Skip to main content
Top
Published in: Osteoporosis International 5/2013

01-05-2013 | Original Article

Impact + resistance training improves bone health and body composition in prematurely menopausal breast cancer survivors: a randomized controlled trial

Authors: K. M. Winters-Stone, J. Dobek, L. M. Nail, J. A. Bennett, M. C. Leo, B. Torgrimson-Ojerio, S.-W. Luoh, A. Schwartz

Published in: Osteoporosis International | Issue 5/2013

Login to get access

Abstract

Summary

Our randomized controlled trial in prematurely menopausal breast cancer survivors showed that impact + resistance training prevented increases in percentage of body fat compared with controls and also improved BMD at the hip and prevented BMD loss at the spine among exercise-trained women who were menopausal for >1 year.

Introduction

Cancer treatment-related menopause worsens bone health and body composition in breast cancer survivors (BCS). We investigated whether impact + resistance training could improve bone mineral density (BMD), reduce bone turnover, build muscle, and decrease fat mass in BCS with premature menopause.

Methods

We conducted a randomized controlled trial in 71 BCS (mean age, 46.5 years) within 5 years of treatment-related menopause. Women were randomly assigned to one of two groups: (1) impact + resistance training (prevent osteoporosis with impact + resistance (POWIR)) or (2) exercise placebo (FLEX) 3×/week for 1 year. Outcomes were hip and spine BMD (in grams per square centimeter) and body composition (percent body fat (%BF) and lean and fat mass (in kilograms)) by DXA and bone turnover markers (serum osteocalcin (in nanograms per milliliter) and urinary deoxypryrodinoline (in nanomoles per milliliter).

Results

There were no significant group × time interactions for bone outcomes when using an intent-to-treat approach on the full sample. In analyses restricted to BCS who were menopausal for ≥1 year, POWIR increased BMD at the hip and slowed BMD loss at the spine compared with FLEX (femoral neck—POWIR, 0.004 ± 0.093 g/cm2 vs. FLEX, −0.010 ± 0.089 g/cm2; p < 0.01; spine—POWIR, −0.003 ± 0.114 g/cm2 vs. FLEX, −0.020 ± 0.110 g/cm2; p = 0.03). POWIR prevented increases in %BF (POWIR, 0.01 % vs. FLEX, 1.3 %; p < 0.04). Women with attendance to POWIR at ≥64 % had better improvements in %BF than women attending less often (p < 0.03).

