Skip to main content
Top
Published in: Calcified Tissue International 2/2010

01-08-2010

Bisphosphonate Inhibits Bone Turnover in OPG−/− Mice Via a Depressive Effect on Both Osteoclasts and Osteoblasts

Authors: Satsuki Shoji, Masako Tabuchi, Ken Miyazawa, Takahiro Yabumoto, Miyuki Tanaka, Manami Kadota, Hatsuhiko Maeda, Shigemi Goto

Published in: Calcified Tissue International | Issue 2/2010

Login to get access

Abstract

Osteoclast differentiation and functioning are strictly controlled by RANKL expressed on osteoblast membrane surfaces, but whether osteoclasts exert control over osteoblasts remains unclear. In the present study, we examined the effect of an osteoclast inhibitor, a bisphosphonate (BP), on the response of maxillary bone to mechanical stress in a high-turnover osteoporosis model (OPG−/− mice, a model of juvenile Paget disease). Mechanical stress was induced by use of orthodontic elastics to move the maxillary first molar. BP was administered once per day beginning 5 days before elastic insertion. Relative to wild type (WT), in the OPG−/− mice tooth movement distance was greater, resorption of the interradicular septum occurred to a greater extent, the osteoclast count was higher, and serum alkaline phosphatase (ALP) was higher. However, administration of BP to OPG−/− mice reduced tooth movement distance, increased bone volume at the interradicular septum, decreased the osteoclast count, and reduced serum ALP. BP administration also caused a temporal shift in peak Runx2 staining in OPG−/− mice, such that the overall staining time course was similar to that observed for WT mice. We conclude that BP administration not only inhibited osteoclast activity in OPG−/− mice but also systemically and locally inhibited osteoblast activity. It is possible that osteoclasts are able to exert some negative control over osteoblasts.
Literature
1.
go back to reference Sato Y, Sakai H, Kobayashi Y, Shibasaki Y, Sasaki T (2000) Bisphosphonate administration alters subcellular localization of vacuolar-type H+-ATPase and cathepsin K in osteoclasts during experimental movement of rat molars. Anat Rec 260:72–80CrossRefPubMed Sato Y, Sakai H, Kobayashi Y, Shibasaki Y, Sasaki T (2000) Bisphosphonate administration alters subcellular localization of vacuolar-type H+-ATPase and cathepsin K in osteoclasts during experimental movement of rat molars. Anat Rec 260:72–80CrossRefPubMed
2.
go back to reference Sato Y, Shibasaki Y, Sasaki T (2000) Effects of bisphosphonate administration on root and bone resorption during experimental movement of rat molars. In: Davidovitch Z, Mah J (eds) Biological mechanisms of tooth movement and craniofacial adaptation. EBSCO Media, Birmingham, pp 243–252 Sato Y, Shibasaki Y, Sasaki T (2000) Effects of bisphosphonate administration on root and bone resorption during experimental movement of rat molars. In: Davidovitch Z, Mah J (eds) Biological mechanisms of tooth movement and craniofacial adaptation. EBSCO Media, Birmingham, pp 243–252
3.
go back to reference Chung HS, Sasaki T, Sato Y, Shibasaki Y (1999) H+-ATPase inhibitor, bafilomycin A1, reduces bone resorption during experimental movement of rat molars. Orthodont Waves 58:183–192 Chung HS, Sasaki T, Sato Y, Shibasaki Y (1999) H+-ATPase inhibitor, bafilomycin A1, reduces bone resorption during experimental movement of rat molars. Orthodont Waves 58:183–192
4.
