Skip to main content
Top
Published in: Experimental Brain Research 3-4/2010

01-12-2010 | Research Article

Transcranial direct current stimulation affects visual perception measured by threshold perimetry

Authors: Antje Kraft, Jasper Roehmel, Manuel C. Olma, Sein Schmidt, Kerstin Irlbacher, Stephan A. Brandt

Published in: Experimental Brain Research | Issue 3-4/2010

Login to get access

Abstract

In this study, we aimed to characterize the effect of anodal and cathodal direct current stimulation (tDCS) on contrast sensitivity inside the central 10 degrees of the visual field in healthy subjects. Distinct eccentricities were investigated separately, since at the cortical level, more central regions of the visual field are represented closer to the occipital pole, i.e. closer to the polarizing electrodes, than are the more peripheral regions. Using a double-blind and sham-controlled within-subject design, we measured the effect of stimulation and potential learning effect separately across testing days. Anodal stimulation of the visual cortex compared to sham stimulation yielded a significant increase in contrast sensitivity within 8° of the visual field. A significant increase in contrast sensitivity between the conditions “pre” and “post” anodal stimulation was only obtained for the central positions at eccentricities smaller than 2°. Cathodal stimulation of the visual cortex did not affect contrast sensitivity at either eccentricity. Perceptual learning across testing days was only observed for threshold perimetry before stimulation. Measuring contrast sensitivity changes after tDCS with a standard clinical tool such as threshold perimetry may provide an interesting perspective in assessing therapeutic effects of tDCS in ophthalmological or neurological defects (e.g. with foveal sparing vs. foveal splitting).
Footnotes
1
It is shown that SITA sensitivity is higher than full thresholds (Artes et al. 2002).
 
2
Units to express luminance in perimetry are apostilbs (absolute unit of light) and decibels (logarithmic unit). If the apostilb value increases, the intensity of light increases, whereas if the decibel value increases, the intensity of light decreases.
 
3
For each testing day, dB values were averaged across distinct stimulation types per testing day. It is important to note that the type of stimulation (anodal, cathodal, sham stimulation) was counterbalanced across subjects and testing days.
 
