Skip to main content
Top
Published in: Experimental Brain Research 2/2013

01-07-2013 | Research Article

Quantifying connectivity via efferent and afferent pathways in motor control using coherence measures and joint position perturbations

Authors: S. Floor Campfens, Alfred C. Schouten, Michel J. A. M. van Putten, Herman van der Kooij

Published in: Experimental Brain Research | Issue 2/2013

Login to get access

Abstract

The applicability of corticomuscular coherence (CMC) as a connectivity measure is limited since only 40–50 % of the healthy population presents significant CMC. In this study, we applied continuous joint position perturbations to obtain a more reliable measure of connectivity in motor control. We evaluated the coherence between joint position perturbations and EEG (position-cortical coherence, PCC) and CMC. Healthy subjects performed two isotonic force tasks against the handle of a wrist manipulator. The baseline task was isometric; in the perturbed task, the handle moved continuously with small amplitude. The position perturbation signal covered frequencies between 5 and 29 Hz. In the perturbed task, all subjects had significant PCC and 86 % of the subjects had significant CMC, on both stimulus and non-stimulus frequencies. In the baseline task, CMC was present in only 45 % of the subjects, mostly on beta-band frequencies. The position perturbations during an isotonic force task elicited PCC in all subjects and elicited CMC in most subjects on both stimulus and non-stimulus frequencies. Perturbed CMC possibly arises by two separate processes: an intrinsic process, similar to the process in an unperturbed task, involving both efferent and afferent pathways; and a process related to the excitation of the afferent and efferent pathways by the perturbation. These processes cannot be separated. PCC, however, reflects connectivity via the afferent pathways only. As PCC was present in all healthy subjects, we propose this coherence as a reliable measure for connectivity in motor control via the afferent pathways.
Literature
go back to reference Abbruzzese G, Berardelli A, Rothwell JC, Day BL, Marsden CD (1985) Cerebral potentials and electromyographic responses evoked by stretch of wrist muscles in man. Exp Brain Res 58(3):544–551PubMedCrossRef Abbruzzese G, Berardelli A, Rothwell JC, Day BL, Marsden CD (1985) Cerebral potentials and electromyographic responses evoked by stretch of wrist muscles in man. Exp Brain Res 58(3):544–551PubMedCrossRef
go back to reference Amtage F, Henschel K, Schelter B, Vesper J, Timmer J, Lücking CH, Hellwig B (2009) High functional connectivity of tremor related subthalamic neurons in Parkinson’s disease. Clin Neurophysiol 120(9):1755–1761PubMedCrossRef Amtage F, Henschel K, Schelter B, Vesper J, Timmer J, Lücking CH, Hellwig B (2009) High functional connectivity of tremor related subthalamic neurons in Parkinson’s disease. Clin Neurophysiol 120(9):1755–1761PubMedCrossRef
go back to reference Baker SN (2007) Oscillatory interactions between sensorimotor cortex and the periphery. Curr Opin Neurobiol 17(6):649–655PubMedCrossRef Baker SN (2007) Oscillatory interactions between sensorimotor cortex and the periphery. Curr Opin Neurobiol 17(6):649–655PubMedCrossRef
go back to reference Baker SN, Olivier E, Lemon RN (1997) Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation. J Physiol 501(Pt 1):225–241PubMedCrossRef Baker SN, Olivier E, Lemon RN (1997) Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation. J Physiol 501(Pt 1):225–241PubMedCrossRef
