Skip to main content
Top
Published in: Experimental Brain Research 3/2005

01-07-2005 | Research Note

Modification of motor cortical excitability by an acetylcholinesterase inhibitor

Authors: Alexei Korchounov, Tihomir V. Ilic, Tilo Schwinge, Ulf Ziemann

Published in: Experimental Brain Research | Issue 3/2005

Login to get access

Abstract

Acetylcholine powerfully modulates the excitability of neocortical neurones and networks. This study applied focal transcranial magnetic stimulation (TMS) to eight healthy subjects to test the effects of a single oral dose of 40 mg tacrine, an acetylcholinesterase inhibitor, on motor cortical excitability. It was found that tacrine decreased short-interval intracortical inhibition, and increased intracortical facilitation and short-interval intracortical facilitation. Motor thresholds, motor evoked potential amplitude, cortical silent period (CSP) duration, and measures of spinal and neuromuscular excitability remained unchanged. The effects peaked at 2–6 h and fully reversed after 24 h. All effects can be explained by a reduction of motor cortical GABAergic inhibitory neurotransmission via activation of presynaptic muscarinic M2 receptors, but other more complex mechanisms may also have contributed and are discussed. The findings predict that acetylcholine has the potential to promote plasticity and learning in human motor cortex.
Literature
go back to reference Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G (2000) Acetylcholine-mediated modulation of striatal function. Trends Neurosci 23:120–126CrossRefPubMed Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G (2000) Acetylcholine-mediated modulation of striatal function. Trends Neurosci 23:120–126CrossRefPubMed
go back to reference Castro-Alamancos MA, Donoghue JP, Connors BW (1995) Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex. J Neurosci 15:5324–5333PubMed Castro-Alamancos MA, Donoghue JP, Connors BW (1995) Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex. J Neurosci 15:5324–5333PubMed
go back to reference Conner JM, Culberson A, Packowski C, Chiba AA, Tuszynski MH (2003) Lesions of the Basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning. Neuron 38:819–829CrossRefPubMed Conner JM, Culberson A, Packowski C, Chiba AA, Tuszynski MH (2003) Lesions of the Basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning. Neuron 38:819–829CrossRefPubMed
go back to reference Connors BW, Malenka RC, Silva LR (1988) Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor- mediated responses in neocortex of rat and cat. J Physiol (Lond) 406:443–468 Connors BW, Malenka RC, Silva LR (1988) Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor- mediated responses in neocortex of rat and cat. J Physiol (Lond) 406:443–468
go back to reference Di Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P, Rothwell JC (2000a) Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol 111:794–799CrossRefPubMed Di Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P, Rothwell JC (2000a) Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol 111:794–799CrossRefPubMed
go back to reference Di Lazzaro V, Oliviero A, Profice P, Pennisi MA, Di Giovanni S, Zito G, Tonali P, Rothwell JC (2000b) Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in human motor cortex. Exp Brain Res 135:455–461CrossRefPubMed Di Lazzaro V, Oliviero A, Profice P, Pennisi MA, Di Giovanni S, Zito G, Tonali P, Rothwell JC (2000b) Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in human motor cortex. Exp Brain Res 135:455–461CrossRefPubMed
go back to reference Di Lazzaro V, Oliviero A, Tonali PA, Marra C, Daniele A, Profice P, Saturno E, Pilato F, Masullo C, Rothwell JC (2002) Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology 59:392–397PubMed Di Lazzaro V, Oliviero A, Tonali PA, Marra C, Daniele A, Profice P, Saturno E, Pilato F, Masullo C, Rothwell JC (2002) Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology 59:392–397PubMed
