Skip to main content
Top
Published in: Experimental Brain Research 2/2013

01-08-2013 | Research Article

Evidence for the utricular origin of the vestibular short-latency-evoked potential (VsEP) to bone-conducted vibration in guinea pig

Authors: Yasuhiro Chihara, Vivian Wang, Daniel J. Brown

Published in: Experimental Brain Research | Issue 2/2013

Login to get access

Abstract

Previous studies have shown that the vestibular short-latency-evoked potential (VsEP) in response to the brief head acceleration stimulus is a compound action potential of neurons innervating the otolith organs. However, due to the lack of direct evidence, it is currently unclear whether the VsEP is primarily generated by the activity of utricular or saccular afferent neurons, or some mixture of the two. Here, we investigated the origin of the VsEP evoked by brief bone-conducted vibration pulses in guinea pigs, using selective destruction of the cochlea, semicircular canals (SCCs), saccule, or utricle, along with neural blockade with tetrodotoxin (TTX) application, and mechanical displacements of the surgically exposed utricular macula. To access each end organ, either a dorsal or a ventral surgical approach was used. TTX application abolished the VsEP, supporting the neurogenic origin of the response. Selective cochlear, SCCs, or saccular destruction had no significant effect on VsEP amplitude, whereas utricular destruction abolished the VsEP completely. Displacement of the utricular membrane changed the VsEP amplitude in a non-monotonic fashion. These results suggest that the VsEP evoked by BCV in guinea pigs represents almost entirely a utricular response. Furthermore, it suggests that displacements of the utricular macula may alter its response to bone-conduction stimuli.
Appendix
Available only for authorised users
Literature
go back to reference Bohmer A (1995) Short latency vestibular evoked responses to linear acceleration stimuli in small mammals: masking effects and experimental applications. Acta Otolaryngol Suppl 520(Pt 1):120–123PubMedCrossRef Bohmer A (1995) Short latency vestibular evoked responses to linear acceleration stimuli in small mammals: masking effects and experimental applications. Acta Otolaryngol Suppl 520(Pt 1):120–123PubMedCrossRef
go back to reference Bohmer A, Hoffman LF, Honrubia V (1995) Characterization of vestibular potentials evoked by linear acceleration pulses in the chinchilla. Am J Otol 16:498–504PubMed Bohmer A, Hoffman LF, Honrubia V (1995) Characterization of vestibular potentials evoked by linear acceleration pulses in the chinchilla. Am J Otol 16:498–504PubMed
go back to reference Brantberg K, Lofqvist L, Westin M, Tribukait A (2008) Skull tap induced vestibular evoked myogenic potentials: an ipsilateral vibration response and a bilateral head acceleration response? Clin Neurophysiol 119:2363–2369PubMedCrossRef Brantberg K, Lofqvist L, Westin M, Tribukait A (2008) Skull tap induced vestibular evoked myogenic potentials: an ipsilateral vibration response and a bilateral head acceleration response? Clin Neurophysiol 119:2363–2369PubMedCrossRef
go back to reference Bremer HG, de Groot JC, Versnel H, Klis SF (2012) Combined administration of kanamycin and furosemide does not result in loss of vestibular function in Guinea pigs. Audiol Neurootol 17:25–38PubMedCrossRef Bremer HG, de Groot JC, Versnel H, Klis SF (2012) Combined administration of kanamycin and furosemide does not result in loss of vestibular function in Guinea pigs. Audiol Neurootol 17:25–38PubMedCrossRef
