Skip to main content
Top
Published in: Experimental Brain Research 4/2003

01-08-2003 | Research Article

Isolating motion responses in visual evoked potentials by preadapting flicker-sensitive mechanisms

Authors: J. Peter Maurer, Michael Bach

Published in: Experimental Brain Research | Issue 4/2003

Login to get access

Abstract

Onset of visual motion evokes a component in the EEG, the motion onset VEP. Exploring its motion specificity with a direction-specific adaptation paradigm, previous work demonstrated that less than 50% of the motion onset VEP represents actual motion detection. Here, we tested whether preadaptation of flicker-sensitive mechanisms can help to isolate motion-specific responses in the VEP. Flicker preadaptation was accomplished by limiting dot lifetime in the random-dot kinematograms that we used to study the direction specificity of motion adaptation. With unlimited dot lifetime, motion adaptation reduced the VEP amplitude to 35% (adapted direction) and 50% (opposite direction). With the shortest dot lifetime (40 ms), motion adaptation reduced the amplitude to 55% (adapted direction) and 70% (opposite direction). These findings suggest that random-dot kinematograms with short dot lifetimes could improve the investigation of human motion processing, be it in electrophysiology or other fields. While such stimuli successfully preadapt flicker-related components, they still evoke a sizable response, of which an estimated 70% is motion-specific.
Literature
go back to reference Albright TD (1984) Direction and orientation selectivity of neurons in visual area MT of the macaque. J Neurophysiol 52:1106–1130PubMed Albright TD (1984) Direction and orientation selectivity of neurons in visual area MT of the macaque. J Neurophysiol 52:1106–1130PubMed
go back to reference American Encephalographic Society (1994) Guideline thirteen: Guidelines for standard electrode position nomenclature. J Clin Neurophysiol 11:111–113PubMed American Encephalographic Society (1994) Guideline thirteen: Guidelines for standard electrode position nomenclature. J Clin Neurophysiol 11:111–113PubMed
go back to reference Andreassi JL, Juszczak NM (1982) Hemispheric sex differences in response to apparently moving stimuli as indicated by visual evoked potentials. Int J Neurosci 17:83–91PubMed Andreassi JL, Juszczak NM (1982) Hemispheric sex differences in response to apparently moving stimuli as indicated by visual evoked potentials. Int J Neurosci 17:83–91PubMed
go back to reference Bach M (1999) Bildergeschichte. Apples DrawSprocket in eigenen Programmen verwenden. c't 6:350–353 Bach M (1999) Bildergeschichte. Apples DrawSprocket in eigenen Programmen verwenden. c't 6:350–353
go back to reference Bach M, Hoffmann MB (2000) Visual motion detection in man is governed by non-retinal mechanisms. Vision Res 40:2379–2385PubMed Bach M, Hoffmann MB (2000) Visual motion detection in man is governed by non-retinal mechanisms. Vision Res 40:2379–2385PubMed
go back to reference Bach M, Ullrich D (1994) Motion adaptation governs the shape of motion-evoked cortical potentials (motion VEP). Vision Res 34:1541–1547PubMed Bach M, Ullrich D (1994) Motion adaptation governs the shape of motion-evoked cortical potentials (motion VEP). Vision Res 34:1541–1547PubMed
go back to reference Bach M, Ullrich D (1997) Contrast dependency of motion-onset and pattern-reversal VEPs: Interaction of stimulus type, recording site and response component. Vision Res 37:1845–1849PubMed Bach M, Ullrich D (1997) Contrast dependency of motion-onset and pattern-reversal VEPs: Interaction of stimulus type, recording site and response component. Vision Res 37:1845–1849PubMed
go back to reference Bach M, Ullrich D, Hoffmann M (1996) Motion-onset VEP: missing direction-specificity of adaptation? Invest Ophthalmol Vis Sci 37:S446, 2040 Bach M, Ullrich D, Hoffmann M (1996) Motion-onset VEP: missing direction-specificity of adaptation? Invest Ophthalmol Vis Sci 37:S446, 2040
go back to reference Baker CL Jr, Hess RF, Zihl J (1991) Residual motion perception in a "motion-blind" patient, assessed with limited-lifetime random dot stimuli. J Neurosci 11:454–461PubMed Baker CL Jr, Hess RF, Zihl J (1991) Residual motion perception in a "motion-blind" patient, assessed with limited-lifetime random dot stimuli. J Neurosci 11:454–461PubMed
go back to reference Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends Neurosci 12:297–306PubMed Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends Neurosci 12:297–306PubMed