Literature
go back to reference Accornero N, Li Voti P, La Riccia M, Gregori B (2007) Visual evoked potentials modulation during direct current cortical polarization. Exp Brain Res 178(2):261–266CrossRefPubMed Accornero N, Li Voti P, La Riccia M, Gregori B (2007) Visual evoked potentials modulation during direct current cortical polarization. Exp Brain Res 178(2):261–266CrossRefPubMed
go back to reference Antal A, Paulus W (2008) Transcranial direct current stimulation and visual perception. Perception 37(3):367–374CrossRefPubMed Antal A, Paulus W (2008) Transcranial direct current stimulation and visual perception. Perception 37(3):367–374CrossRefPubMed
go back to reference Antal A, Nitsche MA, Paulus W (2001) External modulation of visual perception in humans. Neuroreport 12(16):3553–3555CrossRefPubMed Antal A, Nitsche MA, Paulus W (2001) External modulation of visual perception in humans. Neuroreport 12(16):3553–3555CrossRefPubMed
go back to reference Antal A, Kincses TZ, Nitsche MA, Paulus W (2003a) Manipulation of phosphene thresholds by transcranial direct current stimulation in man. Exp Brain Res 150(3):375–378PubMed Antal A, Kincses TZ, Nitsche MA, Paulus W (2003a) Manipulation of phosphene thresholds by transcranial direct current stimulation in man. Exp Brain Res 150(3):375–378PubMed
go back to reference Antal A, Kincses TZ, Nitsche MA, Paulus W (2003b) Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human. Neuropsychologia 41(13):1802–1807CrossRefPubMed Antal A, Kincses TZ, Nitsche MA, Paulus W (2003b) Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human. Neuropsychologia 41(13):1802–1807CrossRefPubMed
go back to reference Antal A, Kincses TZ, Nitsche MA, Bartfai O, Paulus W (2004a) Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Invest Ophthalmol Vis Sci 45(2):702–707CrossRefPubMed Antal A, Kincses TZ, Nitsche MA, Bartfai O, Paulus W (2004a) Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Invest Ophthalmol Vis Sci 45(2):702–707CrossRefPubMed
go back to reference Antal A, Nitsche MA, Kruse W, Kincses TZ, Hoffmann KP, Paulus W (2004b) Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. J Cogn Neurosci 16(4):521–527CrossRefPubMed Antal A, Nitsche MA, Kruse W, Kincses TZ, Hoffmann KP, Paulus W (2004b) Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. J Cogn Neurosci 16(4):521–527CrossRefPubMed
go back to reference Antal A, Nitsche MA, Paulus W (2006) Transcranial direct current stimulation and the visual cortex. Brain Res Bull 68(6):459–463CrossRefPubMed Antal A, Nitsche MA, Paulus W (2006) Transcranial direct current stimulation and the visual cortex. Brain Res Bull 68(6):459–463CrossRefPubMed
go back to reference Antal A, Terney D, Poreisz C, Paulus W (2007) Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. Eur J Neurosci 26(9):2687–2691CrossRefPubMed Antal A, Terney D, Poreisz C, Paulus W (2007) Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. Eur J Neurosci 26(9):2687–2691CrossRefPubMed
go back to reference Artes PH, Iwase A, Ohno Y, Kitazawa Y, Chauhan BC (2002) Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies. Invest Ophthalmol Vis Sci 43(8):2654–2659PubMed Artes PH, Iwase A, Ohno Y, Kitazawa Y, Chauhan BC (2002) Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies. Invest Ophthalmol Vis Sci 43(8):2654–2659PubMed
go back to reference Beck RW, Bergstrom TJ, Lichter PR (1985) A clinical comparison of visual field testing with a new automated perimeter, the Humphrey Field Analyzer, and the Goldmann perimeter. Ophthalmology 92(1):77–82PubMed Beck RW, Bergstrom TJ, Lichter PR (1985) A clinical comparison of visual field testing with a new automated perimeter, the Humphrey Field Analyzer, and the Goldmann perimeter. Ophthalmology 92(1):77–82PubMed
go back to reference Cutzu F, Tsotsos JK (2003) The selective tuning model of attention: psychophysical evidence for a suppressive annulus around an attended item. Vision Res 43(2):205–219CrossRefPubMed Cutzu F, Tsotsos JK (2003) The selective tuning model of attention: psychophysical evidence for a suppressive annulus around an attended item. Vision Res 43(2):205–219CrossRefPubMed
go back to reference Dockery CA, Hueckel-Weng R, Birbaumer N, Plewnia C (2009) Enhancement of planning ability by transcranial direct current stimulation. J Neurosci 29(22):7271–7277CrossRefPubMed Dockery CA, Hueckel-Weng R, Birbaumer N, Plewnia C (2009) Enhancement of planning ability by transcranial direct current stimulation. J Neurosci 29(22):7271–7277CrossRefPubMed
go back to reference Gardiner SK, Demirel S, Johnson CA (2008) Is there evidence for continued learning over multiple years in perimetry? Optom Vis Sci 85(11):1043–1048CrossRefPubMed Gardiner SK, Demirel S, Johnson CA (2008) Is there evidence for continued learning over multiple years in perimetry? Optom Vis Sci 85(11):1043–1048CrossRefPubMed
