Skip to main content
Top
Published in: Experimental Brain Research 2/2007

01-08-2007 | Research Article

Differences in cortical activation during smooth pursuit and saccadic eye movements following cerebellar lesions

Authors: O. Baumann, B. Ziemus, R. Luerding, G. Schuierer, U. Bogdahn, M. W. Greenlee

Published in: Experimental Brain Research | Issue 2/2007

Login to get access

Abstract

Current evidence supports the proposal that the cerebellum mediates the activity of other brain areas involved in the control of eye movements. Most of the evidence so far has concentrated on the vermis and flocculi as the cerebellar agents of oculomotor control. But there is also evidence for an involvement of the cerebellar hemispheres in eye movement control. Straube et al. (Ann Neurol 42:891–898, 1997) showed that lateral hemispheric lesions affect initiation of smooth pursuit (SPEM) and saccadic eye movements. Ron and Robinson (J Neurophysiol 36:1004–1022, 1973) evoked smooth pursuit and saccadic eye movements by electrical stimulation of crus I and II, as well as in the dentate nuclei of the monkey. Functional MRI studies also provide evidence that the cerebellar hemispheres play a significant role in SPEM and saccadic eye movements. To clarify the role of the cerebral hemispheres in eye movement control we compared the eye movement related blood oxygen level dependent (BOLD) responses of 12 patients with cerebellar lesions due to stroke with those of an aged-matched healthy control group. Six patients showed oculomotor abnormalities such as dysmetric saccades or saccadic SPEM during the experiment. The paradigm consisted of alternating blocks of fixation, visually guided saccades and visually guided SPEM. A nonparametric random-effects group analysis showed a degraded pattern of activation in the patient group during the performance of SPEM and saccadic eye movements in posterior parietal areas putatively containing the parietal eye fields.
Literature
go back to reference Allen G, McColl R, Barnard H, Ringe WK, Fleckenstein J, Cullum CM (2005) Magnetic resonance imaging of cerebellar-prefrontal and cerebellar-parietal functional connectivity. Neuroimage 28:39–48PubMedCrossRef Allen G, McColl R, Barnard H, Ringe WK, Fleckenstein J, Cullum CM (2005) Magnetic resonance imaging of cerebellar-prefrontal and cerebellar-parietal functional connectivity. Neuroimage 28:39–48PubMedCrossRef
go back to reference Berman RA, Colby CL, Genovese CR, Voyvodic JT, Luna B, Thulborn KR, Sweeney JA (1999) Cortical networks subserving pursuit and saccadic eye movements in humans: an FMRI study. Hum Brain Mapp 8:209–225PubMedCrossRef Berman RA, Colby CL, Genovese CR, Voyvodic JT, Luna B, Thulborn KR, Sweeney JA (1999) Cortical networks subserving pursuit and saccadic eye movements in humans: an FMRI study. Hum Brain Mapp 8:209–225PubMedCrossRef
go back to reference Brett M, Anton JL, Valabregue R, Poline JP (2002) Region of interest analysis using an SPM toolbox. Neuroimage 16:497 Brett M, Anton JL, Valabregue R, Poline JP (2002) Region of interest analysis using an SPM toolbox. Neuroimage 16:497
go back to reference Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol 287:393–421PubMedCrossRef Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol 287:393–421PubMedCrossRef
go back to reference Dieterich M, Bucher SF, Seelos KC, Brandt T (2000) Cerebellar activation during optokinetic stimulation and saccades. Neurology 54:148–155PubMed Dieterich M, Bucher SF, Seelos KC, Brandt T (2000) Cerebellar activation during optokinetic stimulation and saccades. Neurology 54:148–155PubMed
go back to reference Ferrier D (1874) The location of function in the brain. Proc R Soc Lond B Biol Sci 22:229 Ferrier D (1874) The location of function in the brain. Proc R Soc Lond B Biol Sci 22:229
go back to reference Friston KJ, Ashburner J, Poline JP, Frith CD, Heather JD, Frackowiak RSJ (1995a) Spatial registration and normalization of images. Hum Brain Mapp 2:165–189CrossRef Friston KJ, Ashburner J, Poline JP, Frith CD, Heather JD, Frackowiak RSJ (1995a) Spatial registration and normalization of images. Hum Brain Mapp 2:165–189CrossRef
