Skip to main content
Top
Published in: Experimental Brain Research 12/2019

01-12-2019 | Review

Current challenges: the ups and downs of tACS

Authors: Nicholas S. Bland, Martin V. Sale

Published in: Experimental Brain Research | Issue 12/2019

Login to get access

Abstract

The non-invasive delivery of electric currents through the scalp (transcranial electrical stimulation) is a popular tool for neuromodulation, mostly due to its highly adaptable nature (waveform, montage) and tolerability at low intensities (< 2 mA). Applied rhythmically, transcranial alternating current stimulation (tACS) may entrain neural oscillations in a frequency- and phase-specific manner, providing a causal perspective on brain–behaviour relationships. While the past decade has seen many behavioural and electrophysiological effects of tACS that suggest entrainment-mediated effects in the brain, it has been difficult to reconcile such reports with the weak intracranial field strengths (< 1 V/m) achievable at conventional intensities. In this review, we first describe the ongoing challenges faced by users of tACS. We outline the biophysics of electrical brain stimulation and the factors that contribute to the weak field intensities achievable in the brain. Since the applied current predominantly shunts through the scalp—stimulating the nerves that innervate it—the plausibility of transcutaneous (rather than transcranial) effects of tACS is also discussed. In examining the effects of tACS on brain activity, the complex problem of salvaging electrophysiological recordings from artefacts of tACS is described. Nevertheless, these challenges by no means mark the rise and fall of tACS: the second part of this review outlines the recent advancements in the field. We describe some ways in which artefacts of tACS may be better managed using high-frequency protocols, and describe innovative methods for current interactions within the brain that offer either dynamic or more focal current distributions while also minimising transcutaneous effects.
Literature
go back to reference Abd Hamid AI, Gall C, Speck O, Antal A, Sabel BA (2015) Effects of alternating current stimulation on the healthy and diseased brain. Front Neurosci 9:391PubMedPubMedCentral Abd Hamid AI, Gall C, Speck O, Antal A, Sabel BA (2015) Effects of alternating current stimulation on the healthy and diseased brain. Front Neurosci 9:391PubMedPubMedCentral
go back to reference Alagapan S, Schmidt SL, Lefebvre J, Hadar E, Shin HW, Frӧhlich F (2016) Modulation of cortical oscillations by low-frequency direct cortical stimulation is state- dependent. PLoS Biol 14(3):e1002424PubMedPubMedCentral Alagapan S, Schmidt SL, Lefebvre J, Hadar E, Shin HW, Frӧhlich F (2016) Modulation of cortical oscillations by low-frequency direct cortical stimulation is state- dependent. PLoS Biol 14(3):e1002424PubMedPubMedCentral
go back to reference Alekseichuk I, Falchier AY, Linn G, Xu T, Milham MP, Schroeder CE, Opitz A (2019a) Electric field dynamics in the brain during multi-electrode transcranial electric stimulation. Nat Commun 10(1):2573PubMedPubMedCentral Alekseichuk I, Falchier AY, Linn G, Xu T, Milham MP, Schroeder CE, Opitz A (2019a) Electric field dynamics in the brain during multi-electrode transcranial electric stimulation. Nat Commun 10(1):2573PubMedPubMedCentral
go back to reference Alekseichuk I, Mantell K, Shirinpour S, Opitz A (2019b) Comparative modeling of transcranial magnetic and electric stimulation in mouse, monkey, and human. NeuroImage 194:136–148PubMed Alekseichuk I, Mantell K, Shirinpour S, Opitz A (2019b) Comparative modeling of transcranial magnetic and electric stimulation in mouse, monkey, and human. NeuroImage 194:136–148PubMed
go back to reference Ali MM, Sellers KK, Fröhlich F (2013) Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J Neurosci 33(27):11262–11275PubMedPubMedCentral Ali MM, Sellers KK, Fröhlich F (2013) Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J Neurosci 33(27):11262–11275PubMedPubMedCentral
go back to reference Anastassiou CA, Montgomery SM, Barahona M, Buzsáki G, Koch C (2010) The effect of spatially inhomogeneous extracellular electric fields on neurons. J Neurosci 30(5):1925–1936PubMedPubMedCentral Anastassiou CA, Montgomery SM, Barahona M, Buzsáki G, Koch C (2010) The effect of spatially inhomogeneous extracellular electric fields on neurons. J Neurosci 30(5):1925–1936PubMedPubMedCentral
go back to reference Anastassiou CA, Perin R, Markram H, Koch C (2011) Ephaptic coupling of cortical neurons. Nat Neurosci 14(2):217–224PubMed Anastassiou CA, Perin R, Markram H, Koch C (2011) Ephaptic coupling of cortical neurons. Nat Neurosci 14(2):217–224PubMed
go back to reference Asamoah B, Khatoun A, McLaughlin M (2019a) tACS motor system effects can be caused by transcutaneous stimulation of peripheral nerves. Nat Commun 10(1):266PubMedPubMedCentral Asamoah B, Khatoun A, McLaughlin M (2019a) tACS motor system effects can be caused by transcutaneous stimulation of peripheral nerves. Nat Commun 10(1):266PubMedPubMedCentral
go back to reference Asamoah B, Khatoun A, McLaughlin M (2019b) Analytical bias accounts for some of the reported effects of tACS on auditory perception. Brain Stimul 12(4):1001–1009PubMed Asamoah B, Khatoun A, McLaughlin M (2019b) Analytical bias accounts for some of the reported effects of tACS on auditory perception. Brain Stimul 12(4):1001–1009PubMed
go back to reference Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 325(8437):1106–1107 Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 325(8437):1106–1107
go back to reference Başar E, Schmiedt-Fehr C, Mathes B, Femir B, Emek-Savaş DD, Tülay E, Yener G (2016) What does the broken brain say to the neuroscientist? Oscillations and connectivity in schizophrenia, Alzheimer’s disease, and bipolar disorder. Int J Psychophysiol 103:135–148PubMed Başar E, Schmiedt-Fehr C, Mathes B, Femir B, Emek-Savaş DD, Tülay E, Yener G (2016) What does the broken brain say to the neuroscientist? Oscillations and connectivity in schizophrenia, Alzheimer’s disease, and bipolar disorder. Int J Psychophysiol 103:135–148PubMed
go back to reference Bastos AM, Vezoli J, Fries P (2015) Communication through coherence with inter-areal delays. Curr Opin Neurobiol 31:173–180PubMed Bastos AM, Vezoli J, Fries P (2015) Communication through coherence with inter-areal delays. Curr Opin Neurobiol 31:173–180PubMed
go back to reference Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA (2013) Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol 591(7):1987–2000PubMedPubMedCentral Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA (2013) Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol 591(7):1987–2000PubMedPubMedCentral
go back to reference Berényi A, Belluscio M, Mao D, Buzsáki G (2012) Closed-loop control of epilepsy by transcranial electrical stimulation. Science 337(6095):735–737PubMedPubMedCentral Berényi A, Belluscio M, Mao D, Buzsáki G (2012) Closed-loop control of epilepsy by transcranial electrical stimulation. Science 337(6095):735–737PubMedPubMedCentral
go back to reference Bergmann TO, Karabanov A, Hartwigsen G, Thielscher A, Siebner HR (2016) Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives. NeuroImage 140:4–19PubMed Bergmann TO, Karabanov A, Hartwigsen G, Thielscher A, Siebner HR (2016) Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives. NeuroImage 140:4–19PubMed