go back to reference Chiappa K (1997) Evoked potentials in clinical medicine. Lippincott Williams & Wilkins, Philadelphia Chiappa K (1997) Evoked potentials in clinical medicine. Lippincott Williams & Wilkins, Philadelphia
go back to reference Colebatch JG, Halmagyi GM (1992) Vestibular evoked potentials in human neck muscles before and after unilateral vestibular deafferentation. Neurology 42:1635–1636PubMedCrossRef Colebatch JG, Halmagyi GM (1992) Vestibular evoked potentials in human neck muscles before and after unilateral vestibular deafferentation. Neurology 42:1635–1636PubMedCrossRef
go back to reference Colebatch JG, Halmagyi GM, Skuse NF (1994) Myogenic potentials generated by a click-evoked vestibulocollic reflex. J Neurol Neurosurg Psychiatry 57:190–197PubMedCrossRef Colebatch JG, Halmagyi GM, Skuse NF (1994) Myogenic potentials generated by a click-evoked vestibulocollic reflex. J Neurol Neurosurg Psychiatry 57:190–197PubMedCrossRef
go back to reference Curthoys IS (2012) The interpretation of clinical tests of peripheral vestibular function. Laryngoscope 122:1342–1352PubMedCrossRef Curthoys IS (2012) The interpretation of clinical tests of peripheral vestibular function. Laryngoscope 122:1342–1352PubMedCrossRef
go back to reference Curthoys IS, Kim J, McPhedran SK, Camp AJ (2006) Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig. Exp Brain Res 175:256–267PubMedCrossRef Curthoys IS, Kim J, McPhedran SK, Camp AJ (2006) Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig. Exp Brain Res 175:256–267PubMedCrossRef
go back to reference Curthoys IS, Uzun-Coruhlu H, Wong CC, Jones AS, Bradshaw AP (2009) The configuration and attachment of the utricular and saccular maculae to the temporal bone. New evidence from microtomography-CT studies of the membranous labyrinth. Ann N Y Acad Sci 1164:13–18PubMedCrossRef Curthoys IS, Uzun-Coruhlu H, Wong CC, Jones AS, Bradshaw AP (2009) The configuration and attachment of the utricular and saccular maculae to the temporal bone. New evidence from microtomography-CT studies of the membranous labyrinth. Ann N Y Acad Sci 1164:13–18PubMedCrossRef
go back to reference Curthoys IS, Vulovic V, Sokolic L, Pogson J, Burgess AM (2012) Irregular primary otolith afferents from the guinea pig utricular and saccular maculae respond to both bone conducted vibration and to air conducted sound. Brain Res Bull 89:16–21PubMedCrossRef Curthoys IS, Vulovic V, Sokolic L, Pogson J, Burgess AM (2012) Irregular primary otolith afferents from the guinea pig utricular and saccular maculae respond to both bone conducted vibration and to air conducted sound. Brain Res Bull 89:16–21PubMedCrossRef
go back to reference Elidan J, Langhofer L, Honrubia V (1987a) The neural generators of the vestibular evoked response. Brain Res 423:385–390PubMedCrossRef Elidan J, Langhofer L, Honrubia V (1987a) The neural generators of the vestibular evoked response. Brain Res 423:385–390PubMedCrossRef
go back to reference Elidan J, Langhofer L, Honrubia V (1987b) Recording of short-latency vestibular evoked potentials induced by acceleration impulses in experimental animals: current status of the method and its applications. Electroencephalogr Clin Neurophysiol 68:58–69PubMedCrossRef Elidan J, Langhofer L, Honrubia V (1987b) Recording of short-latency vestibular evoked potentials induced by acceleration impulses in experimental animals: current status of the method and its applications. Electroencephalogr Clin Neurophysiol 68:58–69PubMedCrossRef