go back to reference Di Lazzaro V, Oliviero A, Profice P, Pennisi MA, Pilato F, Zito G, Dileone M, Nicoletti R, Pasqualetti P, Tonali PA (2003) Ketamine increases motor cortex excitability to transcranial magnetic stimulation. J Physiol 547:485–496CrossRefPubMed Di Lazzaro V, Oliviero A, Profice P, Pennisi MA, Pilato F, Zito G, Dileone M, Nicoletti R, Pasqualetti P, Tonali PA (2003) Ketamine increases motor cortex excitability to transcranial magnetic stimulation. J Physiol 547:485–496CrossRefPubMed
go back to reference Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C, Daniele A, Ghirlanda S, Gainotti G, Tonali PA (2004) Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75:555–559CrossRefPubMed Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C, Daniele A, Ghirlanda S, Gainotti G, Tonali PA (2004) Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75:555–559CrossRefPubMed
go back to reference Fernandez de Sevilla D, Buno W (2003) Presynaptic inhibition of Schaffer collateral synapses by stimulation of hippocampal cholinergic afferent fibres. Eur J Neurosci 17:555–558CrossRefPubMed Fernandez de Sevilla D, Buno W (2003) Presynaptic inhibition of Schaffer collateral synapses by stimulation of hippocampal cholinergic afferent fibres. Eur J Neurosci 17:555–558CrossRefPubMed
go back to reference Fisher RJ, Nakamura Y, Bestmann S, Rothwell JC, Bostock H (2002) Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Exp Brain Res 143:240–248CrossRefPubMed Fisher RJ, Nakamura Y, Bestmann S, Rothwell JC, Bostock H (2002) Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Exp Brain Res 143:240–248CrossRefPubMed
go back to reference Freund TF (2003) Interneuron diversity series: rhythm and mood in perisomatic inhibition. Trends Neurosci 26:489–495CrossRefPubMed Freund TF (2003) Interneuron diversity series: rhythm and mood in perisomatic inhibition. Trends Neurosci 26:489–495CrossRefPubMed
go back to reference Garvey MA, Ziemann U, Becker DA, Barker CA, Bartko JJ (2001) New graphical method to measure silent periods evoked by transcranial magnetic stimulation. Clin Neurophysiol 112:1451–1460CrossRefPubMed Garvey MA, Ziemann U, Becker DA, Barker CA, Bartko JJ (2001) New graphical method to measure silent periods evoked by transcranial magnetic stimulation. Clin Neurophysiol 112:1451–1460CrossRefPubMed
go back to reference Gu Q (2002) Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience 111:815–835CrossRefPubMed Gu Q (2002) Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience 111:815–835CrossRefPubMed
go back to reference Hanajima R, Ugawa Y, Terao Y, Sakai K, Furubayashi T, Machii K, Kanazawa I (1998) Paired-pulse magnetic stimulation of the human motor cortex: differences among I waves. J Physiol 509:607–618CrossRefPubMed Hanajima R, Ugawa Y, Terao Y, Sakai K, Furubayashi T, Machii K, Kanazawa I (1998) Paired-pulse magnetic stimulation of the human motor cortex: differences among I waves. J Physiol 509:607–618CrossRefPubMed
go back to reference Hasselmo ME (1995) Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav Brain Res 67:1–27CrossRefPubMed Hasselmo ME (1995) Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav Brain Res 67:1–27CrossRefPubMed
go back to reference Hess G, Aizenman CD, Donoghue JP (1996) Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J Neurophysiol 75:1765–1778PubMed Hess G, Aizenman CD, Donoghue JP (1996) Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J Neurophysiol 75:1765–1778PubMed
go back to reference Hess G, Donoghue JP (1999) Facilitation of long-term potentiation in layer II/III horizontal connections of rat motor cortex following layer I stimulation: route of effect and cholinergic contributions. Exp Brain Res 127:279–290CrossRefPubMed Hess G, Donoghue JP (1999) Facilitation of long-term potentiation in layer II/III horizontal connections of rat motor cortex following layer I stimulation: route of effect and cholinergic contributions. Exp Brain Res 127:279–290CrossRefPubMed