go back to reference Bestmann S, Walsh V (2017) Transcranial electrical stimulation. Curr Biol 27(23):R1258–R1262PubMed Bestmann S, Walsh V (2017) Transcranial electrical stimulation. Curr Biol 27(23):R1258–R1262PubMed
go back to reference Bestmann S, de Berker AO, Bonaiuto J (2015) Understanding the behavioural consequences of noninvasive brain stimulation. TrendsCognit Sci 19(1):13–20 Bestmann S, de Berker AO, Bonaiuto J (2015) Understanding the behavioural consequences of noninvasive brain stimulation. TrendsCognit Sci 19(1):13–20
go back to reference Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, Jefferys JG (2004) Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol 557(1):175–190PubMedPubMedCentral Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, Jefferys JG (2004) Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol 557(1):175–190PubMedPubMedCentral
go back to reference Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, Brunoni AR (2016) Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul 9(5):641–661PubMedPubMedCentral Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, Brunoni AR (2016) Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul 9(5):641–661PubMedPubMedCentral
go back to reference Bikson M, Brunoni AR, Charvet LE, Clark VP, Cohen LG, Deng ZD, Lim KO (2018) Rigor and reproducibility in research with transcranial electrical stimulation: an NIMH-sponsored workshop. Brain Stimul 11(3):465–480PubMed Bikson M, Brunoni AR, Charvet LE, Clark VP, Cohen LG, Deng ZD, Lim KO (2018) Rigor and reproducibility in research with transcranial electrical stimulation: an NIMH-sponsored workshop. Brain Stimul 11(3):465–480PubMed
go back to reference Bindman LJ, Lippold OCJ, Redfearn JWT (1962) Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents. Nature 196(4854):584–585PubMed Bindman LJ, Lippold OCJ, Redfearn JWT (1962) Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents. Nature 196(4854):584–585PubMed
go back to reference Bindman LJ, Lippold OCJ, Redfearn JWT (1964) The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol 172(3):369–382PubMedPubMedCentral Bindman LJ, Lippold OCJ, Redfearn JWT (1964) The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol 172(3):369–382PubMedPubMedCentral
go back to reference Bland NS, Mattingley JB, Sale MV (2018) No evidence for phase-specific effects of 40 Hz HD–tACS on multiple object tracking. Front Psychol 9:304PubMedPubMedCentral Bland NS, Mattingley JB, Sale MV (2018) No evidence for phase-specific effects of 40 Hz HD–tACS on multiple object tracking. Front Psychol 9:304PubMedPubMedCentral
go back to reference Brittain JS, Cagnan H, Mehta AR, Saifee TA, Edwards MJ, Brown P (2015) Distinguishing the central drive to tremor in Parkinson’s disease and essential tremor. J Neurosci 35(2):795–806PubMedPubMedCentral Brittain JS, Cagnan H, Mehta AR, Saifee TA, Edwards MJ, Brown P (2015) Distinguishing the central drive to tremor in Parkinson’s disease and essential tremor. J Neurosci 35(2):795–806PubMedPubMedCentral
go back to reference Brown CC (1975) Electroanesthesia and electrosleep. Am Psychol 30(3):402–410PubMed Brown CC (1975) Electroanesthesia and electrosleep. Am Psychol 30(3):402–410PubMed
go back to reference Cancelli A, Cottone C, Tecchio F, Truong DQ, Dmochowski J, Bikson M (2016) A simple method for EEG guided transcranial electrical stimulation without models. J Neural Eng 13(3):036022PubMed Cancelli A, Cottone C, Tecchio F, Truong DQ, Dmochowski J, Bikson M (2016) A simple method for EEG guided transcranial electrical stimulation without models. J Neural Eng 13(3):036022PubMed
go back to reference Carandini M, Ferster D (2000) Membrane potential and firing rate in cat primary visual cortex. J Neurosci 20(1):470–484PubMedPubMedCentral Carandini M, Ferster D (2000) Membrane potential and firing rate in cat primary visual cortex. J Neurosci 20(1):470–484PubMedPubMedCentral
go back to reference Chan CY, Nicholson C (1986) Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. J Physiol 371(1):89–114PubMedPubMedCentral Chan CY, Nicholson C (1986) Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. J Physiol 371(1):89–114PubMedPubMedCentral
go back to reference Chan CY, Hounsgaard J, Nicholson C (1988) Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. J Physiol 402(1):751–771PubMedPubMedCentral Chan CY, Hounsgaard J, Nicholson C (1988) Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. J Physiol 402(1):751–771PubMedPubMedCentral
go back to reference Chander BS, Witkowski M, Braun C, Robinson SE, Born J, Cohen LG, Soekadar SR (2016) tACS phase locking of frontal midline theta oscillations disrupts working memory performance. Front Cell Neurosci 10:120PubMedPubMedCentral Chander BS, Witkowski M, Braun C, Robinson SE, Born J, Cohen LG, Soekadar SR (2016) tACS phase locking of frontal midline theta oscillations disrupts working memory performance. Front Cell Neurosci 10:120PubMedPubMedCentral
go back to reference Chhatbar PY, Sawers JR, Feng W (2016) Response to the response to “does tDCS actually deliver DC stimulation?”. Brain Stimul Basic Transl Clin Res Neuromodul 9(6):952–954 Chhatbar PY, Sawers JR, Feng W (2016) Response to the response to “does tDCS actually deliver DC stimulation?”. Brain Stimul Basic Transl Clin Res Neuromodul 9(6):952–954
go back to reference Chhatbar PY, Kautz SA, Takacs I, Rowland NC, Revuelta GJ, George MS, Feng W (2018) Evidence of transcranial direct current stimulation-generated electric fields at subthalamic level in human brain in vivo. Brain Stimul 11:727–733PubMedPubMedCentral Chhatbar PY, Kautz SA, Takacs I, Rowland NC, Revuelta GJ, George MS, Feng W (2018) Evidence of transcranial direct current stimulation-generated electric fields at subthalamic level in human brain in vivo. Brain Stimul 11:727–733PubMedPubMedCentral
go back to reference Creutzfeldt OD, Fromm GH, Kapp H (1962) Influence of transcortical DC currents on cortical neuronal activity. Exp Neurol 5(6):436–452PubMed Creutzfeldt OD, Fromm GH, Kapp H (1962) Influence of transcortical DC currents on cortical neuronal activity. Exp Neurol 5(6):436–452PubMed
go back to reference Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M (2009) Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul 2(4):201–207PubMedPubMedCentral Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M (2009) Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul 2(4):201–207PubMedPubMedCentral
go back to reference Datta A, Dmochowski JP, Guleyupoglu B, Bikson M, Fregni F (2013) Cranial electrotherapy stimulation and transcranial pulsed current stimulation: a computer based high-resolution modeling study. NeuroImage 65:280–287PubMed Datta A, Dmochowski JP, Guleyupoglu B, Bikson M, Fregni F (2013) Cranial electrotherapy stimulation and transcranial pulsed current stimulation: a computer based high-resolution modeling study. NeuroImage 65:280–287PubMed
go back to reference de Graaf TA, Thomson A, Janssens SE, van Bree S, ten Oever S, Sack AT (2019) Does alpha phase modulate visual target detection? Three experiments with tACS phase-based stimulus presentation. bioRxiv 675264. https://doi.org/10.1101/675264 de Graaf TA, Thomson A, Janssens SE, van Bree S, ten Oever S, Sack AT (2019) Does alpha phase modulate visual target detection? Three experiments with tACS phase-based stimulus presentation. bioRxiv 675264. https://​doi.​org/​10.​1101/​675264
