lavik EB, Qu X et al (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA 99:3024–3029PubMedCrossRef
Metadata
Title
MR-based imaging of neural stem cells
Author
Letterio S. Politi
Publication date
01-06-2007
Publisher
Springer-Verlag
Published in
Neuroradiology / Issue 6/2007
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-007-0219-z

Other articles of this Issue 6/2007

Neuroradiology 6/2007 Go to the issue