go back to reference Hess G, Krawczyk R (1996) Cholinergic modulation of synaptic transmission in horizontal connections of rat motor cortex. Acta Neurobiol Exp (Wars) 56:863–872 Hess G, Krawczyk R (1996) Cholinergic modulation of synaptic transmission in horizontal connections of rat motor cortex. Acta Neurobiol Exp (Wars) 56:863–872
go back to reference Hwa GG, Avoli M (1992) Excitatory postsynaptic potentials recorded from regular-spiking cells in layers II/III of rat sensorimotor cortex. J Neurophysiol 67:728–737PubMed Hwa GG, Avoli M (1992) Excitatory postsynaptic potentials recorded from regular-spiking cells in layers II/III of rat sensorimotor cortex. J Neurophysiol 67:728–737PubMed
go back to reference Ilic TV, Meintzschel F, Cleff U, Ruge D, Kessler KR, Ziemann U (2002) Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. J Physiol 545.1:153–167CrossRef Ilic TV, Meintzschel F, Cleff U, Ruge D, Kessler KR, Ziemann U (2002) Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. J Physiol 545.1:153–167CrossRef
go back to reference Jann MW, Shirley KL, Small GW (2002) Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet 41:719–739PubMed Jann MW, Shirley KL, Small GW (2002) Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet 41:719–739PubMed
go back to reference Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol (Lond) 471:501–519 Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol (Lond) 471:501–519
go back to reference Liepert J, Bar KJ, Meske U, Weiller C (2001a) Motor cortex disinhibition in Alzheimer’s disease. Clin Neurophysiol 112:1436–1441CrossRefPubMed Liepert J, Bar KJ, Meske U, Weiller C (2001a) Motor cortex disinhibition in Alzheimer’s disease. Clin Neurophysiol 112:1436–1441CrossRefPubMed
go back to reference Liepert J, Schardt S, Weiller C (2001b) Orally administered atropine enhances motor cortex excitability: a transcranial magnetic stimulation study in human subjects. Neurosci Lett 300:149–152CrossRefPubMed Liepert J, Schardt S, Weiller C (2001b) Orally administered atropine enhances motor cortex excitability: a transcranial magnetic stimulation study in human subjects. Neurosci Lett 300:149–152CrossRefPubMed
go back to reference Lorenzon NM, Foehring RC (1992) Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons. J Neurophysiol 67:350–363PubMed Lorenzon NM, Foehring RC (1992) Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons. J Neurophysiol 67:350–363PubMed
go back to reference Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807CrossRefPubMed Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807CrossRefPubMed
go back to reference Matsumura M, Sawaguchi T, Kubota K (1992) GABAergic inhibition of neuronal activity in the primate motor and premotor cortex during voluntary movement. J Neurophysiol 68:692–702PubMed Matsumura M, Sawaguchi T, Kubota K (1992) GABAergic inhibition of neuronal activity in the primate motor and premotor cortex during voluntary movement. J Neurophysiol 68:692–702PubMed
go back to reference McCormick DA, Prince DA (1986) Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro. J Physiol 375:169–194PubMed McCormick DA, Prince DA (1986) Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro. J Physiol 375:169–194PubMed
go back to reference McKenna TM, Ashe JH, Hui GK, Weinberger NM (1988) Muscarinic agonists modulate spontaneous and evoked unit discharge in auditory cortex of cat. Synapse 2:54–68CrossRefPubMed McKenna TM, Ashe JH, Hui GK, Weinberger NM (1988) Muscarinic agonists modulate spontaneous and evoked unit discharge in auditory cortex of cat. Synapse 2:54–68CrossRefPubMed
go back to reference Richter M, Schilling T, Muller W (1999) Muscarinic control of intracortical connections to layer II in rat entorhinal cortex slice. Neurosci Lett 273:200–202CrossRefPubMed Richter M, Schilling T, Muller W (1999) Muscarinic control of intracortical connections to layer II in rat entorhinal cortex slice. Neurosci Lett 273:200–202CrossRefPubMed
