Skip to main content
Top
Published in: Experimental Brain Research 4/2008

01-04-2008 | Research Article

Transcranial magnetic stimulation and brain atrophy: a computer-based human brain model study

Authors: Tim Wagner, Uri Eden, Felipe Fregni, Antoni Valero-Cabre, Ciro Ramos-Estebanez, Valerie Pronio-Stelluto, Alan Grodzinsky, Markus Zahn, Alvaro Pascual-Leone

Published in: Experimental Brain Research | Issue 4/2008

Login to get access

Abstract

This paper is aimed at exploring the effect of cortical brain atrophy on the currents induced by transcranial magnetic stimulation (TMS). We compared the currents induced by various TMS conditions on several different MRI derived finite element head models of brain atrophy, incorporating both decreasing cortical volume and widened sulci. The current densities induced in the cortex were dependent upon the degree and type of cortical atrophy and were altered in magnitude, location, and orientation when compared to healthy head models. Predictive models of the degree of current density attenuation as a function of the scalp-to-cortex distance were analyzed, concluding that those which ignore the electromagnetic field–tissue interactions lead to inaccurate conclusions. Ultimately, the precise site and population of neural elements stimulated by TMS in an atrophic brain cannot be predicted based on healthy head models which ignore the effects of the altered cortex on the stimulating currents. Clinical applications of TMS should be carefully considered in light of these findings.
Literature
go back to reference Akhtari M, Bryant HC, Mamelak AN, Flynn ER, Heller L, Shih JJ, Mandelkern M, Matlachov A, Ranken DM, Best ED, DiMauro MA, Lee RR, Sutherling WW (2002) Conductivities of three-layer live human skull. Brain Topogr 14:151–167PubMedCrossRef Akhtari M, Bryant HC, Mamelak AN, Flynn ER, Heller L, Shih JJ, Mandelkern M, Matlachov A, Ranken DM, Best ED, DiMauro MA, Lee RR, Sutherling WW (2002) Conductivities of three-layer live human skull. Brain Topogr 14:151–167PubMedCrossRef
go back to reference Alagona G, Ferri R, Pennisi G, Carnemolla A, Maci T, Domina E, Maertens de Noordhout A, Bella R (2004) Motor cortex excitability in Alzheimer’s disease and in subcortical ischemic vascular dementia. Neurosci Lett 362:95–98PubMedCrossRef Alagona G, Ferri R, Pennisi G, Carnemolla A, Maci T, Domina E, Maertens de Noordhout A, Bella R (2004) Motor cortex excitability in Alzheimer’s disease and in subcortical ischemic vascular dementia. Neurosci Lett 362:95–98PubMedCrossRef
go back to reference Amassian V, Eberle L, Maccabee P, Cracco R (1992) Modeling magnetic coil excitation of human cerebral cortex with a peripheral nerve immersed in a brain-shape volume conductor: the signicance of fiber bending in excitation. Electroenceph clin Neurophysiol 85:291–301PubMedCrossRef Amassian V, Eberle L, Maccabee P, Cracco R (1992) Modeling magnetic coil excitation of human cerebral cortex with a peripheral nerve immersed in a brain-shape volume conductor: the signicance of fiber bending in excitation. Electroenceph clin Neurophysiol 85:291–301PubMedCrossRef
go back to reference Ansoft (2002) Maxwell 3D. In: Ansoft, Pittsburgh Ansoft (2002) Maxwell 3D. In: Ansoft, Pittsburgh
go back to reference Barker AT, Freeston IL, Jalinous R, Merton PA, Morton HB (1985) Magnetic stimulation of the human brain. J Physiol (Lond) 369:3P (abstract) Barker AT, Freeston IL, Jalinous R, Merton PA, Morton HB (1985) Magnetic stimulation of the human brain. J Physiol (Lond) 369:3P (abstract)
go back to reference Bhatia M, Johri S, Behari M (2003) Increased cortical excitability with longer duration of Parkinson’s disease as evaluated by transcranial magnetic stimulation. Neurol India 51:13–15PubMed Bhatia M, Johri S, Behari M (2003) Increased cortical excitability with longer duration of Parkinson’s disease as evaluated by transcranial magnetic stimulation. Neurol India 51:13–15PubMed
