Skip to main content
Top
Published in: Osteoporosis International 2/2010

01-06-2010 | Review

Strontium ranelate: an effective solution for diverse fracture risks

Author: J. D. Ringe

Published in: Osteoporosis International | Special Issue 2/2010

Login to get access

Abstract

Osteoporosis is listed by the WHO among the ten most frequent and socio-economically important, chronic diseases of mankind. The term osteoporosis however comprises a number of different pathophysiological conditions and clinical situations of weakened bones with increased risk of fragility fractures. A modern anti-osteoporotic drug should provide qualified study results proving therapeutic efficacy over this broad range of daily clinical appearances of osteoporosis. The decision for treatment in the individual patients depends no longer only on bone mineral density. Today, the major criterion for decision making is the prospective 10-year risk for fractures. Since this risk is calculated on the basis of age, sex, bone mineral density, prevalent fractures, and a number of other contributing risk factors (Kanis et al., Osteoporos Int 12:989–995, 2001; Kanis et al., Osteoporos Int 19:385–397, 2008), it seems to be of interest to have a look whether the fracture-reducing potency of a drug is influenced by these risk factors. The purpose of this review is to analyze whether the fracture-reducing efficacy of strontium ranelate in patients with osteoporosis can be achieved independently of sex, etiology of osteoporosis, and the major diagnostically relevant risk factors.
Literature
1.
go back to reference Meunier PJ, Roux C, Seeman E et al (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468CrossRefPubMed Meunier PJ, Roux C, Seeman E et al (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468CrossRefPubMed
2.
go back to reference Reginster JY, Seeman E, De Vernejoul MC et al (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: TROPOS study. J Clin Endocrinol Metab 90:2816–2822CrossRefPubMed Reginster JY, Seeman E, De Vernejoul MC et al (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: TROPOS study. J Clin Endocrinol Metab 90:2816–2822CrossRefPubMed
3.
go back to reference Ringe JD (2000) Osteoporosis in men. In: Hosking D, Ringe J (eds) Treatment of metabolic bone disease. Management strategy and drug therapy. Martin Dunitz, London Ringe JD (2000) Osteoporosis in men. In: Hosking D, Ringe J (eds) Treatment of metabolic bone disease. Management strategy and drug therapy. Martin Dunitz, London
4.
go back to reference Gennari L, Bilezikian JP (2007) Osteoporosis in men. Endocrinol Metab Clin N Am 36:399–419CrossRef Gennari L, Bilezikian JP (2007) Osteoporosis in men. Endocrinol Metab Clin N Am 36:399–419CrossRef
5.
go back to reference National Osteoporosis Foundation (NOF) (2005) America's bone health: the state of osteoporosis and low bone mass. National Osteoporosis Foundation, Washington National Osteoporosis Foundation (NOF) (2005) America's bone health: the state of osteoporosis and low bone mass. National Osteoporosis Foundation, Washington
6.
go back to reference EPOS Group (2002) Incidence of vertebral fracture in Europe: results from the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res 17:716–724CrossRef EPOS Group (2002) Incidence of vertebral fracture in Europe: results from the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res 17:716–724CrossRef
8.
go back to reference Szulc P, Delmas PD (2001) Biochemical markers of bone turnover in men. Calcif Tissue Int 89:229–334CrossRef Szulc P, Delmas PD (2001) Biochemical markers of bone turnover in men. Calcif Tissue Int 89:229–334CrossRef
9.