go back to reference Friston KJ, Holmes AP, Worseley KJ, Poline JP, Frith CD, Frackowiak RSJ (1995b) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210CrossRef Friston KJ, Holmes AP, Worseley KJ, Poline JP, Frith CD, Frackowiak RSJ (1995b) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210CrossRef
go back to reference Hitzig E (1874) Physiologische und klinische Untersuchungen über das Gehirn. Gesammelte Abhandlungen. Part I. Berlin: Hirschwald Hitzig E (1874) Physiologische und klinische Untersuchungen über das Gehirn. Gesammelte Abhandlungen. Part I. Berlin: Hirschwald
go back to reference Holmes AP (1994) Statistical issues in functional brain mapping. [Doctoral Dissertation], University of Glasgow Holmes AP (1994) Statistical issues in functional brain mapping. [Doctoral Dissertation], University of Glasgow
go back to reference Holmes AP, Blair RC, Watson JDG, Ford I (1996) Non-parametric analysis of statistic images from functional mapping experiments. J Cereb Blood Flow Metab 16:7–22PubMedCrossRef Holmes AP, Blair RC, Watson JDG, Ford I (1996) Non-parametric analysis of statistic images from functional mapping experiments. J Cereb Blood Flow Metab 16:7–22PubMedCrossRef
go back to reference Kimmig H, Greenlee MW, Huethe F, Mergner T (1999) MR-Eyetracker: a new method for eye movement recording in functional resonance imaging. Exp Brain Res 126:443–449PubMedCrossRef Kimmig H, Greenlee MW, Huethe F, Mergner T (1999) MR-Eyetracker: a new method for eye movement recording in functional resonance imaging. Exp Brain Res 126:443–449PubMedCrossRef
go back to reference Krauzlis RJ (2005) The control of voluntary eye movements: new perspectives. Neuroscientist. 11(2):124–137PubMedCrossRef Krauzlis RJ (2005) The control of voluntary eye movements: new perspectives. Neuroscientist. 11(2):124–137PubMedCrossRef
go back to reference Lancaster JL, Summerlin JL, Rainey L, Freitas CS, Fox PT (1997) The talairach daemon, a database server for talairach atlas labels. Neuroimage 5:633 Lancaster JL, Summerlin JL, Rainey L, Freitas CS, Fox PT (1997) The talairach daemon, a database server for talairach atlas labels. Neuroimage 5:633
go back to reference Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated talairach atlas labels for functional brain mapping. Hum Brain Mapp 10:120–131PubMedCrossRef Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated talairach atlas labels for functional brain mapping. Hum Brain Mapp 10:120–131PubMedCrossRef
go back to reference Law I, Svarer C, Hom S, Paulsen OB (1997) The activation pattern in normal humans during supression, imagination and performance of saccadic eye movements. Acta Physiol Scand 161:419–434PubMedCrossRef Law I, Svarer C, Hom S, Paulsen OB (1997) The activation pattern in normal humans during supression, imagination and performance of saccadic eye movements. Acta Physiol Scand 161:419–434PubMedCrossRef
go back to reference Leigh RJ, Zee DS (2006) The neurology of eye movements, 4th edn. Oxford University Press, New York Leigh RJ, Zee DS (2006) The neurology of eye movements, 4th edn. Oxford University Press, New York
go back to reference Lewis RF, Zee DS (1993) Ocular motor disorders associated with cerebellar lesions: pathophysiology and topical localization. Rev Neurol (Paris) 149:665–677 Lewis RF, Zee DS (1993) Ocular motor disorders associated with cerebellar lesions: pathophysiology and topical localization. Rev Neurol (Paris) 149:665–677
go back to reference Luciani L (1891) II cerveletto: nouvi studi di fisiologia normale e patologica. Firenze: Le Monnier Luciani L (1891) II cerveletto: nouvi studi di fisiologia normale e patologica. Firenze: Le Monnier
go back to reference Lynch JC, Tian JR (2005) Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements. Prog Brain Res 151:461–501PubMedCrossRef Lynch JC, Tian JR (2005) Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements. Prog Brain Res 151:461–501PubMedCrossRef
go back to reference Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19:1233–1239PubMedCrossRef Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19:1233–1239PubMedCrossRef
go back to reference O’Driscoll GA, Wolff AL, Benkelfat C, Florencio PS, Lal S, Evans AC (2000) Functional neuroanatomy of smooth pursuit and predictive saccades. Neuroreport 11:1335–1340PubMedCrossRef O’Driscoll GA, Wolff AL, Benkelfat C, Florencio PS, Lal S, Evans AC (2000) Functional neuroanatomy of smooth pursuit and predictive saccades. Neuroreport 11:1335–1340PubMedCrossRef