go back to reference Freeman S, Plotnik M, Elidan J, Rosen LJ, Sohmer H (1999) Effect of white noise “masking” on vestibular evoked potentials recorded using different stimulus modalities. Acta Otolaryngol 119:311–315PubMedCrossRef Freeman S, Plotnik M, Elidan J, Rosen LJ, Sohmer H (1999) Effect of white noise “masking” on vestibular evoked potentials recorded using different stimulus modalities. Acta Otolaryngol 119:311–315PubMedCrossRef
go back to reference Goldberg JM (2000) Afferent diversity and the organization of central vestibular pathways. Exp Brain Res 130:277–297PubMedCrossRef Goldberg JM (2000) Afferent diversity and the organization of central vestibular pathways. Exp Brain Res 130:277–297PubMedCrossRef
go back to reference Halmagyi GM, Yavor RA, Colebatch JG (1995) Tapping the head activates the vestibular system: a new use for the clinical reflex hammer. Neurology 45:1927–1929PubMedCrossRef Halmagyi GM, Yavor RA, Colebatch JG (1995) Tapping the head activates the vestibular system: a new use for the clinical reflex hammer. Neurology 45:1927–1929PubMedCrossRef
go back to reference Hara M, Kimura RS (1993) Morphology of the membrana limitans. Ann Otol Rhinol Laryngol 102:625–630PubMed Hara M, Kimura RS (1993) Morphology of the membrana limitans. Ann Otol Rhinol Laryngol 102:625–630PubMed
go back to reference Jones TA (1992) Vestibular short latency responses to pulsed linear acceleration in unanesthetized animals. Electroencephalogr Clin Neurophysiol 82:377–386PubMedCrossRef Jones TA (1992) Vestibular short latency responses to pulsed linear acceleration in unanesthetized animals. Electroencephalogr Clin Neurophysiol 82:377–386PubMedCrossRef
go back to reference Jones TA, Jones SM (1999) Short latency compound action potentials from mammalian gravity receptor organs. Hear Res 136:75–85PubMedCrossRef Jones TA, Jones SM (1999) Short latency compound action potentials from mammalian gravity receptor organs. Hear Res 136:75–85PubMedCrossRef
go back to reference Jones TA, Jones SM (2007) Vestibular evoked potentials. In: Burkard RF, Eggermont JJ, Don M (eds) Auditory evoked potentials: basic principles and clinical application. Lippincott Williams & Wilkins, Baltimore, pp 622–650 Jones TA, Jones SM (2007) Vestibular evoked potentials. In: Burkard RF, Eggermont JJ, Don M (eds) Auditory evoked potentials: basic principles and clinical application. Lippincott Williams & Wilkins, Baltimore, pp 622–650
go back to reference Jones TA, Pedersen TL (1989) Short latency vestibular responses to pulsed linear acceleration. Am J Otolaryngol 10:327–335PubMedCrossRef Jones TA, Pedersen TL (1989) Short latency vestibular responses to pulsed linear acceleration. Am J Otolaryngol 10:327–335PubMedCrossRef
go back to reference Jones TA, Jones SM, Colbert S (1998) The adequate stimulus for avian short latency vestibular responses to linear translation. J Vestib Res 8:253–272PubMedCrossRef Jones TA, Jones SM, Colbert S (1998) The adequate stimulus for avian short latency vestibular responses to linear translation. J Vestib Res 8:253–272PubMedCrossRef
go back to reference Jones SM, Erway LC, Bergstrom RA, Schimenti JC, Jones TA (1999) Vestibular responses to linear acceleration are absent in otoconia-deficient C57BL/6JEi-het mice. Hear Res 135:56–60PubMedCrossRef Jones SM, Erway LC, Bergstrom RA, Schimenti JC, Jones TA (1999) Vestibular responses to linear acceleration are absent in otoconia-deficient C57BL/6JEi-het mice. Hear Res 135:56–60PubMedCrossRef