go back to reference Deans JK, Powell AD, Jefferys JG (2007) Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. J Physiol 583(2):555–565PubMedPubMedCentral Deans JK, Powell AD, Jefferys JG (2007) Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. J Physiol 583(2):555–565PubMedPubMedCentral
go back to reference DeSantana JM, Walsh DM, Vance C, Rakel BA, Sluka KA (2008) Effectiveness of transcutaneous electrical nerve stimulation for treatment of hyperalgesia and pain. Curr Rheumatol Rep 10(6):492–499PubMedPubMedCentral DeSantana JM, Walsh DM, Vance C, Rakel BA, Sluka KA (2008) Effectiveness of transcutaneous electrical nerve stimulation for treatment of hyperalgesia and pain. Curr Rheumatol Rep 10(6):492–499PubMedPubMedCentral
go back to reference Dmochowski JP, Datta A, Bikson M, Su Y, Parra LC (2011) Optimized multi-electrode stimulation increases focality and intensity at target. J Neural Eng 8(4):046011PubMed Dmochowski JP, Datta A, Bikson M, Su Y, Parra LC (2011) Optimized multi-electrode stimulation increases focality and intensity at target. J Neural Eng 8(4):046011PubMed
go back to reference Dowsett J, Herrmann CS (2016) Transcranial alternating current stimulation with sawtooth waves: simultaneous stimulation and EEG recording. Front Hum Neurosci 10:135PubMedPubMedCentral Dowsett J, Herrmann CS (2016) Transcranial alternating current stimulation with sawtooth waves: simultaneous stimulation and EEG recording. Front Hum Neurosci 10:135PubMedPubMedCentral
go back to reference Edwards D, Cortes M, Datta A, Minhas P, Wassermann EM, Bikson M (2013) Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS. NeuroImage 74:266–275PubMed Edwards D, Cortes M, Datta A, Minhas P, Wassermann EM, Bikson M (2013) Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS. NeuroImage 74:266–275PubMed
go back to reference Esmaeilpour Z, Schestatsky P, Bikson M, Brunoni AR, Pellegrinelli A, Piovesan FX, Fregni F (2017) Notes on human trials of transcranial direct current stimulation between 1960 and 1998. Front Hum Neurosci 11:71PubMedPubMedCentral Esmaeilpour Z, Schestatsky P, Bikson M, Brunoni AR, Pellegrinelli A, Piovesan FX, Fregni F (2017) Notes on human trials of transcranial direct current stimulation between 1960 and 1998. Front Hum Neurosci 11:71PubMedPubMedCentral
go back to reference Faria P, Hallett M, Miranda PC (2011) A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS. J Neural Eng 8(6):066017PubMedPubMedCentral Faria P, Hallett M, Miranda PC (2011) A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS. J Neural Eng 8(6):066017PubMedPubMedCentral
go back to reference Fertonani A, Miniussi C (2017) Transcranial electrical stimulation: what we know and do not know about mechanisms. Neuroscientist 23(2):109–123PubMed Fertonani A, Miniussi C (2017) Transcranial electrical stimulation: what we know and do not know about mechanisms. Neuroscientist 23(2):109–123PubMed
go back to reference Fertonani A, Ferrari C, Miniussi C (2015) What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects. Clin Neurophysiol 126(11):2181–2188PubMed Fertonani A, Ferrari C, Miniussi C (2015) What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects. Clin Neurophysiol 126(11):2181–2188PubMed
go back to reference Fiene M, Schwab BC, Misselhorn J, Herrmann CS, Schneider TR, Engel AK (2019) Phase-specific manipulation of neural oscillations by transcranial alternating current stimulation. bioRxiv 579631. https://doi.org/10.1101/579631 Fiene M, Schwab BC, Misselhorn J, Herrmann CS, Schneider TR, Engel AK (2019) Phase-specific manipulation of neural oscillations by transcranial alternating current stimulation. bioRxiv 579631. https://​doi.​org/​10.​1101/​579631
go back to reference Filmer HL, Dux PE, Mattingley JB (2014) Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci 37(12):742–753PubMed Filmer HL, Dux PE, Mattingley JB (2014) Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci 37(12):742–753PubMed
go back to reference Francis JT, Gluckman BJ, Schiff SJ (2003) Sensitivity of neurons to weak electric fields. J Neurosci 23(19):7255–7261PubMedPubMedCentral Francis JT, Gluckman BJ, Schiff SJ (2003) Sensitivity of neurons to weak electric fields. J Neurosci 23(19):7255–7261PubMedPubMedCentral
go back to reference Fröhlich F, McCormick DA (2010) Endogenous electric fields may guide neocortical network activity. Neuron 67(1):129–143PubMedPubMedCentral Fröhlich F, McCormick DA (2010) Endogenous electric fields may guide neocortical network activity. Neuron 67(1):129–143PubMedPubMedCentral
go back to reference Gartside IB (1968a) Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization: reverberating circuits or modification of synaptic conductance? Nature 220(5165):382–383PubMed Gartside IB (1968a) Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization: reverberating circuits or modification of synaptic conductance? Nature 220(5165):382–383PubMed
go back to reference Gartside IB (1968b) Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization: role of protein synthesis. Nature 220(5165):383–384PubMed Gartside IB (1968b) Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization: role of protein synthesis. Nature 220(5165):383–384PubMed
go back to reference Goldsworthy MR, Hordacre B (2017) Dose dependency of transcranial direct current stimulation: implications for neuroplasticity induction in health and disease. J Physiol 595(11):3265–3266PubMedPubMedCentral Goldsworthy MR, Hordacre B (2017) Dose dependency of transcranial direct current stimulation: implications for neuroplasticity induction in health and disease. J Physiol 595(11):3265–3266PubMedPubMedCentral
go back to reference Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A, Suk HJ, Pascual-Leone A (2017) Noninvasive deep brain stimulation via temporally interfering electric fields. Cell 169(6):1029–1041PubMedPubMedCentral Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A, Suk HJ, Pascual-Leone A (2017) Noninvasive deep brain stimulation via temporally interfering electric fields. Cell 169(6):1029–1041PubMedPubMedCentral
go back to reference Gundlach C, Müller MM, Nierhaus T, Villringer A, Sehm B (2016) Phasic modulation of human somatosensory perception by transcranially applied oscillating currents. Brain Stimul 9(5):712–719PubMed Gundlach C, Müller MM, Nierhaus T, Villringer A, Sehm B (2016) Phasic modulation of human somatosensory perception by transcranially applied oscillating currents. Brain Stimul 9(5):712–719PubMed
go back to reference Hahn C, Rice J, Macuff S, Minhas P, Rahman A, Bikson M (2013) Methods for extra-low voltage transcranial direct current stimulation: current and time dependent impedance decreases. Clin Neurophysiol 124(3):551–556PubMed Hahn C, Rice J, Macuff S, Minhas P, Rahman A, Bikson M (2013) Methods for extra-low voltage transcranial direct current stimulation: current and time dependent impedance decreases. Clin Neurophysiol 124(3):551–556PubMed
go back to reference Hanslmayr S, Matuschek J, Fellner MC (2014) Entrainment of prefrontal beta oscillations induces an endogenous echo and impairs memory formation. Curr Biol 24(8):904–909PubMed Hanslmayr S, Matuschek J, Fellner MC (2014) Entrainment of prefrontal beta oscillations induces an endogenous echo and impairs memory formation. Curr Biol 24(8):904–909PubMed
go back to reference Helfrich RF, Knepper H, Nolte G, Strüber D, Rach S, Herrmann CS, Engel AK (2014a) Selective modulation of interhemispheric functional connectivity by HD–tACS shapes perception. PLoS Biol 12(12):e1002031PubMedPubMedCentral Helfrich RF, Knepper H, Nolte G, Strüber D, Rach S, Herrmann CS, Engel AK (2014a) Selective modulation of interhemispheric functional connectivity by HD–tACS shapes perception. PLoS Biol 12(12):e1002031PubMedPubMedCentral