go back to reference Yokoya K, Sasaki T, Shibasaki Y (1997) Distributional changes of osteoclasts and preosteoclastic cells in periodontal tissues during experimental tooth movement as revealed by quantitative immunohistochemistry of H+-ATPase. J Dent Res 76:580–587CrossRefPubMed Yokoya K, Sasaki T, Shibasaki Y (1997) Distributional changes of osteoclasts and preosteoclastic cells in periodontal tissues during experimental tooth movement as revealed by quantitative immunohistochemistry of H+-ATPase. J Dent Res 76:580–587CrossRefPubMed
5.
go back to reference Suda T, Takahasi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357CrossRefPubMed Suda T, Takahasi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357CrossRefPubMed
6.
go back to reference Kong YY, Yashida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323CrossRefPubMed Kong YY, Yashida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323CrossRefPubMed
7.
go back to reference Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424CrossRefPubMed Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424CrossRefPubMed
8.
go back to reference Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan SC, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL, Boyle WJ (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 97:1566–1571CrossRefPubMed Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan SC, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL, Boyle WJ (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 97:1566–1571CrossRefPubMed
9.
go back to reference Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chan MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319CrossRefPubMed Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chan MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319CrossRefPubMed
10.
go back to reference Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268CrossRefPubMed Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268CrossRefPubMed
11.
go back to reference Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, Gomibuchi T, Yano K, Shima N, Washida N, Tsuda E, Morinaga T, Higashino K, Ozawa H (1998) Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 247:610–615CrossRefPubMed Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, Gomibuchi T, Yano K, Shima N, Washida N, Tsuda E, Morinaga T, Higashino K, Ozawa H (1998) Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 247:610–615CrossRefPubMed
12.
go back to reference Whyte MP, Obrecht SE, Finnegan PM, Jones JL, Podgornik MN, McAlister WH, Mumm S (2002) Osteoprotegerin deficiency and juvenile Paget disease. N Engl J Med 347:175–184CrossRefPubMed Whyte MP, Obrecht SE, Finnegan PM, Jones JL, Podgornik MN, McAlister WH, Mumm S (2002) Osteoprotegerin deficiency and juvenile Paget disease. N Engl J Med 347:175–184CrossRefPubMed
13.
go back to reference Cundy T, Hegde M, Naot D, Chong B, King A, Wallace R, Mulley J, Love DR, Seidel J, Fawkner M, Banovic T, Callon KE, Grey AB, Reid IR, Middleton-Hardie CA, Cornish J (2002) A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype. Hum Mol Genet 11:2119–2127CrossRefPubMed Cundy T, Hegde M, Naot D, Chong B, King A, Wallace R, Mulley J, Love DR, Seidel J, Fawkner M, Banovic T, Callon KE, Grey AB, Reid IR, Middleton-Hardie CA, Cornish J (2002) A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype. Hum Mol Genet 11:2119–2127CrossRefPubMed
14.
go back to reference Cundy T, Wheadon L, King A (2004) Treatment of idiopathic hyperphosphatasia with intensive bisphosphonate therapy. J Bone Miner Res 19:703–711CrossRefPubMed Cundy T, Wheadon L, King A (2004) Treatment of idiopathic hyperphosphatasia with intensive bisphosphonate therapy. J Bone Miner Res 19:703–711CrossRefPubMed
15.