go back to reference Bohning D (2000) Introduction and overview of TMS physics. In: George MS, Belmaker B (eds) Transcranial magnetic stimulation in neuropsychiatry. American Psychiatric Press, Washington DC Bohning D (2000) Introduction and overview of TMS physics. In: George MS, Belmaker B (eds) Transcranial magnetic stimulation in neuropsychiatry. American Psychiatric Press, Washington DC
go back to reference Boroojerdi B, Foltys H, Krings T, Spetzger U, Thron A, Topper R (1999) Localization of the motor hand area using transcranial magnetic stimulation and functional magnetic resonance imaging. Clin Neurophysiol 110:699–704PubMedCrossRef Boroojerdi B, Foltys H, Krings T, Spetzger U, Thron A, Topper R (1999) Localization of the motor hand area using transcranial magnetic stimulation and functional magnetic resonance imaging. Clin Neurophysiol 110:699–704PubMedCrossRef
go back to reference Chiappa KH (1994) Transcranial motor evoked potentials. Electromyogr Clin Neurophysiol 34:15–21PubMed Chiappa KH (1994) Transcranial motor evoked potentials. Electromyogr Clin Neurophysiol 34:15–21PubMed
go back to reference Crille GW, Hosmer HR, Rowland AF (1922) The electrical conductivity of animal tissues under normal and pathological conditions. Am J Physiol 60:59–106 Crille GW, Hosmer HR, Rowland AF (1922) The electrical conductivity of animal tissues under normal and pathological conditions. Am J Physiol 60:59–106
go back to reference Daniele O, Brighina F, Piazza A, Giglia G, Scalia S, Fierro B (2003) Low-frequency transcranial magnetic stimulation in patients with cortical dysplasia—a preliminary study. J Neurol 250:761–762PubMedCrossRef Daniele O, Brighina F, Piazza A, Giglia G, Scalia S, Fierro B (2003) Low-frequency transcranial magnetic stimulation in patients with cortical dysplasia—a preliminary study. J Neurol 250:761–762PubMedCrossRef
go back to reference de Carvalho M, de Mendonca A, Miranda PC, Garcia C, Luis ML (1997) Magnetic stimulation in Alzheimer’s disease. J Neurol 244:304–307PubMedCrossRef de Carvalho M, de Mendonca A, Miranda PC, Garcia C, Luis ML (1997) Magnetic stimulation in Alzheimer’s disease. J Neurol 244:304–307PubMedCrossRef
go back to reference de Groot M, Hermann W, Steffen J, Wagner A, Grahmann F (2001) [Contralateral and ipsilateral repetitive transcranial magnetic stimulation in Parkinson patients]. Nervenarzt 72:932–938PubMedCrossRef de Groot M, Hermann W, Steffen J, Wagner A, Grahmann F (2001) [Contralateral and ipsilateral repetitive transcranial magnetic stimulation in Parkinson patients]. Nervenarzt 72:932–938PubMedCrossRef
go back to reference De Mercato G, Garcia Sanchez FJ (1992) Correlation between low-frequency electric conductivity and permittivity in the diaphysis of bovine femoral bone. IEEE Trans Biomed Eng 39(5):523–526PubMedCrossRef De Mercato G, Garcia Sanchez FJ (1992) Correlation between low-frequency electric conductivity and permittivity in the diaphysis of bovine femoral bone. IEEE Trans Biomed Eng 39(5):523–526PubMedCrossRef
go back to reference Deeley EM (1990) Surface impedance near edges and corners in three-dimensional media. IEEE Trans Magn 26:712–714CrossRef Deeley EM (1990) Surface impedance near edges and corners in three-dimensional media. IEEE Trans Magn 26:712–714CrossRef
go back to reference Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C, Daniele A, Ghirlanda S, Gainotti G, Tonali PA (2004) Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75:555–559PubMedCrossRef Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C, Daniele A, Ghirlanda S, Gainotti G, Tonali PA (2004) Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75:555–559PubMedCrossRef
go back to reference Dissado LA (1990) A fractal interpertation of the dielectric response of animal tissues. Phys Med Biol 35:1487–1503PubMedCrossRef Dissado LA (1990) A fractal interpertation of the dielectric response of animal tissues. Phys Med Biol 35:1487–1503PubMedCrossRef