go back to reference Jones SM, Jones TA, Bell PL, Taylor MJ (2001) Compound gravity receptor polarization vectors evidenced by linear vestibular evoked potentials. Hear Res 154:54–61PubMedCrossRef Jones SM, Jones TA, Bell PL, Taylor MJ (2001) Compound gravity receptor polarization vectors evidenced by linear vestibular evoked potentials. Hear Res 154:54–61PubMedCrossRef
go back to reference Jones TA, Jones SM, Vijayakumar S, Brugeaud A, Bothwell M, Chabbert C (2011) The adequate stimulus for mammalian linear vestibular evoked potentials (VsEPs). Hear Res 280:133–140PubMedCrossRef Jones TA, Jones SM, Vijayakumar S, Brugeaud A, Bothwell M, Chabbert C (2011) The adequate stimulus for mammalian linear vestibular evoked potentials (VsEPs). Hear Res 280:133–140PubMedCrossRef
go back to reference Kato T, Shiraishi K, Eura Y, Shibata K, Sakata T, Morizono T, Soda T (1998) A ‘neural’ response with 3-ms latency evoked by loud sound in profoundly deaf patients. Audiol Neurootol 3:253–264PubMedCrossRef Kato T, Shiraishi K, Eura Y, Shibata K, Sakata T, Morizono T, Soda T (1998) A ‘neural’ response with 3-ms latency evoked by loud sound in profoundly deaf patients. Audiol Neurootol 3:253–264PubMedCrossRef
go back to reference Kingma CM, Wit HP (2010) The effect of changes in perilymphatic K+ on the vestibular evoked potential in the guinea pig. Eur Arch Otorhinolaryngol 267:1679–1684PubMedCrossRef Kingma CM, Wit HP (2010) The effect of changes in perilymphatic K+ on the vestibular evoked potential in the guinea pig. Eur Arch Otorhinolaryngol 267:1679–1684PubMedCrossRef
go back to reference Koyama H, Lewis ER, Leverenz EL, Baird RA (1982) Acute seismic sensitivity in the bullfrog ear. Brain Res 250:168–172PubMedCrossRef Koyama H, Lewis ER, Leverenz EL, Baird RA (1982) Acute seismic sensitivity in the bullfrog ear. Brain Res 250:168–172PubMedCrossRef
go back to reference Lewis ER, Parnas BR (1994) Theoretical bases of short-latency spike volleys in the peripheral vestibular system. J Vestib Res 4:189–202PubMed Lewis ER, Parnas BR (1994) Theoretical bases of short-latency spike volleys in the peripheral vestibular system. J Vestib Res 4:189–202PubMed
go back to reference Murofushi T, Kaga K (2009) Vestibular evoked myogenic potential-its basics and clinical applications. Springer, BerlinCrossRef Murofushi T, Kaga K (2009) Vestibular evoked myogenic potential-its basics and clinical applications. Springer, BerlinCrossRef
go back to reference Murofushi T, Iwasaki S, Takai Y, Takegoshi H (2005) Sound-evoked neurogenic responses with short latency of vestibular origin. Clin Neurophysiol 116:401–405PubMedCrossRef Murofushi T, Iwasaki S, Takai Y, Takegoshi H (2005) Sound-evoked neurogenic responses with short latency of vestibular origin. Clin Neurophysiol 116:401–405PubMedCrossRef
go back to reference Naganawa S, Sone M, Yamazaki M, Kawai H, Nakashima T (2011) Visualization of endolymphatic hydrops after intratympanic injection of Gd-DTPA: comparison of 2D and 3D real inversion recovery imaging. Magn Reson Med Sci 10:101–106PubMedCrossRef Naganawa S, Sone M, Yamazaki M, Kawai H, Nakashima T (2011) Visualization of endolymphatic hydrops after intratympanic injection of Gd-DTPA: comparison of 2D and 3D real inversion recovery imaging. Magn Reson Med Sci 10:101–106PubMedCrossRef
go back to reference Ochi K, Ohashi T (2001) Sound-evoked myogenic potentials and responses with 3-ms latency in auditory brainstem response. Laryngoscope 111:1818–1821PubMedCrossRef Ochi K, Ohashi T (2001) Sound-evoked myogenic potentials and responses with 3-ms latency in auditory brainstem response. Laryngoscope 111:1818–1821PubMedCrossRef