go back to reference Antoniades K, Karakasis D, Kapetanos G, Lasaridis N, Tzarou V (1993) Chronic idiopathic hyperphosphatasemia. Case report. Oral Surg Oral Med Oral Pathol 76:200–204CrossRefPubMed Antoniades K, Karakasis D, Kapetanos G, Lasaridis N, Tzarou V (1993) Chronic idiopathic hyperphosphatasemia. Case report. Oral Surg Oral Med Oral Pathol 76:200–204CrossRefPubMed
16.
go back to reference Golob DS, McAlister WH, Mills BG, Fedde KN, Reinus WR, Teitelbaum SL, Beeki S, Whyte MP (1996) Juvenile Paget disease: life-long features of a mildly affected young woman. J Bone Miner Res 11:132–142CrossRefPubMed Golob DS, McAlister WH, Mills BG, Fedde KN, Reinus WR, Teitelbaum SL, Beeki S, Whyte MP (1996) Juvenile Paget disease: life-long features of a mildly affected young woman. J Bone Miner Res 11:132–142CrossRefPubMed
17.
go back to reference Whyte MP, Singhellakis PN, Petersen MB, Davies M, Totty WG, Mumm S (2007) Juvenile Paget disease: the second reported, oldest patient is homozygous for the TNFRSF11B “Balkan” mutation (966_969delTGACinsCTT), which elevates circulating immunoreactive osteoprotegerin levels. J Bone Miner Res 22:938–946CrossRefPubMed Whyte MP, Singhellakis PN, Petersen MB, Davies M, Totty WG, Mumm S (2007) Juvenile Paget disease: the second reported, oldest patient is homozygous for the TNFRSF11B “Balkan” mutation (966_969delTGACinsCTT), which elevates circulating immunoreactive osteoprotegerin levels. J Bone Miner Res 22:938–946CrossRefPubMed
18.
go back to reference Tau C, Mautalen C, Casco C, Alvarez V, Rubinstein M (2004) Chronic idiopathic hyperphosphatasia: normalization of bone turnover with cyclical intravenous pamidronate therapy. Bone 35:210–216CrossRefPubMed Tau C, Mautalen C, Casco C, Alvarez V, Rubinstein M (2004) Chronic idiopathic hyperphosphatasia: normalization of bone turnover with cyclical intravenous pamidronate therapy. Bone 35:210–216CrossRefPubMed
19.
go back to reference Mitsudo SM (1971) Chronic idiopathic hyperphosphatasia associated with pseudoxanthoma elasticum. J Bone Joint Surg Am 53:303–314PubMed Mitsudo SM (1971) Chronic idiopathic hyperphosphatasia associated with pseudoxanthoma elasticum. J Bone Joint Surg Am 53:303–314PubMed
20.
21.
go back to reference Amizuka N, Shimomura J, Li M, Seki Y, Oda K, Henderson JE, Mizuno A, Ozawa H, Maeda T (2003) Defective bone remodelling in osteoprotegerin-deficient mice. J Electron Microsc 52:503–513CrossRef Amizuka N, Shimomura J, Li M, Seki Y, Oda K, Henderson JE, Mizuno A, Ozawa H, Maeda T (2003) Defective bone remodelling in osteoprotegerin-deficient mice. J Electron Microsc 52:503–513CrossRef
22.
go back to reference Nakamura M, Udagawa N, Matsuura S, Mogi M, Nakamura H, Horiuchi H, Saito N, Hiraoka BY, Kobayashi Y, Takaoka K, Ozawa H, Miyazawa H, Takahashi N (2003) Osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption. Endocrinology 144:5441–5446CrossRefPubMed Nakamura M, Udagawa N, Matsuura S, Mogi M, Nakamura H, Horiuchi H, Saito N, Hiraoka BY, Kobayashi Y, Takaoka K, Ozawa H, Miyazawa H, Takahashi N (2003) Osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption. Endocrinology 144:5441–5446CrossRefPubMed
23.
go back to reference Kanzaki S, Ito M, Takada Y, Ogawa K, Matsuo K (2006) Resorption of auditory ossicles and hearing loss in mice lacking osteoprotegerin. Bone 39:414–419CrossRefPubMed Kanzaki S, Ito M, Takada Y, Ogawa K, Matsuo K (2006) Resorption of auditory ossicles and hearing loss in mice lacking osteoprotegerin. Bone 39:414–419CrossRefPubMed
24.
go back to reference Zehnder AF, Kristiansen AG, Adams JC, Kujawa SG, Merchant SN, McKenna MJ (2006) Osteoprotegrin knockout mice demonstrate abnormal remodeling of the otic capsule and progressive hearing loss. Laryngoscope 116:201–206CrossRefPubMed Zehnder AF, Kristiansen AG, Adams JC, Kujawa SG, Merchant SN, McKenna MJ (2006) Osteoprotegrin knockout mice demonstrate abnormal remodeling of the otic capsule and progressive hearing loss. Laryngoscope 116:201–206CrossRefPubMed