go back to reference Foster KR, Schwan HP (1996) Dielectric properties of tissues. In: Polk C, Postow E (eds) Biological effects of electromagnetic fields. CRC Press, New York, pp 25–102 Foster KR, Schwan HP (1996) Dielectric properties of tissues. In: Polk C, Postow E (eds) Biological effects of electromagnetic fields. CRC Press, New York, pp 25–102
go back to reference Fregni F, Santos CM, Myczkowski ML, Rigolino R, Gallucci-Neto J, Barbosa ER, Valente KD, Pascual-Leone A, Marcolin MA (2004) Repetitive transcranial magnetic stimulation is as effective as fluoxetine in the treatment of depression in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 75:1171–1174PubMedCrossRef Fregni F, Santos CM, Myczkowski ML, Rigolino R, Gallucci-Neto J, Barbosa ER, Valente KD, Pascual-Leone A, Marcolin MA (2004) Repetitive transcranial magnetic stimulation is as effective as fluoxetine in the treatment of depression in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 75:1171–1174PubMedCrossRef
go back to reference Fregni F, Thome-Souza S, Bermpohl F, Marcolin MA, Herzog A, Pascual-Leone A, Valente KD (2005) Antiepileptic effects of repetitive transcranial magnetic stimulation in patients with Cortical malformations: an EEG and clinical study. Stereotact Funct Neurosurg 83:57–62PubMedCrossRef Fregni F, Thome-Souza S, Bermpohl F, Marcolin MA, Herzog A, Pascual-Leone A, Valente KD (2005) Antiepileptic effects of repetitive transcranial magnetic stimulation in patients with Cortical malformations: an EEG and clinical study. Stereotact Funct Neurosurg 83:57–62PubMedCrossRef
go back to reference Freygang WH, Landau WM (1955) Some relations between resistivity and electrical activity in the cerebral cortex of the cat. J Cell Comp Physiol 45:377–392CrossRef Freygang WH, Landau WM (1955) Some relations between resistivity and electrical activity in the cerebral cortex of the cat. J Cell Comp Physiol 45:377–392CrossRef
go back to reference Gabriel C, Gabriel S (1996) Compilation of the dielectric properties of body tissues at RF and microwave frequencies. In: Air Force Material Command, Brooks Air Force Base, San Antonio Gabriel C, Gabriel S (1996) Compilation of the dielectric properties of body tissues at RF and microwave frequencies. In: Air Force Material Command, Brooks Air Force Base, San Antonio
go back to reference Geddes LA (1987) Optimal stimulus duration for extracranial cortical stimulation. Neurosurgery 20:94–99PubMedCrossRef Geddes LA (1987) Optimal stimulus duration for extracranial cortical stimulation. Neurosurgery 20:94–99PubMedCrossRef
go back to reference George MS, Nahas Z, Molloy M, Speer AM, Oliver NC, Li XB, Arana GW, Risch SC, Ballenger JC (2000) A controlled trial of daily left prefrontal cortex TMS for treating depression. Biol Psychiatry 48:962–970PubMedCrossRef George MS, Nahas Z, Molloy M, Speer AM, Oliver NC, Li XB, Arana GW, Risch SC, Ballenger JC (2000) A controlled trial of daily left prefrontal cortex TMS for treating depression. Biol Psychiatry 48:962–970PubMedCrossRef
go back to reference Hart FX, Toll RB, Berner NJ, Bennett NH (1996) The low frequency dielectric properties of octopus arm muscle measured in vivo. Phys Med Biol 41:2043–2052PubMedCrossRef Hart FX, Toll RB, Berner NJ, Bennett NH (1996) The low frequency dielectric properties of octopus arm muscle measured in vivo. Phys Med Biol 41:2043–2052PubMedCrossRef
go back to reference Hasted JB (1973) Aqueous dielectrics. Halsted Press, New York Hasted JB (1973) Aqueous dielectrics. Halsted Press, New York
go back to reference Hoffman RE, Hawkins KA, Gueorguieva R, Boutros NN, Rachid F, Carroll K, Krystal JH (2003) Transcranial magnetic stimulation of left temporoparietal cortex and medication-resistant auditory hallucinations. Arch Gen Psychiatry 60:49–56PubMedCrossRef Hoffman RE, Hawkins KA, Gueorguieva R, Boutros NN, Rachid F, Carroll K, Krystal JH (2003) Transcranial magnetic stimulation of left temporoparietal cortex and medication-resistant auditory hallucinations. Arch Gen Psychiatry 60:49–56PubMedCrossRef