Conclusion

Impact + resistance training may effectively combat bone loss and worsening body composition from premature menopause in BCS.
Literature
1.
go back to reference Vance V, Mourtzakis M, McCargar L, Hanning R (2011) Weight gain in breast cancer survivors: prevalence, pattern and health consequences. Obesity Rev 12(4):282–294CrossRef Vance V, Mourtzakis M, McCargar L, Hanning R (2011) Weight gain in breast cancer survivors: prevalence, pattern and health consequences. Obesity Rev 12(4):282–294CrossRef
2.
go back to reference Santen RJ (2011) Effect of endocrine therapies on bone in breast cancer patients. J Clin Endocrinol Metab 96(2):308–319PubMedCrossRef Santen RJ (2011) Effect of endocrine therapies on bone in breast cancer patients. J Clin Endocrinol Metab 96(2):308–319PubMedCrossRef
3.
go back to reference Cameron D, Douglas S, Brown J, Anderson R (2010) Bone mineral density loss during adjuvant chemotherapy in pre-menopausal women with early breast cancer: is it dependent on oestrogen deficiency? Breast Cancer Res Treat 23(3):805–814CrossRef Cameron D, Douglas S, Brown J, Anderson R (2010) Bone mineral density loss during adjuvant chemotherapy in pre-menopausal women with early breast cancer: is it dependent on oestrogen deficiency? Breast Cancer Res Treat 23(3):805–814CrossRef
4.
go back to reference Vehmanen L, Saarto T, Elomaa I, Makela P, Valimaki M, Blomqvist C (2001) Long-term impact of chemotherapy-induced ovarian failure on bone mineral density (BMD) in premenopausal breast cancer patients. The effect of adjuvant clodronate treatment. Eur J Cancer 37(18):2373–2378PubMedCrossRef Vehmanen L, Saarto T, Elomaa I, Makela P, Valimaki M, Blomqvist C (2001) Long-term impact of chemotherapy-induced ovarian failure on bone mineral density (BMD) in premenopausal breast cancer patients. The effect of adjuvant clodronate treatment. Eur J Cancer 37(18):2373–2378PubMedCrossRef
5.
go back to reference Demark-Wahnefried W, Peterson BL, Winer EP, Marks L, Aziz N, Marcom PK, Blackwell K, Rimer BK (2001) Changes in weight, body composition, and factors influencing energy balance among premenopausal breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol 19(9):2381–2389PubMed Demark-Wahnefried W, Peterson BL, Winer EP, Marks L, Aziz N, Marcom PK, Blackwell K, Rimer BK (2001) Changes in weight, body composition, and factors influencing energy balance among premenopausal breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol 19(9):2381–2389PubMed
6.
go back to reference Bruning P, Pit M, Md J-B, Avd E, Hart A, Av E (1990) Bone mineral density after adjuvant chemotherapy for premenopausal breast cancer. Br J Cancer 61(2):308–310PubMedCrossRef Bruning P, Pit M, Md J-B, Avd E, Hart A, Av E (1990) Bone mineral density after adjuvant chemotherapy for premenopausal breast cancer. Br J Cancer 61(2):308–310PubMedCrossRef
7.
go back to reference Goodwin PJ, Ennis M, Pritchard KI, McCready D, Koo J, Sidlofsky S, Trudeau M, Hood N, Redwood S (1999) Adjuvant treatment and onset of menopause predict weight gain after breast cancer diagnosis. J Clin Oncol 17(1):120–129PubMed Goodwin PJ, Ennis M, Pritchard KI, McCready D, Koo J, Sidlofsky S, Trudeau M, Hood N, Redwood S (1999) Adjuvant treatment and onset of menopause predict weight gain after breast cancer diagnosis. J Clin Oncol 17(1):120–129PubMed
8.
go back to reference Saad F, Adachi JD, Brown JP, Canning LA, Gelmon KA, Josse RG, Pritchard KI (2008) Cancer treatment-induced bone loss in breast and prostate cancer. J Clin Oncol 26(33):5465–5476PubMedCrossRef Saad F, Adachi JD, Brown JP, Canning LA, Gelmon KA, Josse RG, Pritchard KI (2008) Cancer treatment-induced bone loss in breast and prostate cancer. J Clin Oncol 26(33):5465–5476PubMedCrossRef
9.
go back to reference Freedman RJ, Aziz N, Albanes D, Hartman T, Danforth D, Hill S, Sebring N, Reynolds JC, Yanovski JA (2004) Weight and body composition changes during and after adjuvant chemotherapy in women with breast cancer. J Clin Endocrinol Metab 89(5):2248–2253PubMedCrossRef Freedman RJ, Aziz N, Albanes D, Hartman T, Danforth D, Hill S, Sebring N, Reynolds JC, Yanovski JA (2004) Weight and body composition changes during and after adjuvant chemotherapy in women with breast cancer. J Clin Endocrinol Metab 89(5):2248–2253PubMedCrossRef