25.
go back to reference Kimura M, Miyazawa K, Tabuchi M, Maeda H, Kameyama Y, Goto S (2008) Bisphosphonate treatment increases the size of the mandibular condyle and normalizes growth of the mandibular ramus in osteoprotegerin-deficient mice. Calcif Tissue Int 82:137–147CrossRefPubMed Kimura M, Miyazawa K, Tabuchi M, Maeda H, Kameyama Y, Goto S (2008) Bisphosphonate treatment increases the size of the mandibular condyle and normalizes growth of the mandibular ramus in osteoprotegerin-deficient mice. Calcif Tissue Int 82:137–147CrossRefPubMed
26.
go back to reference Komori T (2005) Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem 95:445–453CrossRefPubMed Komori T (2005) Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem 95:445–453CrossRefPubMed
27.
go back to reference Watanabe T, Okafuji N, Nakano K, Shimizu T, Muraoka R, Kurihara S, Yamada K, Kawakami T (2007) Periodontal tissue reaction to mechanical stress in mice. J Hard Tissue Biol 16:71–74CrossRef Watanabe T, Okafuji N, Nakano K, Shimizu T, Muraoka R, Kurihara S, Yamada K, Kawakami T (2007) Periodontal tissue reaction to mechanical stress in mice. J Hard Tissue Biol 16:71–74CrossRef
28.
go back to reference Watanabe T, Nakano N, Muraoka R, Shimizu T, Okafuji N, Kurihara S, Yamada K, Kawakami T (2008) Role of Msx2 as a promoting factor for Runx2 at the periodontal tension sides elicited by mechanical stress. Eur J Med Res 13:425–431PubMed Watanabe T, Nakano N, Muraoka R, Shimizu T, Okafuji N, Kurihara S, Yamada K, Kawakami T (2008) Role of Msx2 as a promoting factor for Runx2 at the periodontal tension sides elicited by mechanical stress. Eur J Med Res 13:425–431PubMed
29.
go back to reference Tabuchi M, Miyazawa K, Kimura M, Maeda H, Kawai T, Kameyama Y, Goto S (2005) Enhancement of crude morphogenetic protein-induced new bone formation and normalization of endochondral ossification by bisphosphonate treatment in osteoprotegerin-deficient mice. Calcif Tissue Int 77:239–249CrossRefPubMed Tabuchi M, Miyazawa K, Kimura M, Maeda H, Kawai T, Kameyama Y, Goto S (2005) Enhancement of crude morphogenetic protein-induced new bone formation and normalization of endochondral ossification by bisphosphonate treatment in osteoprotegerin-deficient mice. Calcif Tissue Int 77:239–249CrossRefPubMed
30.
go back to reference Sprogar S, Vaupotic T, Cör A, Drevensek M, Drevensek G (2008) The endothelin system mediates bone modeling in the late stage of orthodontic tooth movement in rats. Bone 43:740–747CrossRefPubMed Sprogar S, Vaupotic T, Cör A, Drevensek M, Drevensek G (2008) The endothelin system mediates bone modeling in the late stage of orthodontic tooth movement in rats. Bone 43:740–747CrossRefPubMed
31.
go back to reference Wu LC, D’Amelio F, Fox RA, Polyakov I, Daunton NG (1997) Light microscopic image analysis system to quantify immunoreactive terminal area apposed to nerve cells. J Neurosci Methods 74:89–96CrossRefPubMed Wu LC, D’Amelio F, Fox RA, Polyakov I, Daunton NG (1997) Light microscopic image analysis system to quantify immunoreactive terminal area apposed to nerve cells. J Neurosci Methods 74:89–96CrossRefPubMed
32.
go back to reference Yoshimatsu M, Uehara M, Yoshida N (2008) Expression of heat shock protein 47 in the periodontal ligament during orthodontic tooth movement. Arch Oral Biol 53:890–895CrossRefPubMed Yoshimatsu M, Uehara M, Yoshida N (2008) Expression of heat shock protein 47 in the periodontal ligament during orthodontic tooth movement. Arch Oral Biol 53:890–895CrossRefPubMed