go back to reference Heijl A, Bengtsson B (1996) The effect of perimetric experience in patients with glaucoma. Arch Ophthalmol 114(1):19–22PubMed Heijl A, Bengtsson B (1996) The effect of perimetric experience in patients with glaucoma. Arch Ophthalmol 114(1):19–22PubMed
go back to reference Heijl A, Lindgren G, Olsson J (1989) The effect of perimetric experience in normal subjects. Arch Ophthalmol 107(1):81–86PubMed Heijl A, Lindgren G, Olsson J (1989) The effect of perimetric experience in normal subjects. Arch Ophthalmol 107(1):81–86PubMed
go back to reference Hong S, Na K, Kim CY, Seong GJ (2007) Learning effect of Humphrey Matrix perimetry. Can J Ophthalmol 42(5):707–711CrossRefPubMed Hong S, Na K, Kim CY, Seong GJ (2007) Learning effect of Humphrey Matrix perimetry. Can J Ophthalmol 42(5):707–711CrossRefPubMed
go back to reference Kraft A, Grimsen C, Trenner D, Kehrer S, Lipfert A, Köhnlein M, Fahle M, Brandt SA (2010) Specificity of fast perceptual learning in shape localisation tasks based on detection versus form discrimination. Vision Res 50:473–478CrossRefPubMed Kraft A, Grimsen C, Trenner D, Kehrer S, Lipfert A, Köhnlein M, Fahle M, Brandt SA (2010) Specificity of fast perceptual learning in shape localisation tasks based on detection versus form discrimination. Vision Res 50:473–478CrossRefPubMed
go back to reference Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(Pt 3):633–639CrossRefPubMed Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(Pt 3):633–639CrossRefPubMed
go back to reference Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57:1899–1901PubMed Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57:1899–1901PubMed
go back to reference Nitsche MA, Nitsche MS, Klein CC, Tergau F, Rothwell JC, Paulus W (2003) Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol 114:600–604CrossRefPubMed Nitsche MA, Nitsche MS, Klein CC, Tergau F, Rothwell JC, Paulus W (2003) Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol 114:600–604CrossRefPubMed
go back to reference Nitsche MA, Doemkes S, Karaköse T, Antal A, Liebetanz D, Lang N, Tergau F, Paulus W (2007) Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol 97(4):3109–3117CrossRefPubMed Nitsche MA, Doemkes S, Karaköse T, Antal A, Liebetanz D, Lang N, Tergau F, Paulus W (2007) Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol 97(4):3109–3117CrossRefPubMed
go back to reference Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F, Pascual-Leone A (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimul (3):206–223 Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F, Pascual-Leone A (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimul (3):206–223
go back to reference Papp A, Kis K, Németh J (2001) Conversion formulas between automated-perimetry indexes as measured by two different types of instrument. Ophthalmologica 215(2):87–90CrossRefPubMed Papp A, Kis K, Németh J (2001) Conversion formulas between automated-perimetry indexes as measured by two different types of instrument. Ophthalmologica 215(2):87–90CrossRefPubMed
go back to reference Putnam TJ, Liebman S (1942) Cortical representation of the macula lutea. Arch Opthalmol 28:415–443 Putnam TJ, Liebman S (1942) Cortical representation of the macula lutea. Arch Opthalmol 28:415–443
go back to reference Reis J, Robertson E, Krakauer JW, Rothwell J, Marshall L, Gerloff C, Wassermann E, Pascual-Leone A, Hummel F, Celnik PA, Classen J, Floel A, Ziemann U, Paulus W, Siebner HR, Born J, Cohen LG (2008) Consensus: “can tDCS and TMS enhance motor learning and memory formation?”. Brain Stimul 1(4):363–369CrossRef Reis J, Robertson E, Krakauer JW, Rothwell J, Marshall L, Gerloff C, Wassermann E, Pascual-Leone A, Hummel F, Celnik PA, Classen J, Floel A, Ziemann U, Paulus W, Siebner HR, Born J, Cohen LG (2008) Consensus: “can tDCS and TMS enhance motor learning and memory formation?”. Brain Stimul 1(4):363–369CrossRef
go back to reference Talbot SA, Marshall WH (1941) Physiological studies on neural mechanisms of visual localization and discrimination. Am J Opthalmol 24:1255–1263 Talbot SA, Marshall WH (1941) Physiological studies on neural mechanisms of visual localization and discrimination. Am J Opthalmol 24:1255–1263
go back to reference Walker GA, Ohzawa I, Freeman RD (1999) Asymmetric suppression outside the classical receptive field of the visual cortex. J Neurosci 19(23):10536–10553PubMed Walker GA, Ohzawa I, Freeman RD (1999) Asymmetric suppression outside the classical receptive field of the visual cortex. J Neurosci 19(23):10536–10553PubMed
Metadata
Title
Transcranial direct current stimulation affects visual perception measured by threshold perimetry
Authors
Antje Kraft
Jasper Roehmel
Manuel C. Olma
Sein Schmidt
Kerstin Irlbacher
Stephan A. Brandt
Publication date
01-12-2010
Publisher
Springer-Verlag
Published in
Experimental Brain Research / Issue 3-4/2010
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-010-2453-6

Other articles of this Issue 3-4/2010

Experimental Brain Research 3-4/2010 Go to the issue