go back to reference Rossini PM, Berardelli A, Deuschl G, Hallett M, Maertens de Noordhout AM, Paulus W, Pauri F (1999) Applications of magnetic cortical stimulation. Electroencephalogr Clin Neurophysiol Suppl 52:171–185PubMed Rossini PM, Berardelli A, Deuschl G, Hallett M, Maertens de Noordhout AM, Paulus W, Pauri F (1999) Applications of magnetic cortical stimulation. Electroencephalogr Clin Neurophysiol Suppl 52:171–185PubMed
go back to reference Rothwell JC (2003) Techniques of transcranial magnetic stimulation. In: Boniface SJ, Ziemann U (eds) Plasticity in the human nervous system. Investigations with transcranial magnetic stimulation. Cambridge University Press, Cambridge, pp 26–61 Rothwell JC (2003) Techniques of transcranial magnetic stimulation. In: Boniface SJ, Ziemann U (eds) Plasticity in the human nervous system. Investigations with transcranial magnetic stimulation. Cambridge University Press, Cambridge, pp 26–61
go back to reference Sato H, Hata Y, Masui H, Tsumoto T (1987) A functional role of cholinergic innervation to neurons in the cat visual cortex. J Neurophysiol 58:765–780PubMed Sato H, Hata Y, Masui H, Tsumoto T (1987) A functional role of cholinergic innervation to neurons in the cat visual cortex. J Neurophysiol 58:765–780PubMed
go back to reference Sawaki L, Boroojerdi B, Kaelin-Lang A, Burstein AH, Butefisch CM, Kopylev L, Davis B, Cohen LG (2002) Cholinergic influences on use-dependent plasticity. J Neurophysiol 87:166–171PubMed Sawaki L, Boroojerdi B, Kaelin-Lang A, Burstein AH, Butefisch CM, Kopylev L, Davis B, Cohen LG (2002) Cholinergic influences on use-dependent plasticity. J Neurophysiol 87:166–171PubMed
go back to reference Scanziani M, Gahwiler BH, Thompson SM (1995) Presynaptic inhibition of excitatory synaptic transmission by muscarinic and metabotropic glutamate receptor activation in the hippocampus: are Ca2+ channels involved? Neuropharmacology 34:1549–1557CrossRefPubMed Scanziani M, Gahwiler BH, Thompson SM (1995) Presynaptic inhibition of excitatory synaptic transmission by muscarinic and metabotropic glutamate receptor activation in the hippocampus: are Ca2+ channels involved? Neuropharmacology 34:1549–1557CrossRefPubMed
go back to reference Schwenkreis P, Witscher K, Janssen F, Addo A, Dertwinkel R, Zenz M, Malin J-P, Tegenthoff M (1999) Influence of the N-methyl-d-aspartate antagonist memantine on human motor cortex excitability. Neurosci Lett 270:137–140CrossRefPubMed Schwenkreis P, Witscher K, Janssen F, Addo A, Dertwinkel R, Zenz M, Malin J-P, Tegenthoff M (1999) Influence of the N-methyl-d-aspartate antagonist memantine on human motor cortex excitability. Neurosci Lett 270:137–140CrossRefPubMed
go back to reference Schwindt PC, Spain WJ, Foehring RC, Chubb MC, Crill WE (1988) Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes. J Neurophysiol 59:450–467PubMed Schwindt PC, Spain WJ, Foehring RC, Chubb MC, Crill WE (1988) Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes. J Neurophysiol 59:450–467PubMed
go back to reference Selden NR, Gitelman DR, Salamon-Murayama N, Parrish TB, Mesulam M-M (1998) Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 121:2249–2257CrossRefPubMed Selden NR, Gitelman DR, Salamon-Murayama N, Parrish TB, Mesulam M-M (1998) Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 121:2249–2257CrossRefPubMed
go back to reference Snape MF, Misra A, Murray TK, De Souza RJ, Williams JL, Cross AJ, Green AR (1999) A comparative study in rats of the in vitro and in vivo pharmacology of the acetylcholinesterase inhibitors tacrine, donepezil and NXX-066. Neuropharmacology 38:181–193CrossRefPubMed Snape MF, Misra A, Murray TK, De Souza RJ, Williams JL, Cross AJ, Green AR (1999) A comparative study in rats of the in vitro and in vivo pharmacology of the acetylcholinesterase inhibitors tacrine, donepezil and NXX-066. Neuropharmacology 38:181–193CrossRefPubMed