go back to reference Boonstra TW, Breakspear M (2012) Neural mechanisms of intermuscular coherence: implications for the rectification of surface electromyography. J Neurophysiol 107(3):796–807PubMedCrossRef Boonstra TW, Breakspear M (2012) Neural mechanisms of intermuscular coherence: implications for the rectification of surface electromyography. J Neurophysiol 107(3):796–807PubMedCrossRef
go back to reference Bortel R, Sovka P (2007) Approximation of statistical distribution of magnitude squared coherence estimated with segment overlapping. Signal Process 87(5):1100–1117CrossRef Bortel R, Sovka P (2007) Approximation of statistical distribution of magnitude squared coherence estimated with segment overlapping. Signal Process 87(5):1100–1117CrossRef
go back to reference Braun C, Staudt M, Schmitt C, Preissl H, Birbaumer N, Gerloff C (2007) Crossed cortico-spinal motor control after capsular stroke. Eur J Neurosci 25(9):2935–2945PubMedCrossRef Braun C, Staudt M, Schmitt C, Preissl H, Birbaumer N, Gerloff C (2007) Crossed cortico-spinal motor control after capsular stroke. Eur J Neurosci 25(9):2935–2945PubMedCrossRef
go back to reference Bruns A (2004) Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches? J Neurosci Methods 137(2):321–332PubMedCrossRef Bruns A (2004) Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches? J Neurosci Methods 137(2):321–332PubMedCrossRef
go back to reference Campfens SF, Schouten AC, van der Kooij H, van Putten MJAM (2011) P7.11 Corticomuscular system tunes to external perturbations during a motor task as revealed by corticomuscular coherence. Clin Neurophysiol 122(Suppl 1):S92 Campfens SF, Schouten AC, van der Kooij H, van Putten MJAM (2011) P7.11 Corticomuscular system tunes to external perturbations during a motor task as revealed by corticomuscular coherence. Clin Neurophysiol 122(Suppl 1):S92
go back to reference Carter GC (1987) Coherence and time delay estimation. Proc IEEE 75:1235–1246CrossRef Carter GC (1987) Coherence and time delay estimation. Proc IEEE 75:1235–1246CrossRef
go back to reference Conway BA, Halliday DM, Farmer SF, Shahani U, Maas P, Weir AI, Rosenberg JR (1995) Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol 489(Pt 3):917–924PubMed Conway BA, Halliday DM, Farmer SF, Shahani U, Maas P, Weir AI, Rosenberg JR (1995) Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol 489(Pt 3):917–924PubMed
go back to reference Fang Y, Daly JJ, Sun J, Hvorat K, Fredrickson E, Pundik S, Sahgal V, Yue GH (2009) Functional corticomuscular connection during reaching is weakened following stroke. Clin Neurophysiol 120(5):994–1002PubMedCrossRef Fang Y, Daly JJ, Sun J, Hvorat K, Fredrickson E, Pundik S, Sahgal V, Yue GH (2009) Functional corticomuscular connection during reaching is weakened following stroke. Clin Neurophysiol 120(5):994–1002PubMedCrossRef
go back to reference Florin E, Gross J, Reck C, Maarouf M, Schnitzler A, Sturm V, Fink GR, Timmermann L (2010) Causality between local field potentials of the subthalamic nucleus and electromyograms of forearm muscles in Parkinson’s disease. Eur J Neurosci 31:491–498PubMedCrossRef Florin E, Gross J, Reck C, Maarouf M, Schnitzler A, Sturm V, Fink GR, Timmermann L (2010) Causality between local field potentials of the subthalamic nucleus and electromyograms of forearm muscles in Parkinson’s disease. Eur J Neurosci 31:491–498PubMedCrossRef
go back to reference Florin E, Gross J, Pfeifer J, Fink GR, Timmermann L (2011) Reliability of multivariate causality measures for neural data. J Neurosci Methods 198(2):344–358PubMedCrossRef Florin E, Gross J, Pfeifer J, Fink GR, Timmermann L (2011) Reliability of multivariate causality measures for neural data. J Neurosci Methods 198(2):344–358PubMedCrossRef