go back to reference Brigell M, Strafella A, Parmeggiani L, DeMarco PJ Jr, Celesia GG (1996) The effects of luminance and chromatic background flicker on the human visual evoked potential. Vis Neurosci 13:265–275PubMed Brigell M, Strafella A, Parmeggiani L, DeMarco PJ Jr, Celesia GG (1996) The effects of luminance and chromatic background flicker on the human visual evoked potential. Vis Neurosci 13:265–275PubMed
go back to reference Britten KH, Newsome WT (1998) Tuning bandwidths for near-threshold stimuli in area MT. J Neurophysiol 80:762–770PubMed Britten KH, Newsome WT (1998) Tuning bandwidths for near-threshold stimuli in area MT. J Neurophysiol 80:762–770PubMed
go back to reference Burr DC, Santoro L (2001) Temporal integration of optic flow, measured by contrast and coherence thresholds. Vision Res 41:1891–1899CrossRefPubMed Burr DC, Santoro L (2001) Temporal integration of optic flow, measured by contrast and coherence thresholds. Vision Res 41:1891–1899CrossRefPubMed
go back to reference Clarke PG (1972) Visual evoked potentials to sudden reversal of the motion of a pattern. Brain Res 36:453–458PubMed Clarke PG (1972) Visual evoked potentials to sudden reversal of the motion of a pattern. Brain Res 36:453–458PubMed
go back to reference Clarke PG (1973a) Comparison of visual evoked potentials to stationary and to moving patterns. Exp Brain Res 18:156–164PubMed Clarke PG (1973a) Comparison of visual evoked potentials to stationary and to moving patterns. Exp Brain Res 18:156–164PubMed
go back to reference Clarke PG (1973b) Visual evoked potentials to changes in the motion of a patterned field. Exp Brain Res 18:145–155PubMed Clarke PG (1973b) Visual evoked potentials to changes in the motion of a patterned field. Exp Brain Res 18:145–155PubMed
go back to reference Clarke PG (1974) Are visual evoked potentials to motion-reversal produced by direction-sensitive brain mechanisms? Vision Res 14:1281–1284 Clarke PG (1974) Are visual evoked potentials to motion-reversal produced by direction-sensitive brain mechanisms? Vision Res 14:1281–1284
go back to reference Culham JC, Dukelow SP, Vilis T, Hassard FA, Gati JS, Menon RS, Goodale MA (1999) Recovery of fMRI activation in motion area MT following storage of the motion aftereffect. J Neurophysiol 81:388–393PubMed Culham JC, Dukelow SP, Vilis T, Hassard FA, Gati JS, Menon RS, Goodale MA (1999) Recovery of fMRI activation in motion area MT following storage of the motion aftereffect. J Neurophysiol 81:388–393PubMed
go back to reference DeMarco PJ Jr, Brigell MG, Gordon M (1997) The peripheral flicker effect: desensitization of the luminance pathway by static and modulated light. Vision Res 37:2419–2425CrossRefPubMed DeMarco PJ Jr, Brigell MG, Gordon M (1997) The peripheral flicker effect: desensitization of the luminance pathway by static and modulated light. Vision Res 37:2419–2425CrossRefPubMed
go back to reference DeYoe EA, Van Essen DC (1988) Concurrent processing streams in monkey visual cortex. Trends Neurosci 11:219–226PubMed DeYoe EA, Van Essen DC (1988) Concurrent processing streams in monkey visual cortex. Trends Neurosci 11:219–226PubMed
go back to reference Göpfert E, Müller R, Markwardt F, Schlykowa L (1983) Visuell evozierte Potentiale bei Musterbewegung. Z EEG-EMG 14:47–51 Göpfert E, Müller R, Markwardt F, Schlykowa L (1983) Visuell evozierte Potentiale bei Musterbewegung. Z EEG-EMG 14:47–51
go back to reference Hautzel H, Taylor JG, Krause BJ, Schmitz N, Tellmann L, Ziemons K, Shah NJ, Herzog H, Muller-Gartner HW (2001) The motion aftereffect: more than area V5/MT? Evidence from 15O-butanol PET studies. Brain Res 892:281–292CrossRefPubMed Hautzel H, Taylor JG, Krause BJ, Schmitz N, Tellmann L, Ziemons K, Shah NJ, Herzog H, Muller-Gartner HW (2001) The motion aftereffect: more than area V5/MT? Evidence from 15O-butanol PET studies. Brain Res 892:281–292CrossRefPubMed
go back to reference He S, Cohen ER, Hu X (1998) Close correlation between activity in brain area MT/V5 and the perception of a visual motion aftereffect. Curr Biol 8:1215–1218PubMed He S, Cohen ER, Hu X (1998) Close correlation between activity in brain area MT/V5 and the perception of a visual motion aftereffect. Curr Biol 8:1215–1218PubMed
go back to reference Hoffmann MB, Bach M (2002) The distinction between eye and object motion is reflected by the motion-onset visual evoked potential. Exp Brain Res 144:141–151CrossRefPubMed Hoffmann MB, Bach M (2002) The distinction between eye and object motion is reflected by the motion-onset visual evoked potential. Exp Brain Res 144:141–151CrossRefPubMed