go back to reference Fink HA, Ewing SK, Ensrud KB (2006). Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men. J Clin Endocrinol Metab 13908–3915 Fink HA, Ewing SK, Ensrud KB (2006). Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men. J Clin Endocrinol Metab 13908–3915
11.
go back to reference Riggs KS, BL AEJ (2006) Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res 21:124–131CrossRefPubMed Riggs KS, BL AEJ (2006) Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res 21:124–131CrossRefPubMed
12.
go back to reference Jones G, Nguyen TV, Sambrook PN, Kelly PJ, Bisman JA (1994) Progressive femoral neck bone loss in the elderly: longitudinal findings from the Dubbo Osteoporosis Epidemiology Study. Br Med J 309:691–695 Jones G, Nguyen TV, Sambrook PN, Kelly PJ, Bisman JA (1994) Progressive femoral neck bone loss in the elderly: longitudinal findings from the Dubbo Osteoporosis Epidemiology Study. Br Med J 309:691–695
13.
go back to reference Nieves JW, Formica C, Ruffing J, Zion M, Garrett P, Lindsay R, Cosman F (2005) Males have larger skeletal size and bone mass than females, despite comparable body size. J Bone Miner Res 20:529–535CrossRefPubMed Nieves JW, Formica C, Ruffing J, Zion M, Garrett P, Lindsay R, Cosman F (2005) Males have larger skeletal size and bone mass than females, despite comparable body size. J Bone Miner Res 20:529–535CrossRefPubMed
14.
go back to reference Szulc P, Delmas PD (2007) Bone loss in elderly men: increased endosteal bone loss and stable periosteal apposition: the prospective MINOS study. Osteoporos Int 18:495–503CrossRefPubMed Szulc P, Delmas PD (2007) Bone loss in elderly men: increased endosteal bone loss and stable periosteal apposition: the prospective MINOS study. Osteoporos Int 18:495–503CrossRefPubMed
15.
go back to reference Hannan MT, Tucker KL, Dawson-Hughes B, Cupples LA, Felson DT, Kiel DP (2000) Effect of dietary protein on bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res 15:2504–2512CrossRefPubMed Hannan MT, Tucker KL, Dawson-Hughes B, Cupples LA, Felson DT, Kiel DP (2000) Effect of dietary protein on bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res 15:2504–2512CrossRefPubMed
16.
go back to reference Ringe JD (2010) Osteoporosis in men. Medicographia 32:71–78 Ringe JD (2010) Osteoporosis in men. Medicographia 32:71–78
17.
go back to reference Bonnelye E, Chabadel A, Saltel F, Jurdic P (2008) Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42:129–138CrossRefPubMed Bonnelye E, Chabadel A, Saltel F, Jurdic P (2008) Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42:129–138CrossRefPubMed
18.
go back to reference Ringe JD, Dorst A, Faber H, Farahmand P (2008) Treatment of osteoporosis in men with strontium ranelate: results of a prospective controlled trial in 152 patients. Osteoporos Int 19(Suppl):S13 Ringe JD, Dorst A, Faber H, Farahmand P (2008) Treatment of osteoporosis in men with strontium ranelate: results of a prospective controlled trial in 152 patients. Osteoporos Int 19(Suppl):S13
19.
go back to reference Ringe JD, Dorst A, Farahmand P (2009) Treatment of glucocorticoid-induced osteoporosis with strontium ranelate: a 2-year observational, controlled study versus risedronate. Osteoporos Int 20(Suppl1):S72 Ringe JD, Dorst A, Farahmand P (2009) Treatment of glucocorticoid-induced osteoporosis with strontium ranelate: a 2-year observational, controlled study versus risedronate. Osteoporos Int 20(Suppl1):S72
20.
go back to reference Bruyère O, Delferriere D, Roux C (2008) Effects of strontium ranelate on spinal osteoarthritis progression. Ann Rheum Dis 67:335–339CrossRefPubMed Bruyère O, Delferriere D, Roux C (2008) Effects of strontium ranelate on spinal osteoarthritis progression. Ann Rheum Dis 67:335–339CrossRefPubMed
21.