go back to reference Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9(10):474–480PubMedCrossRef Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9(10):474–480PubMedCrossRef
go back to reference Gourévitch B, Bouquin-Jeannès RL, Faucon G (2006) Linear and nonlinear causality between signals: methods, examples and neurophysiological applications. Biol Cybern 95(4):349–369PubMedCrossRef Gourévitch B, Bouquin-Jeannès RL, Faucon G (2006) Linear and nonlinear causality between signals: methods, examples and neurophysiological applications. Biol Cybern 95(4):349–369PubMedCrossRef
go back to reference Grosse P, Guerrini R, Parmeggiani L, Bonanni P, Pogosyan A, Brown P (2003) Abnormal corticomuscular and intermuscular coupling in high-frequency rhythmic myoclonus. Brain 126(Pt 2):326–342PubMedCrossRef Grosse P, Guerrini R, Parmeggiani L, Bonanni P, Pogosyan A, Brown P (2003) Abnormal corticomuscular and intermuscular coupling in high-frequency rhythmic myoclonus. Brain 126(Pt 2):326–342PubMedCrossRef
go back to reference Halliday DM, Conway BA, Farmer SF, Rosenberg JR (1998) Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans. Neurosci Lett 241(1):5–8PubMedCrossRef Halliday DM, Conway BA, Farmer SF, Rosenberg JR (1998) Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans. Neurosci Lett 241(1):5–8PubMedCrossRef
go back to reference Johnson AN, Wheaton LA, Shinohara M (2011) Attenuation of corticomuscular coherence with additional motor or non-motor task. Clin Neurophysiol 122:356–363PubMedCrossRef Johnson AN, Wheaton LA, Shinohara M (2011) Attenuation of corticomuscular coherence with additional motor or non-motor task. Clin Neurophysiol 122:356–363PubMedCrossRef
go back to reference Kaminski MJ, Blinowska KJ (1991) A new method of the description of the information flow in the brain structures. Biol Cybern 65(3):203–210PubMedCrossRef Kaminski MJ, Blinowska KJ (1991) A new method of the description of the information flow in the brain structures. Biol Cybern 65(3):203–210PubMedCrossRef
go back to reference Kristeva R, Patino L, Omlor W (2007) Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output. Neuroimage 36(3):785–792PubMedCrossRef Kristeva R, Patino L, Omlor W (2007) Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output. Neuroimage 36(3):785–792PubMedCrossRef
go back to reference Kristeva-Feige R, Fritsch C, Timmer J, Lücking C-H (2002) Effects of attention and precision of exerted force on beta range EEG-EMG synchronization during a maintained motor contraction task. Clin Neurophysiol 113(1):124–131PubMedCrossRef Kristeva-Feige R, Fritsch C, Timmer J, Lücking C-H (2002) Effects of attention and precision of exerted force on beta range EEG-EMG synchronization during a maintained motor contraction task. Clin Neurophysiol 113(1):124–131PubMedCrossRef
go back to reference MacKinnon CD, Verrier MC, Tatton WG (2000) Motor cortical potentials precede long-latency EMG activity evoked by imposed displacements of the human wrist. Exp Brain Res 131(4):477–490PubMedCrossRef MacKinnon CD, Verrier MC, Tatton WG (2000) Motor cortical potentials precede long-latency EMG activity evoked by imposed displacements of the human wrist. Exp Brain Res 131(4):477–490PubMedCrossRef
go back to reference Masakado Y, Nielsen JB (2008) Task-and phase-related changes in cortico-muscular coherence. Keio J Med 57(1):50–56PubMedCrossRef Masakado Y, Nielsen JB (2008) Task-and phase-related changes in cortico-muscular coherence. Keio J Med 57(1):50–56PubMedCrossRef
go back to reference Matthews PB (1993) Interaction between short- and long-latency components of the human stretch reflex during sinusoidal stretching. J Physiol 462:503–527PubMed Matthews PB (1993) Interaction between short- and long-latency components of the human stretch reflex during sinusoidal stretching. J Physiol 462:503–527PubMed