go back to reference Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS (2014b) Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol 24(3):333–339PubMed Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS (2014b) Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol 24(3):333–339PubMed
go back to reference Helfrich RF, Herrmann CS, Engel AK, Schneider TR (2016) Different coupling modes mediate cortical cross-frequency interactions. NeuroImage 140:76–82PubMed Helfrich RF, Herrmann CS, Engel AK, Schneider TR (2016) Different coupling modes mediate cortical cross-frequency interactions. NeuroImage 140:76–82PubMed
go back to reference Héroux ME, Loo CK, Taylor JL, Gandevia SC (2017) Questionable science and reproducibility in electrical brain stimulation research. PLoS One 12(4):e0175635PubMedPubMedCentral Héroux ME, Loo CK, Taylor JL, Gandevia SC (2017) Questionable science and reproducibility in electrical brain stimulation research. PLoS One 12(4):e0175635PubMedPubMedCentral
go back to reference Herring JD, Esterer S, Marshall TR, Jensen O, Bergmann TO (2019) Low-frequency alternating current stimulation rhythmically suppresses gamma-band oscillations and impairs perceptual performance. NeuroImage 184:440–449PubMed Herring JD, Esterer S, Marshall TR, Jensen O, Bergmann TO (2019) Low-frequency alternating current stimulation rhythmically suppresses gamma-band oscillations and impairs perceptual performance. NeuroImage 184:440–449PubMed
go back to reference Herrmann CS, Strüber D (2017) What can transcranial alternating current stimulation tell us about brain oscillations? Curr Behav Neurosci Rep 4(2):128–137 Herrmann CS, Strüber D (2017) What can transcranial alternating current stimulation tell us about brain oscillations? Curr Behav Neurosci Rep 4(2):128–137
go back to reference Herrmann CS, Strüber D, Helfrich RF, Engel AK (2016) EEG oscillations: from correlation to causality. Int J Psychophysiol 103:12–21PubMed Herrmann CS, Strüber D, Helfrich RF, Engel AK (2016) EEG oscillations: from correlation to causality. Int J Psychophysiol 103:12–21PubMed
go back to reference Horvath JC, Forte JD, Carter O (2015a) Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review. Neuropsychologia 66:213–236PubMed Horvath JC, Forte JD, Carter O (2015a) Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review. Neuropsychologia 66:213–236PubMed
go back to reference Horvath JC, Forte JD, Carter O (2015b) Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimul 8(3):535–550PubMed Horvath JC, Forte JD, Carter O (2015b) Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimul 8(3):535–550PubMed
go back to reference Huang Y, Parra LC (2019) Can transcranial electric stimulation with multiple electrodes reach deep targets? Brain Stimul 12(1):30–40PubMed Huang Y, Parra LC (2019) Can transcranial electric stimulation with multiple electrodes reach deep targets? Brain Stimul 12(1):30–40PubMed
go back to reference Huang Y, Liu AA, Lafon B, Friedman D, Dayan M, Wang X, Parra LC (2017) Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. eLife 6:e18834PubMedPubMedCentral Huang Y, Liu AA, Lafon B, Friedman D, Dayan M, Wang X, Parra LC (2017) Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. eLife 6:e18834PubMedPubMedCentral
go back to reference Jackson MP, Rahman A, Lafon B, Kronberg G, Ling D, Parra LC, Bikson M (2016) Animal models of transcranial direct current stimulation: methods and mechanisms. Clin Neurophysiol 127(11):3425–3454PubMedPubMedCentral Jackson MP, Rahman A, Lafon B, Kronberg G, Ling D, Parra LC, Bikson M (2016) Animal models of transcranial direct current stimulation: methods and mechanisms. Clin Neurophysiol 127(11):3425–3454PubMedPubMedCentral
go back to reference Jacobson GA, Diba K, Yaron-Jakoubovitch A, Oz Y, Koch C, Segev I, Yarom Y (2005) Subthreshold voltage noise of rat neocortical pyramidal neurones. J Physiol 564(1):145–160PubMedPubMedCentral Jacobson GA, Diba K, Yaron-Jakoubovitch A, Oz Y, Koch C, Segev I, Yarom Y (2005) Subthreshold voltage noise of rat neocortical pyramidal neurones. J Physiol 564(1):145–160PubMedPubMedCentral
go back to reference Jefferys JGR, Deans J, Bikson M, Fox J (2003) Effects of weak electric fields on the activity of neurons and neuronal networks. Radiat Prot Dosimetry 106(4):321–323PubMed Jefferys JGR, Deans J, Bikson M, Fox J (2003) Effects of weak electric fields on the activity of neurons and neuronal networks. Radiat Prot Dosimetry 106(4):321–323PubMed
go back to reference Kanai R, Chaieb L, Antal A, Walsh V, Paulus W (2008) Frequency-dependent electrical stimulation of the visual cortex. Curr Biol 18(23):1839–1843PubMed Kanai R, Chaieb L, Antal A, Walsh V, Paulus W (2008) Frequency-dependent electrical stimulation of the visual cortex. Curr Biol 18(23):1839–1843PubMed
go back to reference Kar K, Krekelberg B (2012) Transcranial electrical stimulation over visual cortex evokes phosphenes with a retinal origin. J Neurophysiol 108(8):2173–2178PubMedPubMedCentral Kar K, Krekelberg B (2012) Transcranial electrical stimulation over visual cortex evokes phosphenes with a retinal origin. J Neurophysiol 108(8):2173–2178PubMedPubMedCentral
go back to reference Karabanov AN, Saturnino GB, Thielscher A, Siebner HR (2019) Can transcranial electrical stimulation localize brain function? Front Psychol 10:213PubMedPubMedCentral Karabanov AN, Saturnino GB, Thielscher A, Siebner HR (2019) Can transcranial electrical stimulation localize brain function? Front Psychol 10:213PubMedPubMedCentral
go back to reference Kasten FH, Negahbani E, Fröhlich F, Herrmann CS (2018) Non-linear transfer characteristics of stimulation and recording hardware account for spurious low-frequency artifacts during amplitude modulated transcranial alternating current stimulation (AM-tACS). NeuroImage 179:134–143PubMed Kasten FH, Negahbani E, Fröhlich F, Herrmann CS (2018) Non-linear transfer characteristics of stimulation and recording hardware account for spurious low-frequency artifacts during amplitude modulated transcranial alternating current stimulation (AM-tACS). NeuroImage 179:134–143PubMed
go back to reference Kavirajan HC, Lueck K, Chuang K (2014) Alternating current cranial electrotherapy stimulation (CES) for depression. Cochrane Database Syst Rev 7:Article CD010521 Kavirajan HC, Lueck K, Chuang K (2014) Alternating current cranial electrotherapy stimulation (CES) for depression. Cochrane Database Syst Rev 7:Article CD010521
go back to reference Khatoun A, Breukers J, de Beeck SO, Nica IG, Aerts JM, Seynaeve L, Mc Laughlin M (2018) Using high-amplitude and focused transcranial alternating current stimulation to entrain physiological tremor. Sci Rep 8(1):4927PubMedPubMedCentral Khatoun A, Breukers J, de Beeck SO, Nica IG, Aerts JM, Seynaeve L, Mc Laughlin M (2018) Using high-amplitude and focused transcranial alternating current stimulation to entrain physiological tremor. Sci Rep 8(1):4927PubMedPubMedCentral
go back to reference Kim JH, Kim DW, Chang WH, Kim YH, Kim K, Im CH (2014) Inconsistent outcomes of transcranial direct current stimulation may originate from anatomical differences among individuals: electric field simulation using individual MRI data. Neurosci Lett 564:6–10PubMed Kim JH, Kim DW, Chang WH, Kim YH, Kim K, Im CH (2014) Inconsistent outcomes of transcranial direct current stimulation may originate from anatomical differences among individuals: electric field simulation using individual MRI data. Neurosci Lett 564:6–10PubMed