go back to reference Holtzheimer PE, Avery D, Schlaepfer TE (2004) Antidepressant effects of repetitive transcranial magnetic stimulation. Br J Psychiatry 184:541–542PubMedCrossRef Holtzheimer PE, Avery D, Schlaepfer TE (2004) Antidepressant effects of repetitive transcranial magnetic stimulation. Br J Psychiatry 184:541–542PubMedCrossRef
go back to reference Huang YZ, Edwards MJ, Bhatia KP, Rothwell JC (2004) One-Hz repetitive transcranial magnetic stimulation of the premotor cortex alters reciprocal inhibition in DYT1 dystonia. Mov Disord 19:54–59PubMedCrossRef Huang YZ, Edwards MJ, Bhatia KP, Rothwell JC (2004) One-Hz repetitive transcranial magnetic stimulation of the premotor cortex alters reciprocal inhibition in DYT1 dystonia. Mov Disord 19:54–59PubMedCrossRef
go back to reference Kammer T, Puls K, Strasburger H, Hill NJ, Wichmann FA (2004) Transcranial magnetic stimulation in the visual system I. The psychophysics of visual suppression. Exp Brain Res 160(1):118–128CrossRef Kammer T, Puls K, Strasburger H, Hill NJ, Wichmann FA (2004) Transcranial magnetic stimulation in the visual system I. The psychophysics of visual suppression. Exp Brain Res 160(1):118–128CrossRef
go back to reference Khedr EM, Farweez HM, Islam H (2003) Therapeutic effect of repetitive transcranial magnetic stimulation on motor function in Parkinson’s disease patients. Eur J Neurol 10:567–572PubMedCrossRef Khedr EM, Farweez HM, Islam H (2003) Therapeutic effect of repetitive transcranial magnetic stimulation on motor function in Parkinson’s disease patients. Eur J Neurol 10:567–572PubMedCrossRef
go back to reference Knecht S, Sommer J, Deppe M, Steinstrater O (2005) Scalp position and efficacy of transcranial magnetic stimulation. Clin Neurophysiol 116:1988–1993PubMedCrossRef Knecht S, Sommer J, Deppe M, Steinstrater O (2005) Scalp position and efficacy of transcranial magnetic stimulation. Clin Neurophysiol 116:1988–1993PubMedCrossRef
go back to reference Krings T, Buchbinder BR, Butler WE, Chiappa KH, Jiang HJ, Cosgrove GR, Rosen BR (1997) Functional magnetic resonance imaging and transcranial magnetic stimulation: complementary approaches in the evaluation of cortical motor function. Neurology 48:1406–1416PubMed Krings T, Buchbinder BR, Butler WE, Chiappa KH, Jiang HJ, Cosgrove GR, Rosen BR (1997) Functional magnetic resonance imaging and transcranial magnetic stimulation: complementary approaches in the evaluation of cortical motor function. Neurology 48:1406–1416PubMed
go back to reference Kuhn AA, Grosse P, Holtz K, Brown P, Meyer BU, Kupsch A (2004) Patterns of abnormal motor cortex excitability in atypical parkinsonian syndromes. Clin Neurophysiol 115:1786–1795PubMedCrossRef Kuhn AA, Grosse P, Holtz K, Brown P, Meyer BU, Kupsch A (2004) Patterns of abnormal motor cortex excitability in atypical parkinsonian syndromes. Clin Neurophysiol 115:1786–1795PubMedCrossRef
go back to reference Lee SH, Kim W, Chung YC, Jung KH, Bahk WM, Jun TY, Kim KS, George MS, Chae JH (2005) A double blind study showing that two weeks of daily repetitive TMS over the left or right temporoparietal cortex reduces symptoms in patients with schizophrenia who are having treatment-refractory auditory hallucinations. Neurosci Lett 376:177–181PubMedCrossRef Lee SH, Kim W, Chung YC, Jung KH, Bahk WM, Jun TY, Kim KS, George MS, Chae JH (2005) A double blind study showing that two weeks of daily repetitive TMS over the left or right temporoparietal cortex reduces symptoms in patients with schizophrenia who are having treatment-refractory auditory hallucinations. Neurosci Lett 376:177–181PubMedCrossRef
go back to reference Lefaucheur JP (2005) Motor cortex dysfunction revealed by cortical excitability studies in Parkinson’s disease: influence of antiparkinsonian treatment and cortical stimulation. Clin Neurophysiol 116:244–253PubMedCrossRef Lefaucheur JP (2005) Motor cortex dysfunction revealed by cortical excitability studies in Parkinson’s disease: influence of antiparkinsonian treatment and cortical stimulation. Clin Neurophysiol 116:244–253PubMedCrossRef