go back to reference Oei ML, Segenhout JM, Wit HP, Albers FW (2001) The vestibular evoked response to linear, alternating, acceleration pulses without acoustic masking as a parameter of vestibular function. Acta Otolaryngol 121:62–67PubMedCrossRef Oei ML, Segenhout JM, Wit HP, Albers FW (2001) The vestibular evoked response to linear, alternating, acceleration pulses without acoustic masking as a parameter of vestibular function. Acta Otolaryngol 121:62–67PubMedCrossRef
go back to reference Papathanasiou ES, Lemesiou A, Hadjiloizou S, Myrianthopoulou P, Pantzaris M, Papacostas SS (2010) A new neurogenic vestibular evoked potential (N6) recorded with the use of air-conducted sound. Otol Neurotol 31:528–535PubMedCrossRef Papathanasiou ES, Lemesiou A, Hadjiloizou S, Myrianthopoulou P, Pantzaris M, Papacostas SS (2010) A new neurogenic vestibular evoked potential (N6) recorded with the use of air-conducted sound. Otol Neurotol 31:528–535PubMedCrossRef
go back to reference Plotnik M, Sichel JY, Elidan J, Honrubia V, Sohmer H (1999) Origins of the short latency vestibular evoked potentials (VsEPs) to linear acceleration impulses. Am J Otol 20:238–243PubMed Plotnik M, Sichel JY, Elidan J, Honrubia V, Sohmer H (1999) Origins of the short latency vestibular evoked potentials (VsEPs) to linear acceleration impulses. Am J Otol 20:238–243PubMed
go back to reference Rosengren SM, Welgampola MS, Colebatch JG (2010) Vestibular evoked myogenic potentials: past, present and future. Clin Neurophysiol 121:636–651PubMedCrossRef Rosengren SM, Welgampola MS, Colebatch JG (2010) Vestibular evoked myogenic potentials: past, present and future. Clin Neurophysiol 121:636–651PubMedCrossRef
go back to reference Rosengren SM, Govender S, Colebatch JG (2011) Ocular and cervical vestibular evoked myogenic potentials produced by air- and bone-conducted stimuli: comparative properties and effects of age. Clin Neurophysiol 122:2282–2289PubMedCrossRef Rosengren SM, Govender S, Colebatch JG (2011) Ocular and cervical vestibular evoked myogenic potentials produced by air- and bone-conducted stimuli: comparative properties and effects of age. Clin Neurophysiol 122:2282–2289PubMedCrossRef
go back to reference Sakakura K, Miyashita M, Chikamatsu K, Takahashi K, Furuya N (2003) Tone burst-evoked myogenic potentials in rat neck extensor and flexor muscles. Hear Res 185:57–64PubMedCrossRef Sakakura K, Miyashita M, Chikamatsu K, Takahashi K, Furuya N (2003) Tone burst-evoked myogenic potentials in rat neck extensor and flexor muscles. Hear Res 185:57–64PubMedCrossRef
go back to reference Schuknecht HF (1975) Pathophysiology of Meniere’s disease. Otolaryngol Clin North Am 8:507–514PubMed Schuknecht HF (1975) Pathophysiology of Meniere’s disease. Otolaryngol Clin North Am 8:507–514PubMed
go back to reference Shojaku H, Zang RL, Tsubota M, Fujisaka M, Hori E, Nishijo H, Watanabe Y (2007) Effects of selective cochlear toxicity and vestibular deafferentation on vestibular evoked myogenic potentials in guinea pigs. Acta Otolaryngol 127:430–435PubMedCrossRef Shojaku H, Zang RL, Tsubota M, Fujisaka M, Hori E, Nishijo H, Watanabe Y (2007) Effects of selective cochlear toxicity and vestibular deafferentation on vestibular evoked myogenic potentials in guinea pigs. Acta Otolaryngol 127:430–435PubMedCrossRef