go back to reference Krause MR, Zanos TP, Csorba BA, Pilly PK, Choe J, Phillips ME, Pack CC (2017) Transcranial direct current stimulation facilitates associative learning and alters functional connectivity in the primate brain. Curr Biol 27(20):3086–3096PubMed Krause MR, Zanos TP, Csorba BA, Pilly PK, Choe J, Phillips ME, Pack CC (2017) Transcranial direct current stimulation facilitates associative learning and alters functional connectivity in the primate brain. Curr Biol 27(20):3086–3096PubMed
go back to reference Krause MR, Vieira PG, Csorba BA, Pilly PK, Pack CC (2019) Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc Natl Acad Sci 116(12):5747–5755PubMedPubMedCentral Krause MR, Vieira PG, Csorba BA, Pilly PK, Pack CC (2019) Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc Natl Acad Sci 116(12):5747–5755PubMedPubMedCentral
go back to reference Kwan A, Forbes PA, Mitchell DE, Blouin JS, Cullen KE (2019) Neural substrates, dynamics and thresholds of galvanic vestibular stimulation in the behaving primate. Nat Commun 10(1):1904PubMedPubMedCentral Kwan A, Forbes PA, Mitchell DE, Blouin JS, Cullen KE (2019) Neural substrates, dynamics and thresholds of galvanic vestibular stimulation in the behaving primate. Nat Commun 10(1):1904PubMedPubMedCentral
go back to reference Laakso I, Hirata A (2013) Computational analysis shows why transcranial alternating current stimulation induces retinal phosphenes. J Neural Eng 10(4):046009PubMed Laakso I, Hirata A (2013) Computational analysis shows why transcranial alternating current stimulation induces retinal phosphenes. J Neural Eng 10(4):046009PubMed
go back to reference Lafon B, Henin S, Huang Y, Friedman D, Melloni L, Thesen T, Liu A (2017) Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings. Nat Commun 8(1):1199PubMedPubMedCentral Lafon B, Henin S, Huang Y, Friedman D, Melloni L, Thesen T, Liu A (2017) Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings. Nat Commun 8(1):1199PubMedPubMedCentral
go back to reference Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, Devanne H (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125(11):2150–2206PubMed Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, Devanne H (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125(11):2150–2206PubMed
go back to reference Liu A, Vöröslakos M, Kronberg G, Henin S, Krause MR, Huang Y, Berényi A (2018) Immediate neurophysiological effects of transcranial electrical stimulation. Nat Commun 9(1):5092PubMedPubMedCentral Liu A, Vöröslakos M, Kronberg G, Henin S, Krause MR, Huang Y, Berényi A (2018) Immediate neurophysiological effects of transcranial electrical stimulation. Nat Commun 9(1):5092PubMedPubMedCentral
go back to reference Mäkelä N, Sarvas J, Ilmoniemi RJ (2017) A simple reason why beamformer may (not) remove the tACS-induced artifact in MEG. Brain Stimul 10(4):e66–e67 Mäkelä N, Sarvas J, Ilmoniemi RJ (2017) A simple reason why beamformer may (not) remove the tACS-induced artifact in MEG. Brain Stimul 10(4):e66–e67
go back to reference Marino M, Liu Q, Del Castello M, Corsi C, Wenderoth N, Mantini D (2018a) Heart–Brain interactions in the MR environment: characterization of the ballistocardiogram in EEG signals collected during simultaneous fMRI. Brain Topogr 31(3):337–345PubMed Marino M, Liu Q, Del Castello M, Corsi C, Wenderoth N, Mantini D (2018a) Heart–Brain interactions in the MR environment: characterization of the ballistocardiogram in EEG signals collected during simultaneous fMRI. Brain Topogr 31(3):337–345PubMed
go back to reference Marino M, Liu Q, Koudelka V, Porcaro C, Hlinka J, Wenderoth N, Mantini D (2018b) Adaptive optimal basis set for BCG artifact removal in simultaneous EEG-fMRI. Sci Rep 8(1):8902PubMedPubMedCentral Marino M, Liu Q, Koudelka V, Porcaro C, Hlinka J, Wenderoth N, Mantini D (2018b) Adaptive optimal basis set for BCG artifact removal in simultaneous EEG-fMRI. Sci Rep 8(1):8902PubMedPubMedCentral
go back to reference Marshall L, Helgadóttir H, Mölle M, Born J (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444(7119):610–613PubMed Marshall L, Helgadóttir H, Mölle M, Born J (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444(7119):610–613PubMed
go back to reference Marshall TR, Esterer S, Herring JD, Bergmann TO, Jensen O (2016) On the relationship between cortical excitability and visual oscillatory responses—a concurrent tDCS–MEG study. NeuroImage 140:41–49PubMed Marshall TR, Esterer S, Herring JD, Bergmann TO, Jensen O (2016) On the relationship between cortical excitability and visual oscillatory responses—a concurrent tDCS–MEG study. NeuroImage 140:41–49PubMed
go back to reference Matsumoto H, Ugawa Y (2017) Adverse events of tDCS and tACS: a review. Clin Neurophysiol Pract 2:19–25PubMed Matsumoto H, Ugawa Y (2017) Adverse events of tDCS and tACS: a review. Clin Neurophysiol Pract 2:19–25PubMed
go back to reference Mehta AR, Brittain JS, Brown P (2014) The selective influence of rhythmic cortical versus cerebellar transcranial stimulation on human physiological tremor. J Neurosci 34(22):7501–7508PubMedPubMedCentral Mehta AR, Brittain JS, Brown P (2014) The selective influence of rhythmic cortical versus cerebellar transcranial stimulation on human physiological tremor. J Neurosci 34(22):7501–7508PubMedPubMedCentral
go back to reference Mehta AR, Pogosyan A, Brown P, Brittain JS (2015) Montage matters: the influence of transcranial alternating current stimulation on human physiological tremor. Brain Stimul 8(2):260–268PubMedPubMedCentral Mehta AR, Pogosyan A, Brown P, Brittain JS (2015) Montage matters: the influence of transcranial alternating current stimulation on human physiological tremor. Brain Stimul 8(2):260–268PubMedPubMedCentral
go back to reference Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285(5762):227PubMed Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285(5762):227PubMed
go back to reference Minami S, Amano K (2017) Illusory jitter perceived at the frequency of alpha oscillations. Curr Biol 27(15):2344–2351PubMed Minami S, Amano K (2017) Illusory jitter perceived at the frequency of alpha oscillations. Curr Biol 27(15):2344–2351PubMed
go back to reference Miranda PC, Lomarev M, Hallett M (2006) Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol 117(7):1623–1629PubMed Miranda PC, Lomarev M, Hallett M (2006) Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol 117(7):1623–1629PubMed
go back to reference Miranda PC, Mekonnen A, Salvador R, Ruffini G (2013) The electric field in the cortex during transcranial current stimulation. NeuroImage 70:48–58PubMed Miranda PC, Mekonnen A, Salvador R, Ruffini G (2013) The electric field in the cortex during transcranial current stimulation. NeuroImage 70:48–58PubMed
go back to reference Miyaguchi S, Otsuru N, Kojima S, Yokota H, Saito K, Inukai Y, Onishi H (2019) Gamma tACS over M1 and cerebellar hemisphere improves motor performance in a phase-specific manner. Neurosci Lett 694:64–68PubMed Miyaguchi S, Otsuru N, Kojima S, Yokota H, Saito K, Inukai Y, Onishi H (2019) Gamma tACS over M1 and cerebellar hemisphere improves motor performance in a phase-specific manner. Neurosci Lett 694:64–68PubMed