10.
go back to reference Shapiro CL, Manola J, Leboff M (2001) Ovarian failure after adjuvant chemotherapy is associated with rapid bone loss in women with early-stage breast cancer. J Clin Oncol 19(14):3306–3311PubMed Shapiro CL, Manola J, Leboff M (2001) Ovarian failure after adjuvant chemotherapy is associated with rapid bone loss in women with early-stage breast cancer. J Clin Oncol 19(14):3306–3311PubMed
11.
go back to reference van Londen G, Perera S, Vujevich K, Rastogi P, Lembersky B, Brufsky A, Vogel V, Greenspan S (2011) The impact of an aromatase inhibitor on body composition and gonadal hormone levels in women with breast cancer. Breast Cancer Res Treat 125(2):441–446PubMedCrossRef van Londen G, Perera S, Vujevich K, Rastogi P, Lembersky B, Brufsky A, Vogel V, Greenspan S (2011) The impact of an aromatase inhibitor on body composition and gonadal hormone levels in women with breast cancer. Breast Cancer Res Treat 125(2):441–446PubMedCrossRef
12.
go back to reference Hurley BF, Hanson ED, Sheaff AK (2011) Strength training as a countermeasure to aging muscle and chronic disease. Sports Med 41(4):289–306PubMedCrossRef Hurley BF, Hanson ED, Sheaff AK (2011) Strength training as a countermeasure to aging muscle and chronic disease. Sports Med 41(4):289–306PubMedCrossRef
13.
go back to reference Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR (2004) American college of sports medicine position stand: physical activity and bone health. Med Sci Sports Exerc 36(11):1985–1996PubMedCrossRef Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR (2004) American college of sports medicine position stand: physical activity and bone health. Med Sci Sports Exerc 36(11):1985–1996PubMedCrossRef
14.
go back to reference Martyn-St James M, Carroll S (2009) A meta-analysis of impact exercise on postmenopausal bone loss: the case for mixed loading exercise programmes. Br J Sports Med 43(12):898–908PubMedCrossRef Martyn-St James M, Carroll S (2009) A meta-analysis of impact exercise on postmenopausal bone loss: the case for mixed loading exercise programmes. Br J Sports Med 43(12):898–908PubMedCrossRef
15.
go back to reference Winters-Stone K, Dobek J, Nail L, Bennett JA, Naik A, Schwartz A (2011) Strength training stops bone loss and builds muscle in postmenopausal breast cancer survivors: a randomized controlled trial. Breast Cancer Res Treat 27(2):447–456CrossRef Winters-Stone K, Dobek J, Nail L, Bennett JA, Naik A, Schwartz A (2011) Strength training stops bone loss and builds muscle in postmenopausal breast cancer survivors: a randomized controlled trial. Breast Cancer Res Treat 27(2):447–456CrossRef
16.
go back to reference Winters KM, Snow CM (2000) Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women. J Bone Miner Res 15:2495–2503PubMedCrossRef Winters KM, Snow CM (2000) Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women. J Bone Miner Res 15:2495–2503PubMedCrossRef
17.
go back to reference Winters-Stone K, Snow C (2006) Site-specific response of bone to exercise in premenopausal women. Bone 39(6):1203–1209PubMedCrossRef Winters-Stone K, Snow C (2006) Site-specific response of bone to exercise in premenopausal women. Bone 39(6):1203–1209PubMedCrossRef
18.
go back to reference Garnero P (2008) Biomarkers for osteoporosis management: utility in diagnosis, fracture risk prediction and therapy monitoring. Molec Diagnos Ther 12(3):157–170CrossRef Garnero P (2008) Biomarkers for osteoporosis management: utility in diagnosis, fracture risk prediction and therapy monitoring. Molec Diagnos Ther 12(3):157–170CrossRef
19.
go back to reference Khosla S, Melton LJ 3rd, Atkinson EJ, O’Fallon WM, Klee GG, Riggs BL (1998) Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab 83(7):2266–2274PubMedCrossRef Khosla S, Melton LJ 3rd, Atkinson EJ, O’Fallon WM, Klee GG, Riggs BL (1998) Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab 83(7):2266–2274PubMedCrossRef
20.