go back to reference Ringe JD, Dorst A, Farahmand P. The efficacy of strontium ranelate on bone mineral density in men with osteoporosis. Drug Res Accept Pub Ringe JD, Dorst A, Farahmand P. The efficacy of strontium ranelate on bone mineral density in men with osteoporosis. Drug Res Accept Pub
22.
go back to reference Ringe JD, Fahramand P (2007) Advances in the management of corticoid-induced osteoporosis with bisphosphonates. Clin Rheumatol 26:474–478CrossRefPubMed Ringe JD, Fahramand P (2007) Advances in the management of corticoid-induced osteoporosis with bisphosphonates. Clin Rheumatol 26:474–478CrossRefPubMed
23.
go back to reference Canalis E, Mazzioti G, Guistina A, Bilezikian JP (2007) Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int 10:1319–1328CrossRef Canalis E, Mazzioti G, Guistina A, Bilezikian JP (2007) Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int 10:1319–1328CrossRef
24.
go back to reference van Staa TP, Leufkens HGM, Abenhaim L, Zhang B, Cooper C (2000) Use of oral corticosteroids and risk of fractures. J Bone Miner Res 15:993–1000CrossRefPubMed van Staa TP, Leufkens HGM, Abenhaim L, Zhang B, Cooper C (2000) Use of oral corticosteroids and risk of fractures. J Bone Miner Res 15:993–1000CrossRefPubMed
25.
go back to reference Saag KG, Shane E, Boonen S, Marin F, Donley DW, Taylor KA, Dalsky GP, Marcus R (2007) Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med 357:2028–2039CrossRefPubMed Saag KG, Shane E, Boonen S, Marin F, Donley DW, Taylor KA, Dalsky GP, Marcus R (2007) Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med 357:2028–2039CrossRefPubMed
26.
go back to reference Compston J, Reid DM, Boisdron J et al (2009) Recommendations for registration of agents for prevention and treatment of glucocorticoid-induced osteoporosis: an update from the Group for the Respect of Ethics and Excellence in Science. Osteoporos Int 20:497–498CrossRef Compston J, Reid DM, Boisdron J et al (2009) Recommendations for registration of agents for prevention and treatment of glucocorticoid-induced osteoporosis: an update from the Group for the Respect of Ethics and Excellence in Science. Osteoporos Int 20:497–498CrossRef
27.
go back to reference Torgerson DJ, Campbell MK, Thomas RE et al (1996) Prediction of perimenopausal fractures by bone mineral density and other risk factors. J Bone Miner Res 11:293–297CrossRefPubMed Torgerson DJ, Campbell MK, Thomas RE et al (1996) Prediction of perimenopausal fractures by bone mineral density and other risk factors. J Bone Miner Res 11:293–297CrossRefPubMed
28.
go back to reference Kanis JA, Burliet N, Cooper C et al (2008) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 19:399–428CrossRefPubMed Kanis JA, Burliet N, Cooper C et al (2008) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 19:399–428CrossRefPubMed
29.
go back to reference Ferrari S, Ringe JD (2010) Pathophysiology of postmenopausal osteoporosis. In: Rizzoli R (ed) Atlas of postmenopausal osteoporosis, 3rd edn. Current Medicine Group, London Ferrari S, Ringe JD (2010) Pathophysiology of postmenopausal osteoporosis. In: Rizzoli R (ed) Atlas of postmenopausal osteoporosis, 3rd edn. Current Medicine Group, London
30.
go back to reference Soroko S, Barrett-Connor E, Edelstein S, Kritz-Silverstein D (1994) Family history of osteoporosis and bone mineral density at the axial skeleton: the Rancho Bernardo Study. J Bone Miner Res 9:761–769CrossRefPubMed Soroko S, Barrett-Connor E, Edelstein S, Kritz-Silverstein D (1994) Family history of osteoporosis and bone mineral density at the axial skeleton: the Rancho Bernardo Study. J Bone Miner Res 9:761–769CrossRefPubMed
31.