go back to reference Modolo J, Denoyer Y, Wendling F, Benquet P (2018) Physiological effects of low-magnitude electric fields on brain activity: advances from in vitro, in vivo and in silico models. Curr Opin Biomed Eng 8:38–44PubMedPubMedCentral Modolo J, Denoyer Y, Wendling F, Benquet P (2018) Physiological effects of low-magnitude electric fields on brain activity: advances from in vitro, in vivo and in silico models. Curr Opin Biomed Eng 8:38–44PubMedPubMedCentral
go back to reference Monai H, Hirase H (2018) Astrocytes as a target of transcranial direct current stimulation (tDCS) to treat depression. Neurosci Res 126:15–21PubMed Monai H, Hirase H (2018) Astrocytes as a target of transcranial direct current stimulation (tDCS) to treat depression. Neurosci Res 126:15–21PubMed
go back to reference Negahbani E, Kasten FH, Herrmann CS, Fröhlich F (2018) Targeting alpha-band oscillations in a cortical model with amplitude-modulated high-frequency transcranial electric stimulation. NeuroImage 173:3–12PubMed Negahbani E, Kasten FH, Herrmann CS, Fröhlich F (2018) Targeting alpha-band oscillations in a cortical model with amplitude-modulated high-frequency transcranial electric stimulation. NeuroImage 173:3–12PubMed
go back to reference Neuling T, Rach S, Wagner S, Wolters CH, Herrmann CS (2012) Good vibrations: oscillatory phase shapes perception. NeuroImage 63(2):771–778PubMed Neuling T, Rach S, Wagner S, Wolters CH, Herrmann CS (2012) Good vibrations: oscillatory phase shapes perception. NeuroImage 63(2):771–778PubMed
go back to reference Neuling T, Ruhnau P, Weisz N, Herrmann CS, Demarchi G (2017) Faith and oscillations recovered: on analyzing EEG/MEG signals during tACS. NeuroImage 147:960–963PubMed Neuling T, Ruhnau P, Weisz N, Herrmann CS, Demarchi G (2017) Faith and oscillations recovered: on analyzing EEG/MEG signals during tACS. NeuroImage 147:960–963PubMed
go back to reference Nimmrich V, Draguhn A, Axmacher N (2015) Neuronal network oscillations in neurodegenerative diseases. NeuroMol Med 17(3):270–284 Nimmrich V, Draguhn A, Axmacher N (2015) Neuronal network oscillations in neurodegenerative diseases. NeuroMol Med 17(3):270–284
go back to reference Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(3):633–639PubMedPubMedCentral Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(3):633–639PubMedPubMedCentral
go back to reference Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57(10):1899–1901PubMed Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57(10):1899–1901PubMed
go back to reference Nitsche MA, Nitsche MS, Klein CC, Tergau F, Rothwell JC, Paulus W (2003) Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol 114(4):600–604PubMed Nitsche MA, Nitsche MS, Klein CC, Tergau F, Rothwell JC, Paulus W (2003) Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol 114(4):600–604PubMed
go back to reference Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Pascual- Leone A (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimul 1(3):206–223PubMed Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Pascual- Leone A (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimul 1(3):206–223PubMed
go back to reference Noury N, Siegel M (2017) Phase properties of transcranial electrical stimulation artifacts in electrophysiological recordings. NeuroImage 158:406–416PubMed Noury N, Siegel M (2017) Phase properties of transcranial electrical stimulation artifacts in electrophysiological recordings. NeuroImage 158:406–416PubMed
go back to reference Noury N, Siegel M (2018) Analyzing EEG and MEG signals recorded during tES, a reply. NeuroImage 167:53–61PubMed Noury N, Siegel M (2018) Analyzing EEG and MEG signals recorded during tES, a reply. NeuroImage 167:53–61PubMed
go back to reference Noury N, Hipp JF, Siegel M (2016) Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation. NeuroImage 140:99–109PubMed Noury N, Hipp JF, Siegel M (2016) Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation. NeuroImage 140:99–109PubMed
go back to reference Opitz A, Paulus W, Will S, Antunes A, Thielscher A (2015) Determinants of the electric field during transcranial direct current stimulation. NeuroImage 109:140–150PubMed Opitz A, Paulus W, Will S, Antunes A, Thielscher A (2015) Determinants of the electric field during transcranial direct current stimulation. NeuroImage 109:140–150PubMed
go back to reference Opitz A, Falchier A, Yan CG, Yeagle EM, Linn GS, Megevand P, Schroeder CE (2016) Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates. Sci Rep 6:31236PubMedPubMedCentral Opitz A, Falchier A, Yan CG, Yeagle EM, Linn GS, Megevand P, Schroeder CE (2016) Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates. Sci Rep 6:31236PubMedPubMedCentral
go back to reference Opitz A, Falchier A, Linn GS, Milham MP, Schroeder CE (2017) Limitations of ex vivo measurements for in vivo neuroscience. Proc Natl Acad Sci 114(20):5243–5246PubMedPubMedCentral Opitz A, Falchier A, Linn GS, Milham MP, Schroeder CE (2017) Limitations of ex vivo measurements for in vivo neuroscience. Proc Natl Acad Sci 114(20):5243–5246PubMedPubMedCentral
go back to reference Ozen S, Sirota A, Belluscio MA, Anastassiou CA, Stark E, Koch C, Buzsáki G (2010) Transcranial electric stimulation entrains cortical neuronal populations in rats. J Neurosci 30(34):11476–11485PubMedPubMedCentral Ozen S, Sirota A, Belluscio MA, Anastassiou CA, Stark E, Koch C, Buzsáki G (2010) Transcranial electric stimulation entrains cortical neuronal populations in rats. J Neurosci 30(34):11476–11485PubMedPubMedCentral
go back to reference Payne NA, Prudic J (2009) Electroconvulsive therapy Part I: a perspective on the evolution and current practice of ECT. J Psychiatr Pract 15(5):346–368PubMedPubMedCentral Payne NA, Prudic J (2009) Electroconvulsive therapy Part I: a perspective on the evolution and current practice of ECT. J Psychiatr Pract 15(5):346–368PubMedPubMedCentral
go back to reference Plewnia C, Rilk AJ, Soekadar SR, Arfeller C, Huber HS, Sauseng P, Gerloff C (2008) Enhancement of long-range EEG coherence by synchronous bifocal transcranial magnetic stimulation. Eur J Neurosci 27(6):1577–1583PubMed Plewnia C, Rilk AJ, Soekadar SR, Arfeller C, Huber HS, Sauseng P, Gerloff C (2008) Enhancement of long-range EEG coherence by synchronous bifocal transcranial magnetic stimulation. Eur J Neurosci 27(6):1577–1583PubMed
go back to reference Polanía R, Nitsche MA, Korman C, Batsikadze G, Paulus W (2012) The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol 22(14):1314–1318PubMed Polanía R, Nitsche MA, Korman C, Batsikadze G, Paulus W (2012) The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol 22(14):1314–1318PubMed
go back to reference Polanía R, Moisa M, Opitz A, Grueschow M, Ruff CC (2015) The precision of value- based choices depends causally on fronto-parietal phase coupling. Nat Commun 6:8090PubMed Polanía R, Moisa M, Opitz A, Grueschow M, Ruff CC (2015) The precision of value- based choices depends causally on fronto-parietal phase coupling. Nat Commun 6:8090PubMed
go back to reference Polanía R, Nitsche MA, Ruff CC (2018) Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci 21:174–187PubMed Polanía R, Nitsche MA, Ruff CC (2018) Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci 21:174–187PubMed
go back to reference Poreisz C, Boros K, Antal A, Paulus W (2007) Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull 72(4–6):208–214PubMed Poreisz C, Boros K, Antal A, Paulus W (2007) Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull 72(4–6):208–214PubMed