go back to reference Mendez-Balbuena I, Huethe F, Schulte-Mönting J, Leonhart R, Manjarrez E, Kristeva R (2011) Corticomuscular coherence reflects interindividual differences in the state of the corticomuscular network during low-level static and dynamic forces. Cereb Cortex 22(3):628–638PubMedCrossRef Mendez-Balbuena I, Huethe F, Schulte-Mönting J, Leonhart R, Manjarrez E, Kristeva R (2011) Corticomuscular coherence reflects interindividual differences in the state of the corticomuscular network during low-level static and dynamic forces. Cereb Cortex 22(3):628–638PubMedCrossRef
go back to reference Meng F, Tong K-Y, Chan S-T, Wong W-W, Lui K-H, Tang K-W, Gao X, Gao S (2009) Cerebral plasticity after subcortical stroke as revealed by cortico-muscular coherence. IEEE Trans Neural Syst Rehabil Eng 17(3):234–243PubMedCrossRef Meng F, Tong K-Y, Chan S-T, Wong W-W, Lui K-H, Tang K-W, Gao X, Gao S (2009) Cerebral plasticity after subcortical stroke as revealed by cortico-muscular coherence. IEEE Trans Neural Syst Rehabil Eng 17(3):234–243PubMedCrossRef
go back to reference Mima T, Simpkins N, Oluwatimilehin T, Hallett M (1999) Force level modulates human cortical oscillatory activities. Neurosci Lett 275(2):77–80PubMedCrossRef Mima T, Simpkins N, Oluwatimilehin T, Hallett M (1999) Force level modulates human cortical oscillatory activities. Neurosci Lett 275(2):77–80PubMedCrossRef
go back to reference Mima T, Matsuoka T, Hallett M (2001a) Information flow from the sensorimotor cortex to muscle in humans. Clin Neurophysiol 112(1):122–126PubMedCrossRef Mima T, Matsuoka T, Hallett M (2001a) Information flow from the sensorimotor cortex to muscle in humans. Clin Neurophysiol 112(1):122–126PubMedCrossRef
go back to reference Mima T, Toma K, Koshy B, Hallett M (2001b) Coherence between cortical and muscular activities after subcortical stroke. Stroke 32(11):2597–2601PubMedCrossRef Mima T, Toma K, Koshy B, Hallett M (2001b) Coherence between cortical and muscular activities after subcortical stroke. Stroke 32(11):2597–2601PubMedCrossRef
go back to reference Omlor W, Patino L, Mendez-Balbuena I, Schulte-Mönting J, Kristeva R (2011) Corticospinal beta-range coherence is highly dependent on the pre-stationary motor state. J Neurosci 31(22):8037–8045PubMedCrossRef Omlor W, Patino L, Mendez-Balbuena I, Schulte-Mönting J, Kristeva R (2011) Corticospinal beta-range coherence is highly dependent on the pre-stationary motor state. J Neurosci 31(22):8037–8045PubMedCrossRef
go back to reference Oostenveld R, Praamstra P (2001) The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol 112(4):713–719PubMedCrossRef Oostenveld R, Praamstra P (2001) The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol 112(4):713–719PubMedCrossRef
go back to reference Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:156869PubMedCrossRef Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:156869PubMedCrossRef
go back to reference Perez MA, Lundbye-Jensen J, Nielsen JB (2006) Changes in corticospinal drive to spinal motoneurones following visuo-motor skill learning in humans. J Physiol 573(Pt 3):843–855PubMedCrossRef Perez MA, Lundbye-Jensen J, Nielsen JB (2006) Changes in corticospinal drive to spinal motoneurones following visuo-motor skill learning in humans. J Physiol 573(Pt 3):843–855PubMedCrossRef
go back to reference Pintelon R, Schoukens J (2001) System identification. A frequency domain approach. IEEE Press, New YorkCrossRef Pintelon R, Schoukens J (2001) System identification. A frequency domain approach. IEEE Press, New YorkCrossRef