go back to reference Lefaucheur JP, Drouot X, Von Raison F, Menard-Lefaucheur I, Cesaro P, Nguyen JP (2004) Improvement of motor performance and modulation of cortical excitability by repetitive transcranial magnetic stimulation of the motor cortex in Parkinson’s disease. Clin Neurophysiol 115:2530–2541PubMedCrossRef Lefaucheur JP, Drouot X, Von Raison F, Menard-Lefaucheur I, Cesaro P, Nguyen JP (2004) Improvement of motor performance and modulation of cortical excitability by repetitive transcranial magnetic stimulation of the motor cortex in Parkinson’s disease. Clin Neurophysiol 115:2530–2541PubMedCrossRef
go back to reference Lepeschkin E (1951) Modern electrophysiology. Williams and Wilkins, Baltimore Lepeschkin E (1951) Modern electrophysiology. Williams and Wilkins, Baltimore
go back to reference Liepert J, Bar KJ, Meske U, Weiller C (2001) Motor cortex disinhibition in Alzheimer’s disease. Clin Neurophysiol 112:1436–1441PubMedCrossRef Liepert J, Bar KJ, Meske U, Weiller C (2001) Motor cortex disinhibition in Alzheimer’s disease. Clin Neurophysiol 112:1436–1441PubMedCrossRef
go back to reference Liu R, Ueno S (2000) Calculating the activating function of nerve excitation in inhomogeneous volume conductor during magnetic stimulation using the finite element method. IEEE Trans Magn 36:1796–1799CrossRef Liu R, Ueno S (2000) Calculating the activating function of nerve excitation in inhomogeneous volume conductor during magnetic stimulation using the finite element method. IEEE Trans Magn 36:1796–1799CrossRef
go back to reference Maccabee P, Amassian V, Eberle L, Cracco R (1993) Magnetic coil stimulation of straight and bent amphibian and mammallian peripheral nerve in vitro: locus of excitation. J Physiol 460:201–219PubMed Maccabee P, Amassian V, Eberle L, Cracco R (1993) Magnetic coil stimulation of straight and bent amphibian and mammallian peripheral nerve in vitro: locus of excitation. J Physiol 460:201–219PubMed
go back to reference Mally J, Stone TW (1999) Improvement in Parkinsonian symptoms after repetitive transcranial magnetic stimulation. J Neurol Sci 162:179–184PubMedCrossRef Mally J, Stone TW (1999) Improvement in Parkinsonian symptoms after repetitive transcranial magnetic stimulation. J Neurol Sci 162:179–184PubMedCrossRef
go back to reference Mansur CG, Fregni F, Boggio PS, Riberto M, Gallucci-Neto J, Santos CM, Wagner T, Rigonatti SP, Marcolin MA, Pascual-Leone A (2005) A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology 64:1802–1804PubMedCrossRef Mansur CG, Fregni F, Boggio PS, Riberto M, Gallucci-Neto J, Santos CM, Wagner T, Rigonatti SP, Marcolin MA, Pascual-Leone A (2005) A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology 64:1802–1804PubMedCrossRef
go back to reference Martin JL, Barbanoj MJ, Schlaepfer TE, Thompson E, Perez V, Kulisevsky J (2003) Repetitive transcranial magnetic stimulation for the treatment of depression. Systematic review and meta-analysis. Br J Psychiatry 182:480–491PubMedCrossRef Martin JL, Barbanoj MJ, Schlaepfer TE, Thompson E, Perez V, Kulisevsky J (2003) Repetitive transcranial magnetic stimulation for the treatment of depression. Systematic review and meta-analysis. Br J Psychiatry 182:480–491PubMedCrossRef
go back to reference Menkes DL, Gruenthal M (2000) Slow-frequency repetitive transcranial magnetic stimulation in a patient with focal cortical dysplasia. Epilepsia 41:240–242PubMedCrossRef Menkes DL, Gruenthal M (2000) Slow-frequency repetitive transcranial magnetic stimulation in a patient with focal cortical dysplasia. Epilepsia 41:240–242PubMedCrossRef
go back to reference Miranda PC, Hallett M, Basser PJ (2003) The electric field induced in the brain by magnetic stimulation: a 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy. IEEE Trans Biomed Eng 50:1074–1085PubMedCrossRef Miranda PC, Hallett M, Basser PJ (2003) The electric field induced in the brain by magnetic stimulation: a 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy. IEEE Trans Biomed Eng 50:1074–1085PubMedCrossRef