go back to reference Priori A (2003) Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol 114(4):589–595PubMed Priori A (2003) Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol 114(4):589–595PubMed
go back to reference Purpura DP, McMurtry JG (1965) Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol 28(1):166–185PubMed Purpura DP, McMurtry JG (1965) Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol 28(1):166–185PubMed
go back to reference Radman T, Su Y, An JH, Parra LC, Bikson M (2007) Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. J Neurosci 27(11):3030–3036PubMedPubMedCentral Radman T, Su Y, An JH, Parra LC, Bikson M (2007) Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. J Neurosci 27(11):3030–3036PubMedPubMedCentral
go back to reference Radman T, Ramos RL, Brumberg JC, Bikson M (2009) Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul 2(4):215–228PubMedPubMedCentral Radman T, Ramos RL, Brumberg JC, Bikson M (2009) Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul 2(4):215–228PubMedPubMedCentral
go back to reference Rahman A, Reato D, Arlotti M, Gasca F, Datta A, Parra LC, Bikson M (2013) Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J Physiol 591(10):2563–2578PubMedPubMedCentral Rahman A, Reato D, Arlotti M, Gasca F, Datta A, Parra LC, Bikson M (2013) Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J Physiol 591(10):2563–2578PubMedPubMedCentral
go back to reference Rawji V, Ciocca M, Zacharia A, Soares D, Truong D, Bikson M, Bestmann S (2018) tDCS changes in motor excitability are specific to orientation of current flow. Brain Stimul 11(2):289–298PubMedPubMedCentral Rawji V, Ciocca M, Zacharia A, Soares D, Truong D, Bikson M, Bestmann S (2018) tDCS changes in motor excitability are specific to orientation of current flow. Brain Stimul 11(2):289–298PubMedPubMedCentral
go back to reference Reato D, Rahman A, Bikson M, Parra LC (2010) Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J Neurosci 30(45):15067–15079PubMedPubMedCentral Reato D, Rahman A, Bikson M, Parra LC (2010) Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J Neurosci 30(45):15067–15079PubMedPubMedCentral
go back to reference Reato D, Rahman A, Bikson M, Parra LC (2013) Effects of weak transcranial alternating current stimulation on brain activity—a review of known mechanisms from animal studies. Front Hum Neurosci 7:687PubMedPubMedCentral Reato D, Rahman A, Bikson M, Parra LC (2013) Effects of weak transcranial alternating current stimulation on brain activity—a review of known mechanisms from animal studies. Front Hum Neurosci 7:687PubMedPubMedCentral
go back to reference Reinhart RM, Nguyen JA (2019) Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat Neurosci 22(5):820–827PubMedPubMedCentral Reinhart RM, Nguyen JA (2019) Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat Neurosci 22(5):820–827PubMedPubMedCentral
go back to reference Riecke L, Formisano E, Herrmann CS, Sack AT (2015a) 4-Hz transcranial alternating current stimulation phase modulates hearing. Brain Stimul 8(4):777–783PubMed Riecke L, Formisano E, Herrmann CS, Sack AT (2015a) 4-Hz transcranial alternating current stimulation phase modulates hearing. Brain Stimul 8(4):777–783PubMed
go back to reference Riecke L, Sack AT, Schroeder CE (2015b) Endogenous delta/theta sound-brain phase entrainment accelerates the buildup of auditory streaming. Curr Biol 25(24):3196–3201PubMed Riecke L, Sack AT, Schroeder CE (2015b) Endogenous delta/theta sound-brain phase entrainment accelerates the buildup of auditory streaming. Curr Biol 25(24):3196–3201PubMed
go back to reference Ruffini G, Wendling F, Merlet I, Molaee-Ardekani B, Mekonnen A, Salvador R, Miranda PC (2013) Transcranial current brain stimulation (tCS): models and technologies. IEEE Trans Neural Syst Rehabil Eng 21(3):333–345PubMed Ruffini G, Wendling F, Merlet I, Molaee-Ardekani B, Mekonnen A, Salvador R, Miranda PC (2013) Transcranial current brain stimulation (tCS): models and technologies. IEEE Trans Neural Syst Rehabil Eng 21(3):333–345PubMed
go back to reference Ruhnau P, Neuling T, Fuscá M, Herrmann CS, Demarchi G, Weisz N (2016) Eyes wide shut: transcranial alternating current stimulation drives alpha rhythm in a state dependent manner. Sci Rep 6:27138PubMedPubMedCentral Ruhnau P, Neuling T, Fuscá M, Herrmann CS, Demarchi G, Weisz N (2016) Eyes wide shut: transcranial alternating current stimulation drives alpha rhythm in a state dependent manner. Sci Rep 6:27138PubMedPubMedCentral
go back to reference Ruhnau P, Rufener KS, Heinze HJ, Zaehle T (2018) Sailing in a sea of disbelief: in vivo measurements of transcranial electric stimulation in human subcortical structures. Brain Stimul 11(1):241–243PubMed Ruhnau P, Rufener KS, Heinze HJ, Zaehle T (2018) Sailing in a sea of disbelief: in vivo measurements of transcranial electric stimulation in human subcortical structures. Brain Stimul 11(1):241–243PubMed
go back to reference Ruohonen J, Karhu J (2012) tDCS possibly stimulates glial cells. Clin Neurophysiol 123(10):2006–2009PubMed Ruohonen J, Karhu J (2012) tDCS possibly stimulates glial cells. Clin Neurophysiol 123(10):2006–2009PubMed
go back to reference Sadleir RJ, Vannorsdall TD, Schretlen DJ, Gordon B (2010) Transcranial direct current stimulation (tDCS) in a realistic head model. NeuroImage 51(4):1310–1318PubMed Sadleir RJ, Vannorsdall TD, Schretlen DJ, Gordon B (2010) Transcranial direct current stimulation (tDCS) in a realistic head model. NeuroImage 51(4):1310–1318PubMed
go back to reference Saturnino GB, Madsen KH, Siebner HR, Thielscher A (2017) How to target inter-regional phase synchronization with dual-site transcranial alternating current stimulation. NeuroImage 163:68–80PubMed Saturnino GB, Madsen KH, Siebner HR, Thielscher A (2017) How to target inter-regional phase synchronization with dual-site transcranial alternating current stimulation. NeuroImage 163:68–80PubMed
go back to reference Schutter DJ (2016) Cutaneous retinal activation and neural entrainment in transcranial alternating current stimulation: a systematic review. NeuroImage 140:83–88PubMed Schutter DJ (2016) Cutaneous retinal activation and neural entrainment in transcranial alternating current stimulation: a systematic review. NeuroImage 140:83–88PubMed
go back to reference Schutter DJ, Hortensius R (2010) Retinal origin of phosphenes to transcranial alternating current stimulation. Clin Neurophysiol 121(7):1080–1084PubMed Schutter DJ, Hortensius R (2010) Retinal origin of phosphenes to transcranial alternating current stimulation. Clin Neurophysiol 121(7):1080–1084PubMed
go back to reference Schutter DJ, Wischnewski M (2016) A meta-analytic study of exogenous oscillatory electric potentials in neuroenhancement. Neuropsychologia 86:110–118PubMed Schutter DJ, Wischnewski M (2016) A meta-analytic study of exogenous oscillatory electric potentials in neuroenhancement. Neuropsychologia 86:110–118PubMed
go back to reference Schwiedrzik CM (2009) Retina or visual cortex? The site of phosphene induction by transcranial alternating current stimulation. Front Integr Neurosci 3:6PubMedPubMedCentral Schwiedrzik CM (2009) Retina or visual cortex? The site of phosphene induction by transcranial alternating current stimulation. Front Integr Neurosci 3:6PubMedPubMedCentral