go back to reference Ralston SH (2002) Genetic control of susceptibility to osteoporosis. J Clin Endocrinol Metab 87:2460–2466CrossRefPubMed Ralston SH (2002) Genetic control of susceptibility to osteoporosis. J Clin Endocrinol Metab 87:2460–2466CrossRefPubMed
32.
go back to reference Roux C, Reginster JY, Fechtenbaum J, Kolta S, Sawicki A, Tulassay Z et al (2006) Vertebral fracture risk reduction with strontium ranelate in women with postmenopausal osteoporosis is independent of baseline risk factors. J Bone Miner Res 21:536–542CrossRefPubMed Roux C, Reginster JY, Fechtenbaum J, Kolta S, Sawicki A, Tulassay Z et al (2006) Vertebral fracture risk reduction with strontium ranelate in women with postmenopausal osteoporosis is independent of baseline risk factors. J Bone Miner Res 21:536–542CrossRefPubMed
33.
go back to reference Forsen L, Bjorndal A, Bjartveit K et al (1994) Interaction between current smoking, leanness, and physical inactivity in the prediction of hip fracture. J Bone Miner Res 9:1671–1678CrossRefPubMed Forsen L, Bjorndal A, Bjartveit K et al (1994) Interaction between current smoking, leanness, and physical inactivity in the prediction of hip fracture. J Bone Miner Res 9:1671–1678CrossRefPubMed
34.
go back to reference Law MR, Hackshaw AK (1997) A meta-analysis of cigarette smoking, bone mineral density and risk of hip fracture: recognition of a major effect. BMJ 315:841–846PubMed Law MR, Hackshaw AK (1997) A meta-analysis of cigarette smoking, bone mineral density and risk of hip fracture: recognition of a major effect. BMJ 315:841–846PubMed
35.
go back to reference Cornuz J, Feskanich D, Willett W, Colditz G (1999) Smoking, smoking cessation, and risk of hip fracture in women. Am J Med 106:311–314CrossRefPubMed Cornuz J, Feskanich D, Willett W, Colditz G (1999) Smoking, smoking cessation, and risk of hip fracture in women. Am J Med 106:311–314CrossRefPubMed
36.
go back to reference Hassager C, Christiansen C (1993) Influence of soft tissue body composition on bone mass and metabolism. Bone 10:415–419CrossRef Hassager C, Christiansen C (1993) Influence of soft tissue body composition on bone mass and metabolism. Bone 10:415–419CrossRef
37.
go back to reference Edelstein SL, Barett-Connor E (1993) Relation between body size and bone mineral density in elderly men and women. Am J Epidemiol 138:160–169PubMed Edelstein SL, Barett-Connor E (1993) Relation between body size and bone mineral density in elderly men and women. Am J Epidemiol 138:160–169PubMed
38.
go back to reference Omland LM, Tell GS, Ofjord S, Skag A (2000) Risk factors for low bone mineral density among a large group of Norwegian women with fractures. Eur J Epidemiol 16:223–229CrossRefPubMed Omland LM, Tell GS, Ofjord S, Skag A (2000) Risk factors for low bone mineral density among a large group of Norwegian women with fractures. Eur J Epidemiol 16:223–229CrossRefPubMed
39.
go back to reference Ravn P, Cizza G, Bjarnason NH, Thompson D, Daley M, Wasnich RD et al (1999) Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women. Early Postmenopausal Intervention Cohort (EPIC) study group. J Bone Miner Res 14:1622–1627CrossRefPubMed Ravn P, Cizza G, Bjarnason NH, Thompson D, Daley M, Wasnich RD et al (1999) Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women. Early Postmenopausal Intervention Cohort (EPIC) study group. J Bone Miner Res 14:1622–1627CrossRefPubMed
40.
Metadata
Title
Strontium ranelate: an effective solution for diverse fracture risks
Author
J. D. Ringe
Publication date
01-06-2010
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue Special Issue 2/2010
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-010-1241-2

Other articles of this Special Issue 2/2010

Osteoporosis International 2/2010 Go to the issue