go back to reference Modugno N, Curra A, Giovannelli M, Priori A, Squitieri F, Ruggieri S, Manfredi M, Berardelli A (2001) The prolonged cortical silent period in patients with Huntington’s disease. Clin Neurophysiol 112:1470–1474PubMedCrossRef Modugno N, Curra A, Giovannelli M, Priori A, Squitieri F, Ruggieri S, Manfredi M, Berardelli A (2001) The prolonged cortical silent period in patients with Huntington’s disease. Clin Neurophysiol 112:1470–1474PubMedCrossRef
go back to reference Nagarajan S, Durand DM (1995) Analysis of magnetic stimulation of a concentric axon in a nerve bundle. IEEE Trans Biomed Eng 42:926–933PubMedCrossRef Nagarajan S, Durand DM (1995) Analysis of magnetic stimulation of a concentric axon in a nerve bundle. IEEE Trans Biomed Eng 42:926–933PubMedCrossRef
go back to reference Nagarajan S, Durand DM, Warman EN (1993) Effects of induced electric fields on finite neuronal structures: a simulation study. IEEE Trans Biomed Eng 40:1175–1188PubMedCrossRef Nagarajan S, Durand DM, Warman EN (1993) Effects of induced electric fields on finite neuronal structures: a simulation study. IEEE Trans Biomed Eng 40:1175–1188PubMedCrossRef
go back to reference Nahas Z, Li X, Kozel FA, Mirzki D, Memon M, Miller K, Yamanaka K, Anderson B, Chae JH, Bohning DE, Mintzer J, George MS (2004) Safety and benefits of distance-adjusted prefrontal transcranial magnetic stimulation in depressed patients 55–75 years of age: a pilot study. Depress Anxiety 19:249–256PubMedCrossRef Nahas Z, Li X, Kozel FA, Mirzki D, Memon M, Miller K, Yamanaka K, Anderson B, Chae JH, Bohning DE, Mintzer J, George MS (2004) Safety and benefits of distance-adjusted prefrontal transcranial magnetic stimulation in depressed patients 55–75 years of age: a pilot study. Depress Anxiety 19:249–256PubMedCrossRef
go back to reference Oswald K (1937) Messung der leitfahigkeit und Dielektrizitatkonstante biologischer Gewebe un Flussigkeiten bei kurzen Wellen. Hochfreq Tech Elektroakust 49:40–49 Oswald K (1937) Messung der leitfahigkeit und Dielektrizitatkonstante biologischer Gewebe un Flussigkeiten bei kurzen Wellen. Hochfreq Tech Elektroakust 49:40–49
go back to reference Pascual-Leone A, Rubio B, Pallardo F, Catala MD (1996) Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet 348:233–237PubMedCrossRef Pascual-Leone A, Rubio B, Pallardo F, Catala MD (1996) Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet 348:233–237PubMedCrossRef
go back to reference Pawitan Y (2001) In all likelihood: statistical modelling and inference using likelihood. Oxford University Press, New York Pawitan Y (2001) In all likelihood: statistical modelling and inference using likelihood. Oxford University Press, New York
go back to reference Pethig R, Kell DB (1987) The passive electrical propeties of biological systems: their signicance in physiology, biophysics, and biotechnology. Phys Med Biol 32:933–970PubMedCrossRef Pethig R, Kell DB (1987) The passive electrical propeties of biological systems: their signicance in physiology, biophysics, and biotechnology. Phys Med Biol 32:933–970PubMedCrossRef
go back to reference Pierantozzi M, Panella M, Palmieri MG, Koch G, Giordano A, Marciani MG, Bernardi G, Stanzione P, Stefani A (2004) Different TMS patterns of intracortical inhibition in early onset Alzheimer dementia and frontotemporal dementia. Clin Neurophysiol 115:2410–2418PubMed Pierantozzi M, Panella M, Palmieri MG, Koch G, Giordano A, Marciani MG, Bernardi G, Stanzione P, Stefani A (2004) Different TMS patterns of intracortical inhibition in early onset Alzheimer dementia and frontotemporal dementia. Clin Neurophysiol 115:2410–2418PubMed
go back to reference Radvan-Ziemnowicz JC, McWilliams JC, Kucharski WE (1964) Conductivity versus frequency in human and feline cerebrospinal fluid. In: Werner Ma (ed) Proceedings of 17th annual conference in medicine and Biology, Washington 12, DC Radvan-Ziemnowicz JC, McWilliams JC, Kucharski WE (1964) Conductivity versus frequency in human and feline cerebrospinal fluid. In: Werner Ma (ed) Proceedings of 17th annual conference in medicine and Biology, Washington 12, DC