go back to reference Optican LM, Robinson DA (1980) Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol 44:1058–1076PubMed Optican LM, Robinson DA (1980) Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol 44:1058–1076PubMed
go back to reference Petit L, Haxby JV (1999) Functional anatomy of pursuit eye movements in humans as revealed by fMRI. J Neurophysiol 82:463–471PubMed Petit L, Haxby JV (1999) Functional anatomy of pursuit eye movements in humans as revealed by fMRI. J Neurophysiol 82:463–471PubMed
go back to reference Raymond JL, Lisberger SG, Mauk MD (1996) The cerebellum: a neuronal learning machine? Science 272:1126–1131PubMedCrossRef Raymond JL, Lisberger SG, Mauk MD (1996) The cerebellum: a neuronal learning machine? Science 272:1126–1131PubMedCrossRef
go back to reference Robinson FR, Straube A, Fuchs AF (1993) Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. J Neurophysiol 70:1741–1758PubMed Robinson FR, Straube A, Fuchs AF (1993) Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. J Neurophysiol 70:1741–1758PubMed
go back to reference Ron S, Robinson DA (1973) Eye movements evoked by cerebellar stimulation in the alert monkey. J Neurophysiol 36:1004–1022PubMed Ron S, Robinson DA (1973) Eye movements evoked by cerebellar stimulation in the alert monkey. J Neurophysiol 36:1004–1022PubMed
go back to reference Stanton GB, Bruce CJ, Goldberg ME (1995) Topography of projections to posterior cortical areas from the macaque frontal eye fields. J Comp Neurol 353:291–305PubMedCrossRef Stanton GB, Bruce CJ, Goldberg ME (1995) Topography of projections to posterior cortical areas from the macaque frontal eye fields. J Comp Neurol 353:291–305PubMedCrossRef
go back to reference Straube A, Scheuerer W, Eggert T (1997) Unilateral cerebellar lesions affect initiation of ipsilateral smooth pursuit eye movements in humans. Annals of Neurology 42:891–898 Straube A, Scheuerer W, Eggert T (1997) Unilateral cerebellar lesions affect initiation of ipsilateral smooth pursuit eye movements in humans. Annals of Neurology 42:891–898
go back to reference Talairach J, Tournoux P (1988) Co-Planar stereotaxic atlas of the human brain. Stuttgart: Thieme Talairach J, Tournoux P (1988) Co-Planar stereotaxic atlas of the human brain. Stuttgart: Thieme
go back to reference Tanabe J, Tregellas J, Miller D, Ross RG, Freedman R (2002) Brain activation during smooth-pursuit eye movements. Neuroimage 17:1315–1324PubMedCrossRef Tanabe J, Tregellas J, Miller D, Ross RG, Freedman R (2002) Brain activation during smooth-pursuit eye movements. Neuroimage 17:1315–1324PubMedCrossRef
go back to reference Tian JR, Lynch JC (1996) Corticocortical input to the smooth and saccadic eye movement subregions of the frontal eye field in cebus monkeys. J Neurophysiol 76:2754–2771PubMed Tian JR, Lynch JC (1996) Corticocortical input to the smooth and saccadic eye movement subregions of the frontal eye field in cebus monkeys. J Neurophysiol 76:2754–2771PubMed
go back to reference Versino M, Hurko O, Zee DS (1996) Disorders of binocular control of eye movements in patients with cerebellar dysfunction. Brain 119:1933–1950PubMedCrossRef Versino M, Hurko O, Zee DS (1996) Disorders of binocular control of eye movements in patients with cerebellar dysfunction. Brain 119:1933–1950PubMedCrossRef
go back to reference Vanni S, Tanskanen T, Seppa M, Uutela K, Hari R (2001) Coinciding early activation of the human primary visual cortex and anteromedial cuneus. Proc Natl Acad Sci USA 98:2776–2780PubMedCrossRef Vanni S, Tanskanen T, Seppa M, Uutela K, Hari R (2001) Coinciding early activation of the human primary visual cortex and anteromedial cuneus. Proc Natl Acad Sci USA 98:2776–2780PubMedCrossRef
Metadata
Title
Differences in cortical activation during smooth pursuit and saccadic eye movements following cerebellar lesions
Authors
O. Baumann
B. Ziemus
R. Luerding
G. Schuierer
U. Bogdahn
M. W. Greenlee
Publication date
01-08-2007
Publisher
Springer-Verlag
Published in
Experimental Brain Research / Issue 2/2007
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-007-0922-3

Other articles of this Issue 2/2007

Experimental Brain Research 2/2007 Go to the issue