go back to reference Hoffmann M, Dorn TJ, Bach M (1999) Time course of motion adaptation: Motion-onset visual evoked potentials and subjective estimates. Vision Res 39:437–444PubMed Hoffmann M, Dorn TJ, Bach M (1999) Time course of motion adaptation: Motion-onset visual evoked potentials and subjective estimates. Vision Res 39:437–444PubMed
go back to reference Hoffmann MB, Unsold AS, Bach M (2001) Directional tuning of human motion adaptation as reflected by the motion VEP. Vision Res 41:2187–2194PubMed Hoffmann MB, Unsold AS, Bach M (2001) Directional tuning of human motion adaptation as reflected by the motion VEP. Vision Res 41:2187–2194PubMed
go back to reference Ibbotson MR, Clifford CW, Mark RF (1998) Adaptation to visual motion in directional neurons of the nucleus of the optic tract. J Neurophysiol 79:1481–1493PubMed Ibbotson MR, Clifford CW, Mark RF (1998) Adaptation to visual motion in directional neurons of the nucleus of the optic tract. J Neurophysiol 79:1481–1493PubMed
go back to reference Ibbotson MR, Clifford CW, Mark RF (1999) A quadratic nonlinearity underlies direction selectivity in the nucleus of the optic tract. Vis Neurosci 16:991–1000CrossRefPubMed Ibbotson MR, Clifford CW, Mark RF (1999) A quadratic nonlinearity underlies direction selectivity in the nucleus of the optic tract. Vis Neurosci 16:991–1000CrossRefPubMed
go back to reference Ingling CR Jr, Tsou BH (1988) Spectral sensitivity for flicker and acuity criteria. J Opt Soc Am A 5:1374–1378PubMed Ingling CR Jr, Tsou BH (1988) Spectral sensitivity for flicker and acuity criteria. J Opt Soc Am A 5:1374–1378PubMed
go back to reference Kaplan E, Shapley RM (1986) The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc Natl Acad Sci U S A 83:2755–2757PubMed Kaplan E, Shapley RM (1986) The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc Natl Acad Sci U S A 83:2755–2757PubMed
go back to reference Klistorner AI, Graham SL, Martins A (2000) Multifocal pattern electroretinogram does not demonstrate localised field defects in glaucoma. Doc Ophthalmol 100:155–165CrossRef Klistorner AI, Graham SL, Martins A (2000) Multifocal pattern electroretinogram does not demonstrate localised field defects in glaucoma. Doc Ophthalmol 100:155–165CrossRef
go back to reference Kuba M, Kubová Z (1992) Visual evoked potentials specific for motion onset. Doc Ophthalmol 80:83–89PubMed Kuba M, Kubová Z (1992) Visual evoked potentials specific for motion onset. Doc Ophthalmol 80:83–89PubMed
go back to reference Kubová Z, Kuba M, Hubacek J, Vít F (1990) Properties of visual evoked potentials to onset of movement on a television screen. Doc Ophthalmol 75:67–72PubMed Kubová Z, Kuba M, Hubacek J, Vít F (1990) Properties of visual evoked potentials to onset of movement on a television screen. Doc Ophthalmol 75:67–72PubMed
go back to reference Kubová Z, Kuba M, Spekreijse H, Blakemore C (1995) Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Res 35:197–205PubMed Kubová Z, Kuba M, Spekreijse H, Blakemore C (1995) Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Res 35:197–205PubMed
go back to reference Levinson E, Sekuler R (1975) The independence of channels in human vision selective for direction of movement. J Physiol (Lond) 250:347–366 Levinson E, Sekuler R (1975) The independence of channels in human vision selective for direction of movement. J Physiol (Lond) 250:347–366
go back to reference Levinson E, Sekuler R (1980) A two-dimensional analysis of direction-specific adaptation. Vision Res 20:103–107CrossRefPubMed Levinson E, Sekuler R (1980) A two-dimensional analysis of direction-specific adaptation. Vision Res 20:103–107CrossRefPubMed
go back to reference MacKay DM, Rietveld WJ (1968) Electroencephalogram potentials evoked by accelerated visual motion. Nature 217:677–678PubMed MacKay DM, Rietveld WJ (1968) Electroencephalogram potentials evoked by accelerated visual motion. Nature 217:677–678PubMed
go back to reference Müller R, Göpfert E (1988) The influence of grating contrast on the human cortical potential evoked by motion. Acta Neurobiol Exp 48:239–249 Müller R, Göpfert E (1988) The influence of grating contrast on the human cortical potential evoked by motion. Acta Neurobiol Exp 48:239–249
go back to reference Müller R, Göpfert E, Hartwig M (1985) VEP-Untersuchungen zur Kodierung der Geschwindigkeit bewegter Streifenmuster im Cortex des Menschen. Z EEG-EMG 16:75–80 Müller R, Göpfert E, Hartwig M (1985) VEP-Untersuchungen zur Kodierung der Geschwindigkeit bewegter Streifenmuster im Cortex des Menschen. Z EEG-EMG 16:75–80