go back to reference Ranck JB Jr (1963) Analysis of specific impedance of rabbit cerebral cortex. Exp Neurol 7:153–174PubMedCrossRef Ranck JB Jr (1963) Analysis of specific impedance of rabbit cerebral cortex. Exp Neurol 7:153–174PubMedCrossRef
go back to reference Ridding MC, Inzelberg R, Rothwell JC (1995) Changes in excitability of motor cortical circuitry in patients with Parkinson’s disease. Ann Neurol 37:181–188PubMedCrossRef Ridding MC, Inzelberg R, Rothwell JC (1995) Changes in excitability of motor cortical circuitry in patients with Parkinson’s disease. Ann Neurol 37:181–188PubMedCrossRef
go back to reference Rumi DO, Gattaz WF, Rigonatti SP, Rosa MA, Fregni F, Rosa MO, Mansur C, Myczkowski ML, Moreno RA, Marcolin MA (2005) Transcranial magnetic stimulation accelerates the antidepressant effect of amitriptyline in severe depression: a double-blind placebo-controlled study. Biol Psychiatry 57:162–166PubMedCrossRef Rumi DO, Gattaz WF, Rigonatti SP, Rosa MA, Fregni F, Rosa MO, Mansur C, Myczkowski ML, Moreno RA, Marcolin MA (2005) Transcranial magnetic stimulation accelerates the antidepressant effect of amitriptyline in severe depression: a double-blind placebo-controlled study. Biol Psychiatry 57:162–166PubMedCrossRef
go back to reference Sakuishi K, Hanajima R, Kanazawa I, Ugawa Y (2005) Periodic motor cortical excitability changes associated with PSDs of EEG in Creutzfeldt–Jakob disease (CJD). Clin Neurophysiol 116:1222–1226PubMedCrossRef Sakuishi K, Hanajima R, Kanazawa I, Ugawa Y (2005) Periodic motor cortical excitability changes associated with PSDs of EEG in Creutzfeldt–Jakob disease (CJD). Clin Neurophysiol 116:1222–1226PubMedCrossRef
go back to reference Silbert LC, Quinn JF, Moore MM, Corbridge E, Ball MJ, Murdoch G, Sexton G, Kaye JA (2003) Changes in premorbid brain volume predict Alzheimer’s disease pathology. Neurology 61:487–492PubMed Silbert LC, Quinn JF, Moore MM, Corbridge E, Ball MJ, Murdoch G, Sexton G, Kaye JA (2003) Changes in premorbid brain volume predict Alzheimer’s disease pathology. Neurology 61:487–492PubMed
go back to reference Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315PubMedCrossRef Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315PubMedCrossRef
go back to reference Stokes MG, Chambers CD, Gould IC, Henderson TR, Janko NE, Allen NB, Mattingley JB (2005) A simple metric for scaling motor threshold based on scalp-cortex distance: application to studies using transcranial magnetic stimulation. J Neurophysiol 94(6):4520–4527PubMedCrossRef Stokes MG, Chambers CD, Gould IC, Henderson TR, Janko NE, Allen NB, Mattingley JB (2005) A simple metric for scaling motor threshold based on scalp-cortex distance: application to studies using transcranial magnetic stimulation. J Neurophysiol 94(6):4520–4527PubMedCrossRef
go back to reference Tergau F, Naumann U, Paulus W, Steinhoff BJ (1999) Low-frequency repetitive transcranial magnetic stimulation improves intractable epilepsy. Lancet 353:2209PubMedCrossRef Tergau F, Naumann U, Paulus W, Steinhoff BJ (1999) Low-frequency repetitive transcranial magnetic stimulation improves intractable epilepsy. Lancet 353:2209PubMedCrossRef
go back to reference Valero-Cabre A, Rushmore R, Lomber SG, Payne BR, Pascual-Leone A (2005) Impact of repetitive transcranial magnetic stimulation of the parietal cortex on metabolic brain activity: a 14C-2DG tracing study in the cat. Exp Brain Res 163:1–12PubMedCrossRef Valero-Cabre A, Rushmore R, Lomber SG, Payne BR, Pascual-Leone A (2005) Impact of repetitive transcranial magnetic stimulation of the parietal cortex on metabolic brain activity: a 14C-2DG tracing study in the cat. Exp Brain Res 163:1–12PubMedCrossRef
go back to reference Valero-Cabre A, Rushmore RJ, Payne BR (2006) Low frequency transcranial magnetic stimulation on the posterior parietal cortex induces visuotopically specific neglect-like syndrome. Exp Brain Res 172:14–21PubMedCrossRef Valero-Cabre A, Rushmore RJ, Payne BR (2006) Low frequency transcranial magnetic stimulation on the posterior parietal cortex induces visuotopically specific neglect-like syndrome. Exp Brain Res 172:14–21PubMedCrossRef