go back to reference Hadji P, Asmar L, van Nes J, Menschik T, Hasenburg A, Kuck J, Nortier J, van de Velde C, Jones S, Ziller M (2011) The effect of exemestane and tamoxifen on bone health within the Tamoxifen Exemestane Adjuvant Multinational (TEAM) trial: a meta-analysis of the US, German, Netherlands, and Belgium sub-studies. J Cancer Res Clin Oncol 137(6):1015–1025PubMedCrossRef Hadji P, Asmar L, van Nes J, Menschik T, Hasenburg A, Kuck J, Nortier J, van de Velde C, Jones S, Ziller M (2011) The effect of exemestane and tamoxifen on bone health within the Tamoxifen Exemestane Adjuvant Multinational (TEAM) trial: a meta-analysis of the US, German, Netherlands, and Belgium sub-studies. J Cancer Res Clin Oncol 137(6):1015–1025PubMedCrossRef
21.
go back to reference Snow CM, Shaw JM, Winters KM, Witzke KA (2000) Long-term exercise using weighted vests prevents hip bone loss in postmenopausal women. J Gerontol A Biol Sci Med Sci 55(9):M489–M491PubMedCrossRef Snow CM, Shaw JM, Winters KM, Witzke KA (2000) Long-term exercise using weighted vests prevents hip bone loss in postmenopausal women. J Gerontol A Biol Sci Med Sci 55(9):M489–M491PubMedCrossRef
22.
go back to reference Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvao DA, Pinto BM, Irwin ML, Wolin KY, Segal RJ, Lucia A, Schneider CM, Vong VE, Schwartz AL (2010) American college of sports medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc 42(7):1409–1426PubMedCrossRef Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvao DA, Pinto BM, Irwin ML, Wolin KY, Segal RJ, Lucia A, Schneider CM, Vong VE, Schwartz AL (2010) American college of sports medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc 42(7):1409–1426PubMedCrossRef
23.
go back to reference Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40(5):373–383PubMedCrossRef Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40(5):373–383PubMedCrossRef
24.
go back to reference Stewart A, Mills K, King A, Haskell W, Gillis D, Ritter P (2001) CHAMPS physical activity questionnaire for older adults: outcomes for interventions. Med Sci Sports Exerc 33(7):1126–1141PubMed Stewart A, Mills K, King A, Haskell W, Gillis D, Ritter P (2001) CHAMPS physical activity questionnaire for older adults: outcomes for interventions. Med Sci Sports Exerc 33(7):1126–1141PubMed
25.
go back to reference Binkley N, Bilezikian JP, Kendler DL, Leib ES, Lewiecki EM, Petak SM (2007) Summary of the International Society for Clinical Densitometry 2005 Position Development Conference. J Bone Miner Res 22(5):643–645PubMedCrossRef Binkley N, Bilezikian JP, Kendler DL, Leib ES, Lewiecki EM, Petak SM (2007) Summary of the International Society for Clinical Densitometry 2005 Position Development Conference. J Bone Miner Res 22(5):643–645PubMedCrossRef
26.
go back to reference Bicego D, Brown K, Ruddick M, Storey D, Wong C, Harris SR (2006) Exercise for women with or at risk for breast cancer–related lymphedema. Phys Ther 86(10):1398–1405PubMedCrossRef Bicego D, Brown K, Ruddick M, Storey D, Wong C, Harris SR (2006) Exercise for women with or at risk for breast cancer–related lymphedema. Phys Ther 86(10):1398–1405PubMedCrossRef
27.
go back to reference Dalsky GP (1990) Effect of exercise on bone: permissive influence of estrogen and calcium. Med Sci Sports Exerc 22(3):281–285PubMed Dalsky GP (1990) Effect of exercise on bone: permissive influence of estrogen and calcium. Med Sci Sports Exerc 22(3):281–285PubMed
28.
go back to reference Frost HM (1992) The role of changes in mechanical usage set points in the pathogenesis of osteoporosis. J Bone Miner Res 7(3):253–261PubMedCrossRef Frost HM (1992) The role of changes in mechanical usage set points in the pathogenesis of osteoporosis. J Bone Miner Res 7(3):253–261PubMedCrossRef
29.
go back to reference Winters KM, Snow CM (2000) Body composition predicts bone mineral density and balance in premenopausal women. J Womens Health Gend Based Med 9(8):865–872PubMedCrossRef Winters KM, Snow CM (2000) Body composition predicts bone mineral density and balance in premenopausal women. J Womens Health Gend Based Med 9(8):865–872PubMedCrossRef
30.