go back to reference Stenfelt S, Goode RL (2005a) Bone-conducted sound: physiological and clinical aspects. Otol Neurotol 26:1245–1261PubMedCrossRef Stenfelt S, Goode RL (2005a) Bone-conducted sound: physiological and clinical aspects. Otol Neurotol 26:1245–1261PubMedCrossRef
go back to reference Stenfelt S, Goode RL (2005b) Transmission properties of bone conducted sound: measurements in cadaver heads. J Acoust Soc Am 118:2373–2391PubMedCrossRef Stenfelt S, Goode RL (2005b) Transmission properties of bone conducted sound: measurements in cadaver heads. J Acoust Soc Am 118:2373–2391PubMedCrossRef
go back to reference Todd NP, Rosengren SM, Colebatch JG (2008) A source analysis of short-latency vestibular evoked potentials produced by air- and bone-conducted sound. Clin Neurophysiol 119:1881–1894PubMedCrossRef Todd NP, Rosengren SM, Colebatch JG (2008) A source analysis of short-latency vestibular evoked potentials produced by air- and bone-conducted sound. Clin Neurophysiol 119:1881–1894PubMedCrossRef
go back to reference Uzun-Coruhlu H, Curthoys IS, Jones AS (2007) Attachment of the utricular and saccular maculae to the temporal bone. Hear Res 233:77–85PubMedCrossRef Uzun-Coruhlu H, Curthoys IS, Jones AS (2007) Attachment of the utricular and saccular maculae to the temporal bone. Hear Res 233:77–85PubMedCrossRef
go back to reference Valk WL, Wit HP, Albers FW (2006) Rupture of Reissner’s membrane during acute endolymphatic hydrops in the guinea pig: a model for Meniere’s disease? Acta Otolaryngol 126:1030–1035PubMedCrossRef Valk WL, Wit HP, Albers FW (2006) Rupture of Reissner’s membrane during acute endolymphatic hydrops in the guinea pig: a model for Meniere’s disease? Acta Otolaryngol 126:1030–1035PubMedCrossRef
go back to reference Weisleder P, Jones TA, Rubel EW (1990) Peripheral generators of the vestibular evoked potentials (VsEPs) in the chick. Electroencephalogr Clin Neurophysiol 76:362–369PubMedCrossRef Weisleder P, Jones TA, Rubel EW (1990) Peripheral generators of the vestibular evoked potentials (VsEPs) in the chick. Electroencephalogr Clin Neurophysiol 76:362–369PubMedCrossRef
go back to reference Yang TH, Young YH (2005) Click-evoked myogenic potentials recorded on alert guinea pigs. Hear Res 205:277–283PubMedCrossRef Yang TH, Young YH (2005) Click-evoked myogenic potentials recorded on alert guinea pigs. Hear Res 205:277–283PubMedCrossRef
go back to reference Yang TH, Liu SH, Wang SJ, Young YH (2010) An animal model of ocular vestibular-evoked myogenic potential in guinea pigs. Exp Brain Res 205:145–152PubMedCrossRef Yang TH, Liu SH, Wang SJ, Young YH (2010) An animal model of ocular vestibular-evoked myogenic potential in guinea pigs. Exp Brain Res 205:145–152PubMedCrossRef
go back to reference Young ED, Fernandez C, Goldberg JM (1977) Responses of squirrel monkey vestibular neurons to audio-frequency sound and head vibration. Acta Otolaryngol 84:352–360PubMedCrossRef Young ED, Fernandez C, Goldberg JM (1977) Responses of squirrel monkey vestibular neurons to audio-frequency sound and head vibration. Acta Otolaryngol 84:352–360PubMedCrossRef
Metadata
Title
Evidence for the utricular origin of the vestibular short-latency-evoked potential (VsEP) to bone-conducted vibration in guinea pig
Authors
Yasuhiro Chihara
Vivian Wang
Daniel J. Brown
Publication date
01-08-2013
Publisher
Springer Berlin Heidelberg
Published in
Experimental Brain Research / Issue 2/2013
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-013-3602-5

Other articles of this Issue 2/2013

Experimental Brain Research 2/2013 Go to the issue