go back to reference Valero-Cabre A, Payne BR, Pascual-Leone A (2007) Opposite impact on (14)C-2-deoxyglucose brain metabolism following patterns of high and low frequency repetitive transcranial magnetic stimulation in the posterior parietal cortex. Exp Brain Res 176:603–615PubMedCrossRef Valero-Cabre A, Payne BR, Pascual-Leone A (2007) Opposite impact on (14)C-2-deoxyglucose brain metabolism following patterns of high and low frequency repetitive transcranial magnetic stimulation in the posterior parietal cortex. Exp Brain Res 176:603–615PubMedCrossRef
go back to reference Wagner T (2001) Field distributions within the human cortex induced by transcranial magnetic stimulation. In: EECS. Massachusetts Institute of Technology, Cambridge, p 186 Wagner T (2001) Field distributions within the human cortex induced by transcranial magnetic stimulation. In: EECS. Massachusetts Institute of Technology, Cambridge, p 186
go back to reference Wagner TA, Zahn M, Grodzinsky AJ, Pascual-Leone A (2004) Three-dimensional head model simulation of transcranial magnetic stimulation. IEEE Trans Biomed Eng 51:1586–1598PubMedCrossRef Wagner TA, Zahn M, Grodzinsky AJ, Pascual-Leone A (2004) Three-dimensional head model simulation of transcranial magnetic stimulation. IEEE Trans Biomed Eng 51:1586–1598PubMedCrossRef
go back to reference Wagner T, Fregni F, Eden U, Ramos-Estebanez C, Grodzinsky A, Zahn M, Pascual AP (2005) Transcranial magnetic stimulation and stroke: a computer based human model study. Neuroimage 30(3):857–870CrossRef Wagner T, Fregni F, Eden U, Ramos-Estebanez C, Grodzinsky A, Zahn M, Pascual AP (2005) Transcranial magnetic stimulation and stroke: a computer based human model study. Neuroimage 30(3):857–870CrossRef
go back to reference Wagner T, Valero-Cabre A, Pascual-Leone A (2007) Noninvasive human brain stimulation. Annu Rev Biomed Eng 9:527–565PubMedCrossRef Wagner T, Valero-Cabre A, Pascual-Leone A (2007) Noninvasive human brain stimulation. Annu Rev Biomed Eng 9:527–565PubMedCrossRef
go back to reference Wassermann EM, Wang B, Zeffiro TA, Sadato N, Pascual-Leone A, Toro C, Hallett M (1996) Locating the motor cortex on the MRI with transcranial magnetic stimulation and PET. Neuroimage 3:1–9PubMedCrossRef Wassermann EM, Wang B, Zeffiro TA, Sadato N, Pascual-Leone A, Toro C, Hallett M (1996) Locating the motor cortex on the MRI with transcranial magnetic stimulation and PET. Neuroimage 3:1–9PubMedCrossRef
go back to reference Yunokuchi K, Kato R, Yoshida H, Tamari Y, Saito M (1998) Study on the distributions of induced electric field in an inhomogeneous medium exposed a pulsed magnetic field. In: Annual international conference of the IEEE of the engineering in medicine and biology society, vol 6, pp 3294–3297 Yunokuchi K, Kato R, Yoshida H, Tamari Y, Saito M (1998) Study on the distributions of induced electric field in an inhomogeneous medium exposed a pulsed magnetic field. In: Annual international conference of the IEEE of the engineering in medicine and biology society, vol 6, pp 3294–3297
go back to reference Zahn M (2003) Electromagnetic field theory: a problem solving approach. Krieger Publishing Company, Melbourne Zahn M (2003) Electromagnetic field theory: a problem solving approach. Krieger Publishing Company, Melbourne
Metadata
Title
Transcranial magnetic stimulation and brain atrophy: a computer-based human brain model study
Authors
Tim Wagner
Uri Eden
Felipe Fregni
Antoni Valero-Cabre
Ciro Ramos-Estebanez
Valerie Pronio-Stelluto
Alan Grodzinsky
Markus Zahn
Alvaro Pascual-Leone
Publication date
01-04-2008
Publisher
Springer-Verlag
Published in
Experimental Brain Research / Issue 4/2008
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-007-1258-8

Other articles of this Issue 4/2008

Experimental Brain Research 4/2008 Go to the issue