go back to reference Pohja M, Salenius S (2003) Modulation of cortex-muscle oscillatory interaction by ischaemia-induced deafferentation. NeuroReport 14(3):321–324PubMedCrossRef Pohja M, Salenius S (2003) Modulation of cortex-muscle oscillatory interaction by ischaemia-induced deafferentation. NeuroReport 14(3):321–324PubMedCrossRef
go back to reference Riddle CN, Baker SN (2005) Manipulation of peripheral neural feedback loops alters human corticomuscular coherence. J Physiol 566(Pt 2):625–639PubMedCrossRef Riddle CN, Baker SN (2005) Manipulation of peripheral neural feedback loops alters human corticomuscular coherence. J Physiol 566(Pt 2):625–639PubMedCrossRef
go back to reference Riddle CN, Baker SN (2006) Digit displacement, not object compliance, underlies task dependent modulations in human corticomuscular coherence. Neuroimage 33(2):618–627PubMedCrossRef Riddle CN, Baker SN (2006) Digit displacement, not object compliance, underlies task dependent modulations in human corticomuscular coherence. Neuroimage 33(2):618–627PubMedCrossRef
go back to reference Schouten AC, Campfens SF (2012) Directional coherence disentangles causality within the sensorimotor loop, but cannot open the loop. J Physiol 590(Pt 10):2529–2530; author reply 2531–2523. doi:10.1113/jphysiol.2012.228684 Schouten AC, Campfens SF (2012) Directional coherence disentangles causality within the sensorimotor loop, but cannot open the loop. J Physiol 590(Pt 10):2529–2530; author reply 2531–2523. doi:10.​1113/​jphysiol.​2012.​228684
go back to reference Seiss E, Hesse CW, Drane S, Oostenveld R, Wing AM, Praamstra P (2002) Proprioception-related evoked potentials: origin and sensitivity to movement parameters. Neuroimage 17(1):461–468PubMedCrossRef Seiss E, Hesse CW, Drane S, Oostenveld R, Wing AM, Praamstra P (2002) Proprioception-related evoked potentials: origin and sensitivity to movement parameters. Neuroimage 17(1):461–468PubMedCrossRef
go back to reference Stam CJ, van Straaten ECW (2012) The organization of physiological brain networks. Clin Neurophysiol 123(6):1067–1087PubMedCrossRef Stam CJ, van Straaten ECW (2012) The organization of physiological brain networks. Clin Neurophysiol 123(6):1067–1087PubMedCrossRef
go back to reference Ushiyama J, Suzuki T, Masakado Y, Hase K, Kimura A, Liu M, Ushiba J (2011) Between-subject variance in the magnitude of corticomuscular coherence during tonic isometric contraction of tibialis anterior muscle in healthy young adults. J Neurophysiol 106(3):1379–1388PubMedCrossRef Ushiyama J, Suzuki T, Masakado Y, Hase K, Kimura A, Liu M, Ushiba J (2011) Between-subject variance in the magnitude of corticomuscular coherence during tonic isometric contraction of tibialis anterior muscle in healthy young adults. J Neurophysiol 106(3):1379–1388PubMedCrossRef
go back to reference van der Meer JN, Schouten AC, Bour LJ, de Vlugt E, van Rootselaar AF, van der Helm FCT, Tijssen MAJ (2010) The intermuscular 3–7 Hz drive is not affected by distal proprioceptive input in myoclonus-dystonia. Exp Brain Res 202(3):1633–1642CrossRef van der Meer JN, Schouten AC, Bour LJ, de Vlugt E, van Rootselaar AF, van der Helm FCT, Tijssen MAJ (2010) The intermuscular 3–7 Hz drive is not affected by distal proprioceptive input in myoclonus-dystonia. Exp Brain Res 202(3):1633–1642CrossRef
go back to reference van Rootselaar A-F, Maurits NM, Koelman JHTM, van der Hoeven JH, Bour LJ, Leenders KL, Brown P, Tijssen MAJ (2006) Coherence analysis differentiates between cortical myoclonic tremor and essential tremor. Mov Disord 21(2):215–222PubMedCrossRef van Rootselaar A-F, Maurits NM, Koelman JHTM, van der Hoeven JH, Bour LJ, Leenders KL, Brown P, Tijssen MAJ (2006) Coherence analysis differentiates between cortical myoclonic tremor and essential tremor. Mov Disord 21(2):215–222PubMedCrossRef