go back to reference Bassey E, Rothwell M, Littlewood J, Pye D (1998) Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res 13(12):1805–1813PubMedCrossRef Bassey E, Rothwell M, Littlewood J, Pye D (1998) Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res 13(12):1805–1813PubMedCrossRef
31.
go back to reference Kohrt WM (2001) Aging and the osteogenic response to mechanical loading. Int J Sport Nutr Exerc Metab 11(Suppl):S137–S142PubMed Kohrt WM (2001) Aging and the osteogenic response to mechanical loading. Int J Sport Nutr Exerc Metab 11(Suppl):S137–S142PubMed
32.
go back to reference Martyn-St James M, Carroll S (2006) Progressive high-intensity resistance training and bone mineral density changes among premenopausal women: evidence of discordant site-specific skeletal effects. Sports Med 36(8):683–704PubMedCrossRef Martyn-St James M, Carroll S (2006) Progressive high-intensity resistance training and bone mineral density changes among premenopausal women: evidence of discordant site-specific skeletal effects. Sports Med 36(8):683–704PubMedCrossRef
33.
go back to reference Martyn-St James M, Carroll S (2006) High-intensity resistance training and postmenopausal bone loss: a meta-analysis. Osteoporos Int 17(8):1225–1240PubMedCrossRef Martyn-St James M, Carroll S (2006) High-intensity resistance training and postmenopausal bone loss: a meta-analysis. Osteoporos Int 17(8):1225–1240PubMedCrossRef
34.
go back to reference Saarto T, Sievänen H, Kellokumpu-Lehtinen P, Nikander R, Vehmanen L, Huovinen R, Kautiainen H, Järvenpää S, Penttinen H, Utriainen M, Jääskeläinen A, Elme A, Ruohola J, Palva T, Vertio H, Rautalahti M, Fogelholm M, Luoto R, Blomqvist C (2012) Effect of supervised and home exercise training on bone mineral density among breast cancer patients. A 12-month randomised controlled trial. Osteoporos Int 23:1601–1612PubMedCrossRef Saarto T, Sievänen H, Kellokumpu-Lehtinen P, Nikander R, Vehmanen L, Huovinen R, Kautiainen H, Järvenpää S, Penttinen H, Utriainen M, Jääskeläinen A, Elme A, Ruohola J, Palva T, Vertio H, Rautalahti M, Fogelholm M, Luoto R, Blomqvist C (2012) Effect of supervised and home exercise training on bone mineral density among breast cancer patients. A 12-month randomised controlled trial. Osteoporos Int 23:1601–1612PubMedCrossRef
35.
go back to reference Lanyon LE (1996) Using functional loading to influence bone mass and architecture: objectives, mechanisms, and relationship with estrogen of the mechanically adaptive process in bone. Bone 18(1 Suppl):37S–43SPubMedCrossRef Lanyon LE (1996) Using functional loading to influence bone mass and architecture: objectives, mechanisms, and relationship with estrogen of the mechanically adaptive process in bone. Bone 18(1 Suppl):37S–43SPubMedCrossRef
36.
go back to reference Hadji P, Ziller M, Maskow C, Albert U, Kalder M (2009) The influence of chemotherapy on bone mineral density, quantitative ultrasonometry and bone turnover in pre-menopausal women with breast cancer. Eur J Cancer 45(18):3205–3212PubMedCrossRef Hadji P, Ziller M, Maskow C, Albert U, Kalder M (2009) The influence of chemotherapy on bone mineral density, quantitative ultrasonometry and bone turnover in pre-menopausal women with breast cancer. Eur J Cancer 45(18):3205–3212PubMedCrossRef
37.
go back to reference Schwartz AL, Winters-Stone K (2009) Effects of a 12-month randomized controlled trial of aerobic or resistance exercise during and following cancer treatment in women. Phys Sportsmed 37(3):62–67PubMedCrossRef Schwartz AL, Winters-Stone K (2009) Effects of a 12-month randomized controlled trial of aerobic or resistance exercise during and following cancer treatment in women. Phys Sportsmed 37(3):62–67PubMedCrossRef
38.
go back to reference Schmitz KH, Ahmed RL, Hannan PJ, Yee D (2005) Safety and efficacy of weight training in recent breast cancer survivors to alter body composition, insulin, and insulin-like growth factor axis proteins. Cancer Epidemiol Biomarkers Prev 14(7):1672–1680PubMedCrossRef Schmitz KH, Ahmed RL, Hannan PJ, Yee D (2005) Safety and efficacy of weight training in recent breast cancer survivors to alter body composition, insulin, and insulin-like growth factor axis proteins. Cancer Epidemiol Biomarkers Prev 14(7):1672–1680PubMedCrossRef