go back to reference Shekelle PG, Cook IA, Miake-Lye IM, Booth MS, Beroes JM, Mak S (2018) Benefits and harms of cranial electrical stimulation for chronic painful conditions, depression, anxiety, and insomnia: a systematic review. Ann Intern Med 168(6):414–421PubMed Shekelle PG, Cook IA, Miake-Lye IM, Booth MS, Beroes JM, Mak S (2018) Benefits and harms of cranial electrical stimulation for chronic painful conditions, depression, anxiety, and insomnia: a systematic review. Ann Intern Med 168(6):414–421PubMed
go back to reference Soekadar SR, Herring JD, McGonigle D (2016) Transcranial electric stimulation (tES) and neuroimaging: the state-of-the-art, new insights and prospects in basic and clinical neuroscience. NeuroImage 140:1–3PubMed Soekadar SR, Herring JD, McGonigle D (2016) Transcranial electric stimulation (tES) and neuroimaging: the state-of-the-art, new insights and prospects in basic and clinical neuroscience. NeuroImage 140:1–3PubMed
go back to reference Spaak E, de Lange FP, Jensen O (2014) Local entrainment of alpha oscillations by visual stimuli causes cyclic modulation of perception. J Neurosci 34(10):3536–3544PubMedPubMedCentral Spaak E, de Lange FP, Jensen O (2014) Local entrainment of alpha oscillations by visual stimuli causes cyclic modulation of perception. J Neurosci 34(10):3536–3544PubMedPubMedCentral
go back to reference Tan J, Iyer KK, Tang AD, Jamil A, Martins RN, Sohrabi HR, Fujiyama H (2018) Modulating functional connectivity with non-invasive brain stimulation for the investigation and alleviation of age-associated declines in response inhibition: a narrative review. NeuroImage 185:490–512PubMed Tan J, Iyer KK, Tang AD, Jamil A, Martins RN, Sohrabi HR, Fujiyama H (2018) Modulating functional connectivity with non-invasive brain stimulation for the investigation and alleviation of age-associated declines in response inhibition: a narrative review. NeuroImage 185:490–512PubMed
go back to reference Terzuolo CA, Bullock TH (1956) Measurement of imposed voltage gradient adequate to modulate neuronal firing. Proc Natl Acad Sci USA 42(9):687–694PubMedPubMedCentral Terzuolo CA, Bullock TH (1956) Measurement of imposed voltage gradient adequate to modulate neuronal firing. Proc Natl Acad Sci USA 42(9):687–694PubMedPubMedCentral
go back to reference Thut G, Bergmann TO, Fröhlich F, Soekadar SR, Brittain JS, Valero-Cabré A, Herrmann CS (2017) Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: a position paper. Clin Neurophysiol 128(5):843–857PubMedPubMedCentral Thut G, Bergmann TO, Fröhlich F, Soekadar SR, Brittain JS, Valero-Cabré A, Herrmann CS (2017) Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: a position paper. Clin Neurophysiol 128(5):843–857PubMedPubMedCentral
go back to reference Tseng P, Chang YT, Chang CF, Liang WK, Juan CH (2016) The critical role of phase difference in gamma oscillation within the temporoparietal network for binding visual working memory. Sci Rep 6:32138PubMedPubMedCentral Tseng P, Chang YT, Chang CF, Liang WK, Juan CH (2016) The critical role of phase difference in gamma oscillation within the temporoparietal network for binding visual working memory. Sci Rep 6:32138PubMedPubMedCentral
go back to reference Veniero D, Vossen A, Gross J, Thut G (2015) Lasting EEG/MEG aftereffects of rhythmic transcranial brain stimulation: level of control over oscillatory network activity. Front Cell Neurosci 9:477PubMedPubMedCentral Veniero D, Vossen A, Gross J, Thut G (2015) Lasting EEG/MEG aftereffects of rhythmic transcranial brain stimulation: level of control over oscillatory network activity. Front Cell Neurosci 9:477PubMedPubMedCentral
go back to reference Veniero D, Strüber D, Thut G, Herrmann CS (2019) Noninvasive brain stimulation techniques can modulate cognitive processing. Organ Res Methods 22(1):116–147 Veniero D, Strüber D, Thut G, Herrmann CS (2019) Noninvasive brain stimulation techniques can modulate cognitive processing. Organ Res Methods 22(1):116–147
go back to reference Vöröslakos M, Takeuchi Y, Brinyiczki K, Zombori T, Oliva A, Fernández-Ruiz A, Berényi A (2018) Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat Commun 9(1):483PubMedPubMedCentral Vöröslakos M, Takeuchi Y, Brinyiczki K, Zombori T, Oliva A, Fernández-Ruiz A, Berényi A (2018) Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat Commun 9(1):483PubMedPubMedCentral
go back to reference Vossen A, Gross J, Thut G (2015) Alpha power increase after transcranial alternating current stimulation at alpha frequency (α-tACS) reflects plastic changes rather than entrainment. Brain Stimul 8(3):499–508PubMedPubMedCentral Vossen A, Gross J, Thut G (2015) Alpha power increase after transcranial alternating current stimulation at alpha frequency (α-tACS) reflects plastic changes rather than entrainment. Brain Stimul 8(3):499–508PubMedPubMedCentral
go back to reference Vosskuhl J, Strüber D, Herrmann CS (2018) Non-invasive brain stimulation: a paradigm shift in understanding brain oscillations. Front Hum Neurosci 12:211PubMedPubMedCentral Vosskuhl J, Strüber D, Herrmann CS (2018) Non-invasive brain stimulation: a paradigm shift in understanding brain oscillations. Front Hum Neurosci 12:211PubMedPubMedCentral
go back to reference Wagner S, Rampersad SM, Aydin Ü, Vorwerk J, Oostendorp TF, Neuling T, Wolters CH (2013) Investigation of tDCS volume conduction effects in a highly realistic head model. J Neural Eng 11(1):016002PubMed Wagner S, Rampersad SM, Aydin Ü, Vorwerk J, Oostendorp TF, Neuling T, Wolters CH (2013) Investigation of tDCS volume conduction effects in a highly realistic head model. J Neural Eng 11(1):016002PubMed
go back to reference Widge AS (2018) Cross-species neuromodulation from high-intensity transcranial electrical stimulation. Trends Cognit Sci 22(5):372–374 Widge AS (2018) Cross-species neuromodulation from high-intensity transcranial electrical stimulation. Trends Cognit Sci 22(5):372–374
go back to reference Wischnewski M, Schutter DJ (2017) After-effects of transcranial alternating current stimulation on evoked delta and theta power. Clin Neurophysiol 128(11):2227–2232PubMed Wischnewski M, Schutter DJ (2017) After-effects of transcranial alternating current stimulation on evoked delta and theta power. Clin Neurophysiol 128(11):2227–2232PubMed
go back to reference Witkowski M, Garcia-Cossio E, Chander BS, Braun C, Birbaumer N, Robinson SE, Soekadar SR (2016) Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS). NeuroImage 140:89–98PubMed Witkowski M, Garcia-Cossio E, Chander BS, Braun C, Birbaumer N, Robinson SE, Soekadar SR (2016) Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS). NeuroImage 140:89–98PubMed
go back to reference Yavari F, Jamil A, Samani MM, Vidor LP, Nitsche MA (2018) Basic and functional effects of transcranial electrical stimulation (tES)—an introduction. Neurosci Biobehav Rev 85:81–92PubMed Yavari F, Jamil A, Samani MM, Vidor LP, Nitsche MA (2018) Basic and functional effects of transcranial electrical stimulation (tES)—an introduction. Neurosci Biobehav Rev 85:81–92PubMed
go back to reference Zaehle T, Rach S, Herrmann CS (2010) Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One 5(11):e13766PubMedPubMedCentral Zaehle T, Rach S, Herrmann CS (2010) Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One 5(11):e13766PubMedPubMedCentral
Metadata
Title
Current challenges: the ups and downs of tACS
Authors
Nicholas S. Bland
Martin V. Sale
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
Experimental Brain Research / Issue 12/2019
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-019-05666-0

Other articles of this Issue 12/2019

Experimental Brain Research 12/2019 Go to the issue