go back to reference van Strien JW (1992) Classificatie van links-en rechtshandige proefpersonen. Nederlands tijdschrift voor de Psychologie 47:88–92 van Strien JW (1992) Classificatie van links-en rechtshandige proefpersonen. Nederlands tijdschrift voor de Psychologie 47:88–92
go back to reference Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4):229–239PubMedCrossRef Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4):229–239PubMedCrossRef
go back to reference Williams ER, Baker SN (2009) Renshaw cell recurrent inhibition improves physiological tremor by reducing corticomuscular coupling at 10 Hz. J Neurosci 29(20):6616–6624PubMedCrossRef Williams ER, Baker SN (2009) Renshaw cell recurrent inhibition improves physiological tremor by reducing corticomuscular coupling at 10 Hz. J Neurosci 29(20):6616–6624PubMedCrossRef
go back to reference Williams ER, Soteropoulos DS, Baker SN (2009) Coherence between motor cortical activity and peripheral discontinuities during slow finger movements. J Neurophysiol 102(2):1296–1309PubMedCrossRef Williams ER, Soteropoulos DS, Baker SN (2009) Coherence between motor cortical activity and peripheral discontinuities during slow finger movements. J Neurophysiol 102(2):1296–1309PubMedCrossRef
go back to reference Witte M, Patino L, Andrykiewicz A, Hepp-Reymond M-C, Kristeva R (2007) Modulation of human corticomuscular beta-range coherence with low-level static forces. Eur J Neurosci 26(12):3564–3570PubMedCrossRef Witte M, Patino L, Andrykiewicz A, Hepp-Reymond M-C, Kristeva R (2007) Modulation of human corticomuscular beta-range coherence with low-level static forces. Eur J Neurosci 26(12):3564–3570PubMedCrossRef
go back to reference Yang Q, Fang Y, Sun C-K, Siemionow V, Ranganathan VK, Khoshknabi D, Davis MP, Walsh D, Sahgal V, Yue GH (2009) Weakening of functional corticomuscular coupling during muscle fatigue. Brain Res 1250:101–112PubMedCrossRef Yang Q, Fang Y, Sun C-K, Siemionow V, Ranganathan VK, Khoshknabi D, Davis MP, Walsh D, Sahgal V, Yue GH (2009) Weakening of functional corticomuscular coupling during muscle fatigue. Brain Res 1250:101–112PubMedCrossRef
go back to reference Yang Q, Siemionow V, Yao W, Sahgal V, Yue GH (2010) Single-trial EEG-EMG coherence analysis reveals muscle fatigue-related progressive alterations in corticomuscular coupling. IEEE Trans Neural Syst Rehabil Eng 18(2):97–106 Yang Q, Siemionow V, Yao W, Sahgal V, Yue GH (2010) Single-trial EEG-EMG coherence analysis reveals muscle fatigue-related progressive alterations in corticomuscular coupling. IEEE Trans Neural Syst Rehabil Eng 18(2):97–106
go back to reference Yao J, Dewald JPA (2006) Cortico-muscular communication during the generation of static shoulder abduction torque in upper limb following stroke. Conf Proc IEEE Eng Med Biol Soc 1:181–184PubMed Yao J, Dewald JPA (2006) Cortico-muscular communication during the generation of static shoulder abduction torque in upper limb following stroke. Conf Proc IEEE Eng Med Biol Soc 1:181–184PubMed
Metadata
Title
Quantifying connectivity via efferent and afferent pathways in motor control using coherence measures and joint position perturbations
Authors
S. Floor Campfens
Alfred C. Schouten
Michel J. A. M. van Putten
Herman van der Kooij
Publication date
01-07-2013
Publisher
Springer-Verlag
Published in
Experimental Brain Research / Issue 2/2013
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-013-3545-x

Other articles of this Issue 2/2013

Experimental Brain Research 2/2013 Go to the issue