go back to reference Niedeggen M, Wist ER (1999) Characteristics of visual evoked potentials generated by motion coherence onset. Cogn Brain Res 8:95–105CrossRef Niedeggen M, Wist ER (1999) Characteristics of visual evoked potentials generated by motion coherence onset. Cogn Brain Res 8:95–105CrossRef
go back to reference Odom JV, De Smedt E, Van Malderen L, Spileers W (1998) Visually evoked potentials evoked by moving unidimensional noise stimuli: effects of contrast, spatial frequency, active electrode location, reference electrode location, and stimulus type. Doc Ophthalmol 95:315–333CrossRefPubMed Odom JV, De Smedt E, Van Malderen L, Spileers W (1998) Visually evoked potentials evoked by moving unidimensional noise stimuli: effects of contrast, spatial frequency, active electrode location, reference electrode location, and stimulus type. Doc Ophthalmol 95:315–333CrossRefPubMed
go back to reference Raymond JE (1993) Movement direction analysers: independence and bandwidth. Vision Res 33:767–775CrossRefPubMed Raymond JE (1993) Movement direction analysers: independence and bandwidth. Vision Res 33:767–775CrossRefPubMed
go back to reference Scase MO, Braddick OJ, Raymond JE (1996) What is noise for the motion system? Vision Res 36:2579–2586 Scase MO, Braddick OJ, Raymond JE (1996) What is noise for the motion system? Vision Res 36:2579–2586
go back to reference Schieting S, Spillmann L (1987) Flicker adaptation in the peripheral retina. Vision Res 27:277–284CrossRefPubMed Schieting S, Spillmann L (1987) Flicker adaptation in the peripheral retina. Vision Res 27:277–284CrossRefPubMed
go back to reference Schiller PH, Logothetis NK, Charles ER (1990) Role of the color-opponent and broad-band channels in vision. Vis Neurosci 5:321–346PubMed Schiller PH, Logothetis NK, Charles ER (1990) Role of the color-opponent and broad-band channels in vision. Vis Neurosci 5:321–346PubMed
go back to reference Snowden RJ, Ullrich D, Bach M (1995) Isolation and characteristics of a steady-state visually-evoked potential in humans related to the motion of a stimulus. Vision Res 35:1365–1373PubMed Snowden RJ, Ullrich D, Bach M (1995) Isolation and characteristics of a steady-state visually-evoked potential in humans related to the motion of a stimulus. Vision Res 35:1365–1373PubMed
go back to reference Sunaert S, Van Hecke P, Marchal G, Orban GA (1999) Motion-responsive regions of the human brain. Exp Brain Res 127:355–370PubMed Sunaert S, Van Hecke P, Marchal G, Orban GA (1999) Motion-responsive regions of the human brain. Exp Brain Res 127:355–370PubMed
go back to reference Tootell RB, Reppas JB, Dale AM, Look RB, Sereno MI, Malach R, Brady TJ, Rosen BR (1995) Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375:139–141PubMed Tootell RB, Reppas JB, Dale AM, Look RB, Sereno MI, Malach R, Brady TJ, Rosen BR (1995) Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375:139–141PubMed
go back to reference Treue S, Hol K, Rauber HJ (2000) Seeing multiple directions of motion-physiology and psychophysics. Nat Neurosci 3:270–276CrossRefPubMed Treue S, Hol K, Rauber HJ (2000) Seeing multiple directions of motion-physiology and psychophysics. Nat Neurosci 3:270–276CrossRefPubMed
go back to reference World Medical Association (2000) Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 284:3043–3045PubMed World Medical Association (2000) Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 284:3043–3045PubMed
go back to reference Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11:641–649PubMed Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11:641–649PubMed
go back to reference Zele AJ, Vingrys AJ (2000) Flicker adaptation can be explained by probability summation between ON- and OFF-mechanisms. Clin Exp Ophthalmol 28:227–229CrossRef Zele AJ, Vingrys AJ (2000) Flicker adaptation can be explained by probability summation between ON- and OFF-mechanisms. Clin Exp Ophthalmol 28:227–229CrossRef
Metadata
Title
Isolating motion responses in visual evoked potentials by preadapting flicker-sensitive mechanisms
Authors
J. Peter Maurer
Michael Bach
Publication date
01-08-2003
Publisher
Springer-Verlag
Published in
Experimental Brain Research / Issue 4/2003
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-003-1509-2

Other articles of this Issue 4/2003

Experimental Brain Research 4/2003 Go to the issue