33.
go back to reference Kimmel DB, Jee WSS (1983) Measurements of area, perimeter, and distance: details of data collection in bone histomorphometry. In: Recker RR (ed) Bone histomorphometry. Techniques and interpretation. CRC Press, Boca Raton, pp 89–108 Kimmel DB, Jee WSS (1983) Measurements of area, perimeter, and distance: details of data collection in bone histomorphometry. In: Recker RR (ed) Bone histomorphometry. Techniques and interpretation. CRC Press, Boca Raton, pp 89–108
34.
go back to reference Yamashiro T, Takano-Yamamoto T (2001) Influences of ovariectomy on experimental tooth movement in the rat. J Dent Res 80:1858–1861CrossRefPubMed Yamashiro T, Takano-Yamamoto T (2001) Influences of ovariectomy on experimental tooth movement in the rat. J Dent Res 80:1858–1861CrossRefPubMed
35.
go back to reference Verna C, Dalstra M, Melsen B (2000) The rate and the type of orthodontic tooth movement is influenced by bone turnover in a rat model. Eur J Orthod 22:343–352CrossRefPubMed Verna C, Dalstra M, Melsen B (2000) The rate and the type of orthodontic tooth movement is influenced by bone turnover in a rat model. Eur J Orthod 22:343–352CrossRefPubMed
36.
go back to reference Freisch H (1998) Bisphosphonates: mechanisms of action. Endocr Rev 19:80–100CrossRef Freisch H (1998) Bisphosphonates: mechanisms of action. Endocr Rev 19:80–100CrossRef
37.
go back to reference Im GI, Qureshi SA, Kenney J, Rubash HE, Shanbhag AS (2004) Osteoblast proliferation and maturation by bisphosphonates. Biomaterials 25:4105–4115CrossRefPubMed Im GI, Qureshi SA, Kenney J, Rubash HE, Shanbhag AS (2004) Osteoblast proliferation and maturation by bisphosphonates. Biomaterials 25:4105–4115CrossRefPubMed
38.
go back to reference Miyazono K, Hellman U, Wenstedt C, Helden C-H (1988) Latent high molecular weight complex of transforming growth factor β1. J Biol Chem 263:6407–6415PubMed Miyazono K, Hellman U, Wenstedt C, Helden C-H (1988) Latent high molecular weight complex of transforming growth factor β1. J Biol Chem 263:6407–6415PubMed
39.
go back to reference Hosoi T, Asuka T, Motto M, Tomita T, Shiraki M, Inoue S, Ouchi Y, Orimo H (1996) Immunolocalization of transforming growth factor-β in the bone tissue. Calcif Tissue Int 59:305–306CrossRefPubMed Hosoi T, Asuka T, Motto M, Tomita T, Shiraki M, Inoue S, Ouchi Y, Orimo H (1996) Immunolocalization of transforming growth factor-β in the bone tissue. Calcif Tissue Int 59:305–306CrossRefPubMed
40.
go back to reference Matsunobu T, Torigoe K, Ishikawa M, de Vega S, Kulkarni AB, Iwamoto Y, Yamada Y (2009) Critical roles of the TGF-beta type I receptor ALK5 in perichondrial formation and function, cartilage integrity, and osteoblast differentiation during growth plate development. Dev Biol 332:325–338CrossRefPubMed Matsunobu T, Torigoe K, Ishikawa M, de Vega S, Kulkarni AB, Iwamoto Y, Yamada Y (2009) Critical roles of the TGF-beta type I receptor ALK5 in perichondrial formation and function, cartilage integrity, and osteoblast differentiation during growth plate development. Dev Biol 332:325–338CrossRefPubMed
Metadata
Title
Bisphosphonate Inhibits Bone Turnover in OPG−/− Mice Via a Depressive Effect on Both Osteoclasts and Osteoblasts
Authors
Satsuki Shoji
Masako Tabuchi
Ken Miyazawa
Takahiro Yabumoto
Miyuki Tanaka
Manami Kadota
Hatsuhiko Maeda
Shigemi Goto
Publication date
01-08-2010
Publisher
Springer-Verlag
Published in
Calcified Tissue International / Issue 2/2010
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-010-9384-x

Other articles of this Issue 2/2010

Calcified Tissue International 2/2010 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine