Skip to main content
Top
Published in: Experimental Brain Research 1/2012

01-11-2012 | Research Article

Electrocorticographic (ECoG) correlates of human arm movements

Authors: Nicholas R. Anderson, Tim Blakely, Gerwin Schalk, Eric C. Leuthardt, Daniel W. Moran

Published in: Experimental Brain Research | Issue 1/2012

Login to get access

Abstract

Invasive and non-invasive brain–computer interface (BCI) studies have long focused on the motor cortex for kinematic control of artificial devices. Most of these studies have used single-neuron recordings or electroencephalography (EEG). Electrocorticography (ECoG) is a relatively new recording modality in BCI research that has primarily been built on successes in EEG recordings. We built on prior experiments related to single-neuron recording and quantitatively compare the extent to which different brain regions reflect kinematic tuning parameters of hand speed, direction, and velocity in both a reaching and tracing task in humans. Hand and arm movement experiments using ECoG have shown positive results before, but the tasks were not designed to tease out which kinematics are encoded. In non-human primates, the relationships among these kinematics have been more carefully documented, and we sought to begin elucidating that relationship in humans using ECoG. The largest modulation in ECoG activity for direction, speed, and velocity representation was found in the primary motor cortex. We also found consistent cosine tuning across both tasks, to hand direction and velocity in the high gamma band (70–160 Hz). Thus, the results of this study clarify the neural substrates involved in encoding aspects of motor preparation and execution and confirm the important role of the motor cortex in BCI applications.
Literature
go back to reference Baker SN, Philbin N, Spinks R, Pinches EM, Wolpert DM, MacManus DG, Pauluis Q, Lemon RN (1999) Multiple single unit recording in the cortex of monkeys using independently moveable microelectrodes. J Neurosci Methods 94(1):5–17PubMedCrossRef Baker SN, Philbin N, Spinks R, Pinches EM, Wolpert DM, MacManus DG, Pauluis Q, Lemon RN (1999) Multiple single unit recording in the cortex of monkeys using independently moveable microelectrodes. J Neurosci Methods 94(1):5–17PubMedCrossRef
go back to reference Blake AJ, Rodgers FC, Bassuener A, Hippensteel JA, Pearce TM, Pearce TR, Zarnowska ED, Pearce RA, Williams JC (2010) A microfluidic brain slice perfusion chamber for multisite recording using penetrating electrodes. J Neurosci Methods. doi:10.1016/j.jneumeth.2010.02.017 PubMed Blake AJ, Rodgers FC, Bassuener A, Hippensteel JA, Pearce TM, Pearce TR, Zarnowska ED, Pearce RA, Williams JC (2010) A microfluidic brain slice perfusion chamber for multisite recording using penetrating electrodes. J Neurosci Methods. doi:10.​1016/​j.​jneumeth.​2010.​02.​017 PubMed
go back to reference Bullara LA, Agnew WF, Yuen TG, Jacques S, Pudenz RH (1979) Evaluation of electrode array material for neural prostheses. Neurosurgery 5(6):681–686PubMedCrossRef Bullara LA, Agnew WF, Yuen TG, Jacques S, Pudenz RH (1979) Evaluation of electrode array material for neural prostheses. Neurosurgery 5(6):681–686PubMedCrossRef
go back to reference Caminiti R, Johnson PB, Urbano A (1990) Making arm movements within different parts of space: dynamic aspects in the primate motor cortex. J Neurosci 10(7):2039–2058PubMed Caminiti R, Johnson PB, Urbano A (1990) Making arm movements within different parts of space: dynamic aspects in the primate motor cortex. J Neurosci 10(7):2039–2058PubMed
go back to reference Crone NE, Miglioretti DL, Gordon B, Lesser RP (1998) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain 121(Pt 12):2301–2315PubMedCrossRef Crone NE, Miglioretti DL, Gordon B, Lesser RP (1998) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain 121(Pt 12):2301–2315PubMedCrossRef
go back to reference Dobelle WH, Stensaas SS, Mladejovsky MG, Smith JB (1973) A prosthesis for the deaf based on cortical stimulation. Ann Otol Rhinol Laryngol 82(4):445–463PubMed Dobelle WH, Stensaas SS, Mladejovsky MG, Smith JB (1973) A prosthesis for the deaf based on cortical stimulation. Ann Otol Rhinol Laryngol 82(4):445–463PubMed
go back to reference Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2(11):1527–1537PubMed Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2(11):1527–1537PubMed
go back to reference Georgopoulos A, Lurito J, Petrides M, Schwartz A, Massey J (1989) Mental rotation of the neuronal population vector. Science 243:234–236PubMedCrossRef Georgopoulos A, Lurito J, Petrides M, Schwartz A, Massey J (1989) Mental rotation of the neuronal population vector. Science 243:234–236PubMedCrossRef
go back to reference Heldman DA, Wang W, Chan SS, Moran DW (2006) Local field potential spectral tuning in motor cortex during reaching. IEEE Trans Neural Syst Rehabil Eng 14(2):180–183PubMedCrossRef Heldman DA, Wang W, Chan SS, Moran DW (2006) Local field potential spectral tuning in motor cortex during reaching. IEEE Trans Neural Syst Rehabil Eng 14(2):180–183PubMedCrossRef
go back to reference Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JPD-n (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171PubMedCrossRef Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JPD-n (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171PubMedCrossRef
go back to reference Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW (2004) A brain-computer interface using electrocorticographic signals in humans. J Neural Eng 1(2):63–71PubMedCrossRef Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW (2004) A brain-computer interface using electrocorticographic signals in humans. J Neural Eng 1(2):63–71PubMedCrossRef
go back to reference Leuthardt EC, Miller KJ, Schalk G, Rao RPN, Ojemann JG (2006a) Electrocorticography-based brain computer interface—The Seattle Experience. IEEE Trans Neural Syst Rehabil Eng 14(2):194–198 Leuthardt EC, Miller KJ, Schalk G, Rao RPN, Ojemann JG (2006a) Electrocorticography-based brain computer interface—The Seattle Experience. IEEE Trans Neural Syst Rehabil Eng 14(2):194–198
go back to reference Leuthardt EC, Schalk G, Moran D, Ojemann JG (2006b) The emerging world of motor neuroprosthetics. A neurosurgical perspective. Neurosurgery 59(1):1–14PubMedCrossRef Leuthardt EC, Schalk G, Moran D, Ojemann JG (2006b) The emerging world of motor neuroprosthetics. A neurosurgical perspective. Neurosurgery 59(1):1–14PubMedCrossRef
go back to reference Liu X, McCreery DB, Carter RR, Bullara LA, Yuen TG, Agnew WF (1999) Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes. IEEE Trans Rehabil Eng 7(3):315–326PubMedCrossRef Liu X, McCreery DB, Carter RR, Bullara LA, Yuen TG, Agnew WF (1999) Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes. IEEE Trans Rehabil Eng 7(3):315–326PubMedCrossRef
go back to reference Moran DW, Schwartz AB (1999a) Motor cortical representation of speed and direction during reaching. J Neurophysiol 82(5):2676–2692PubMed Moran DW, Schwartz AB (1999a) Motor cortical representation of speed and direction during reaching. J Neurophysiol 82(5):2676–2692PubMed
go back to reference Moran DW, Schwartz AB (1999b) Motor cortical activity during drawing movements: population representation during spiral tracing. J Neurophysiol 82(5):2693–2704PubMed Moran DW, Schwartz AB (1999b) Motor cortical activity during drawing movements: population representation during spiral tracing. J Neurophysiol 82(5):2693–2704PubMed
go back to reference Nijboer F, Sellers EW, Mellinger J, Jordan MA, Matuz T, Furdea A, Halder S, Mochty U, Krusienski DJ, Vaughan TM, Wolpaw JR, Birbaumer N, Kubler A (2008) A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol 119(8):1909–1916. doi:10.1016/j.clinph.2008.03.034 PubMedCrossRef Nijboer F, Sellers EW, Mellinger J, Jordan MA, Matuz T, Furdea A, Halder S, Mochty U, Krusienski DJ, Vaughan TM, Wolpaw JR, Birbaumer N, Kubler A (2008) A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol 119(8):1909–1916. doi:10.​1016/​j.​clinph.​2008.​03.​034 PubMedCrossRef
go back to reference Nunez PL, Srinivasan R (2006) Electric fields of the brain: The neurophysics of EEG, 2nd edn. Oxford University Press, OxfordCrossRef Nunez PL, Srinivasan R (2006) Electric fields of the brain: The neurophysics of EEG, 2nd edn. Oxford University Press, OxfordCrossRef
go back to reference Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in C Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in C
go back to reference Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR (2004) BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng 51(6):1034–1043PubMedCrossRef Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR (2004) BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng 51(6):1034–1043PubMedCrossRef
go back to reference Schalk G, Kubánek J, Miller KJ, Anderson NR, Leuthardt EC, Ojemann JG, Limbrick D, Moran D, Gerhardt LA, Wolpaw JR (2007a) Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J Neural Eng 4(3):264. doi: 10.1088/1741-2560/4/3/012 Schalk G, Kubánek J, Miller KJ, Anderson NR, Leuthardt EC, Ojemann JG, Limbrick D, Moran D, Gerhardt LA, Wolpaw JR (2007a) Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J Neural Eng 4(3):264. doi: 10.​1088/​1741-2560/​4/​3/​012
go back to reference Schalk G, Kubanek J, Miller KJ, Anderson NR, Leuthardt EC, Ojemann JG, Limbrick D, Moran D, Gerhardt LA, Wolpaw JR (2007b) Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J Neural Eng 4(3):264–275. doi:10.1088/1741-2560/4/3/012 PubMedCrossRef Schalk G, Kubanek J, Miller KJ, Anderson NR, Leuthardt EC, Ojemann JG, Limbrick D, Moran D, Gerhardt LA, Wolpaw JR (2007b) Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J Neural Eng 4(3):264–275. doi:10.​1088/​1741-2560/​4/​3/​012 PubMedCrossRef
go back to reference Schwartz AB, Moran DW (1999) Motor cortical activity during drawing movements: population representation during lemniscate tracing. J Neurophysiol 82(5):2705–2718PubMed Schwartz AB, Moran DW (1999) Motor cortical activity during drawing movements: population representation during lemniscate tracing. J Neurophysiol 82(5):2705–2718PubMed
go back to reference Schwartz AB, Kettner RE, Georgopoulos AP (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement. J Neurosci 8(8):2913–2927PubMed Schwartz AB, Kettner RE, Georgopoulos AP (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement. J Neurosci 8(8):2913–2927PubMed
go back to reference Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP (2002) Instant neural control of a movement signal. Nature 416(6877):141–142PubMedCrossRef Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP (2002) Instant neural control of a movement signal. Nature 416(6877):141–142PubMedCrossRef
go back to reference Taylor DM, Tillery SI, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296(5574):1829–1832PubMedCrossRef Taylor DM, Tillery SI, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296(5574):1829–1832PubMedCrossRef
go back to reference Velliste M, Pere S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453:1098–1101. doi: 10.1038/nature06996 Velliste M, Pere S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453:1098–1101. doi: 10.​1038/​nature06996
go back to reference Wolpaw JR, Birbaumer N (2005) Brain-computer interfaces for communication and control. Textbook of neural repair and rehabilitation. Cambridge University Press, Cambridge Wolpaw JR, Birbaumer N (2005) Brain-computer interfaces for communication and control. Textbook of neural repair and rehabilitation. Cambridge University Press, Cambridge
go back to reference Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791PubMedCrossRef Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791PubMedCrossRef
Metadata
Title
Electrocorticographic (ECoG) correlates of human arm movements
Authors
Nicholas R. Anderson
Tim Blakely
Gerwin Schalk
Eric C. Leuthardt
Daniel W. Moran
Publication date
01-11-2012
Publisher
Springer-Verlag
Published in
Experimental Brain Research / Issue 1/2012
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-012-3226-1

Other articles of this Issue 1/2012

Experimental Brain Research 1/2012 Go to the issue