39.
go back to reference Schmitz KH, Ahmed RL, Troxel AB, Cheville A, Lewis-Grant L, Smith R, Bryan CJ, Williams-Smith CT, Chittams J (2010) Weight lifting for women at risk for breast cancer-related lymphedema. JAMA 304(24):2699–2705PubMedCrossRef Schmitz KH, Ahmed RL, Troxel AB, Cheville A, Lewis-Grant L, Smith R, Bryan CJ, Williams-Smith CT, Chittams J (2010) Weight lifting for women at risk for breast cancer-related lymphedema. JAMA 304(24):2699–2705PubMedCrossRef
40.
go back to reference Slentz CA, Houmard JA, Kraus WE (2009) Exercise, abdominal obesity, skeletal muscle, and metabolic risk: evidence for a dose response. Obesity 17(3):S27–S33PubMedCrossRef Slentz CA, Houmard JA, Kraus WE (2009) Exercise, abdominal obesity, skeletal muscle, and metabolic risk: evidence for a dose response. Obesity 17(3):S27–S33PubMedCrossRef
41.
go back to reference Winters-Stone KM, Nail L, Bennett JA, Schwartz A (2009) Bone health and falls: fracture risk in breast cancer survivors with chemotherapy-induced amenorrhea. Oncol Nurs Forum 36(3):315–325PubMedCrossRef Winters-Stone KM, Nail L, Bennett JA, Schwartz A (2009) Bone health and falls: fracture risk in breast cancer survivors with chemotherapy-induced amenorrhea. Oncol Nurs Forum 36(3):315–325PubMedCrossRef
42.
go back to reference Gordon AM, Hurwitz S, Shapiro CL, Leboff MS (2011) Premature ovarian failure and body composition changes with adjuvant chemotherapy for breast cancer. Menopause 18(11):1244–1248PubMedCrossRef Gordon AM, Hurwitz S, Shapiro CL, Leboff MS (2011) Premature ovarian failure and body composition changes with adjuvant chemotherapy for breast cancer. Menopause 18(11):1244–1248PubMedCrossRef
43.
go back to reference Waltman NL, Twiss JJ, Ott CD, Gross GJ, Lindsey AM, Moore TE, Berg K, Kupzyk K (2010) The effect of weight training on bone mineral density and bone turnover in postmenopausal breast cancer survivors with bone loss: a 24-month randomized controlled trial. Osteoporos Int 21(8):1361–1369PubMedCrossRef Waltman NL, Twiss JJ, Ott CD, Gross GJ, Lindsey AM, Moore TE, Berg K, Kupzyk K (2010) The effect of weight training on bone mineral density and bone turnover in postmenopausal breast cancer survivors with bone loss: a 24-month randomized controlled trial. Osteoporos Int 21(8):1361–1369PubMedCrossRef
44.
go back to reference Schmitz KH, Ahmed RL, Troxel A, Cheville A, Smith R, Lewis-Grant L, Bryan CJ, Williams-Smith CT, Greene QP (2009) Weight lifting in women with breast-cancer-related lymphedema. New Engl J Med 361(7):664–673PubMedCrossRef Schmitz KH, Ahmed RL, Troxel A, Cheville A, Smith R, Lewis-Grant L, Bryan CJ, Williams-Smith CT, Greene QP (2009) Weight lifting in women with breast-cancer-related lymphedema. New Engl J Med 361(7):664–673PubMedCrossRef
45.
go back to reference Ganz PA, Land SR, Geyer CE, Cecchini RS, Costantino JP, Pajon ER, Fehrenbacher L, Atkins JN, Polikoff JA, Vogel VG, Erban JK, Livingston RB, Perez EA, Mamounas EP, Wolmark N, Swain SM (2011) Menstrual history and quality-of-life outcomes in women with node-positive breast cancer treated with adjuvant therapy on the NSABP B-30 trial. J Clin Oncol 29(9):1110–1116PubMedCrossRef Ganz PA, Land SR, Geyer CE, Cecchini RS, Costantino JP, Pajon ER, Fehrenbacher L, Atkins JN, Polikoff JA, Vogel VG, Erban JK, Livingston RB, Perez EA, Mamounas EP, Wolmark N, Swain SM (2011) Menstrual history and quality-of-life outcomes in women with node-positive breast cancer treated with adjuvant therapy on the NSABP B-30 trial. J Clin Oncol 29(9):1110–1116PubMedCrossRef
Metadata
Title
Impact + resistance training improves bone health and body composition in prematurely menopausal breast cancer survivors: a randomized controlled trial
Authors
K. M. Winters-Stone
J. Dobek
L. M. Nail
J. A. Bennett
M. C. Leo
B. Torgrimson-Ojerio
S.-W. Luoh
A. Schwartz
Publication date
01-05-2013
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 5/2013
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-012-2143-2

Other articles of this Issue 5/2013

Osteoporosis International 5/2013 Go to the issue