go back to reference Stone TW (1972) Cholinergic mechanisms in the rat somatosensory cerebral cortex. J Physiol 225:485–499PubMed Stone TW (1972) Cholinergic mechanisms in the rat somatosensory cerebral cortex. J Physiol 225:485–499PubMed
go back to reference Tokimura H, Di Lazzaro V, Tokimura Y, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, Rothwell JC (2000) Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol 523:503–513CrossRefPubMed Tokimura H, Di Lazzaro V, Tokimura Y, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, Rothwell JC (2000) Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol 523:503–513CrossRefPubMed
go back to reference Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J (1999) Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol (Lond) 517:591–597CrossRef Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J (1999) Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol (Lond) 517:591–597CrossRef
go back to reference Xiang Z, Huguenard JR, Prince DA (1998) Cholinergic switching within neocortical inhibitory networks. Science 281:985–988CrossRefPubMed Xiang Z, Huguenard JR, Prince DA (1998) Cholinergic switching within neocortical inhibitory networks. Science 281:985–988CrossRefPubMed
go back to reference Ziemann U (2002) Assessment of motor cortex and descending motor pathways. In: Brown WF, Bolton CF, Aminoff MJ (eds) Neuromuscular function and disease. Basic, clinical and electrodiagnostic aspects, vol 1. Saunders, Philadelphia, pp 189–221 Ziemann U (2002) Assessment of motor cortex and descending motor pathways. In: Brown WF, Bolton CF, Aminoff MJ (eds) Neuromuscular function and disease. Basic, clinical and electrodiagnostic aspects, vol 1. Saunders, Philadelphia, pp 189–221
go back to reference Ziemann U, Lönnecker S, Steinhoff BJ, Paulus W (1996a) The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 109:127–135CrossRefPubMed Ziemann U, Lönnecker S, Steinhoff BJ, Paulus W (1996a) The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 109:127–135CrossRefPubMed
go back to reference Ziemann U, Rothwell JC, Ridding MC (1996b) Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol (Lond) 496:873–881 Ziemann U, Rothwell JC, Ridding MC (1996b) Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol (Lond) 496:873–881
go back to reference Ziemann U, Chen R, Cohen LG, Hallett M (1998a) Dextromethorphan decreases the excitability of the human motor cortex. Neurology 51:1320–1324PubMed Ziemann U, Chen R, Cohen LG, Hallett M (1998a) Dextromethorphan decreases the excitability of the human motor cortex. Neurology 51:1320–1324PubMed
go back to reference Ziemann U, Tergau F, Wassermann EM, Wischer S, Hildebrandt J, Paulus W (1998b) Demonstration of facilitatory I-wave interaction in the human motor cortex by paired transcranial magnetic stimulation. J Physiol (Lond) 511:181–190CrossRef Ziemann U, Tergau F, Wassermann EM, Wischer S, Hildebrandt J, Paulus W (1998b) Demonstration of facilitatory I-wave interaction in the human motor cortex by paired transcranial magnetic stimulation. J Physiol (Lond) 511:181–190CrossRef
go back to reference Ziemann U, Tergau F, Wischer S, Hildebrandt J, Paulus W (1998c) Pharmacological control of facilitatory I-wave interaction in the human motor cortex. A paired transcranial magnetic stimulation study. Electroencephalogr Clin Neurophysiol 109:321–330CrossRefPubMed Ziemann U, Tergau F, Wischer S, Hildebrandt J, Paulus W (1998c) Pharmacological control of facilitatory I-wave interaction in the human motor cortex. A paired transcranial magnetic stimulation study. Electroencephalogr Clin Neurophysiol 109:321–330CrossRefPubMed
Metadata
Title
Modification of motor cortical excitability by an acetylcholinesterase inhibitor
Authors
Alexei Korchounov
Tihomir V. Ilic
Tilo Schwinge
Ulf Ziemann
Publication date
01-07-2005
Publisher
Springer-Verlag
Published in
Experimental Brain Research / Issue 3/2005
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-005-2326-6

Other articles of this Issue 3/2005

Experimental Brain Research 3/2005 Go to the issue