Skip to main content
Top
Published in: Osteoporosis International 11/2008

Open Access 01-11-2008 | Original Article

Improved precision with Hologic Apex software

Authors: B. Fan, E. M. Lewiecki, M. Sherman, Y. Lu, P. D. Miller, H. K. Genant, J. A. Shepherd

Published in: Osteoporosis International | Issue 11/2008

Login to get access

Abstract

Summary

The precision of Hologic Apex v2.0 analysis software is significantly improved from Hologic Delphi v11.2 software and is comparable to GE Lunar Prodigy v7.5 software. Apex and Delphi precisions were, respectively, 1.0% vs. 1.2% (L1-L4 spine), 1.l % vs. 1.3% (total femur), 1.6% vs. 1.9% (femoral neck), and 0.7% vs. 0.9% (dual total femur).

Introduction

Precision of bone mineral density (BMD) measurements by dual-energy X-ray absorptiometry (DXA) is known to vary by manufacturer, model, and technologist. This study evaluated the precision of three analysis versions: Apex v2.0 and Delphi v11.2 (Hologic, Inc.), and Prodigy v7.5 (GE Healthcare, Inc.) independent of technologist skill.

Methods

Duplicate spine and dual hip scans on 90 women were acquired on both Delphi and Prodigy DXA systems at three clinics. BMD measures were converted to standardized BMD (sBMD) units. Precision errors were described as a root-mean-square (RMS) standard deviations and RMS percent coefficients of variation across the population.

Results

Apex and Delphi values were highly correlated (r ranged from 0.90 to 0.99). Excluding the right neck, the Apex precision error was found to be 20% to 25% lower than the Delphi (spine: 1.0% versus 1.2% (p < 0.05), total hip: 1.1% versus 1.3% (p < 0.05), right neck: 2.3% versus 2.6% (p > 0.1)). No statistically significant differences were found in the precision error of the Apex and Prodigy (p > 0.05) except for the right neck (2.3% versus 1.8% respectively, p = 0.03).

Conclusion

The Apex software has significantly lower precision error compared to Delphi software with similar mean values, and similar precision to that of the Prodigy.
Literature
1.
go back to reference Ross PD, Davis JW, Wasnich RD, Vogel JM (1991) The clinical application of serial bone mass measurements. Bone Miner 12:189–199CrossRefPubMed Ross PD, Davis JW, Wasnich RD, Vogel JM (1991) The clinical application of serial bone mass measurements. Bone Miner 12:189–199CrossRefPubMed
2.
go back to reference Harris S, Dawson-Hughes B (1992) Rates of change in bone mineral density of the spine, heel, femoral neck and radius in healthy postmenopausal women. Bone Miner 17:87–95CrossRefPubMed Harris S, Dawson-Hughes B (1992) Rates of change in bone mineral density of the spine, heel, femoral neck and radius in healthy postmenopausal women. Bone Miner 17:87–95CrossRefPubMed
3.
go back to reference Shepherd JA, Fan B, Lu Y, Lewiecki EM, Miller P, Genant HK (2006) Comparison of BMD precision for Prodigy and Delphi spine and femur scans. Osteoporos Int 17:1303–1308CrossRefPubMed Shepherd JA, Fan B, Lu Y, Lewiecki EM, Miller P, Genant HK (2006) Comparison of BMD precision for Prodigy and Delphi spine and femur scans. Osteoporos Int 17:1303–1308CrossRefPubMed
4.
go back to reference Hui SL, Gao S, Zhou XH, Johnston CC Jr, Lu Y, Gluer CC, Grampp S, Genant H (1997) Universal standardization of bone density measurements: a method with optimal properties for calibration among several instruments. J Bone Miner Res 12:1463–1470CrossRefPubMed Hui SL, Gao S, Zhou XH, Johnston CC Jr, Lu Y, Gluer CC, Grampp S, Genant H (1997) Universal standardization of bone density measurements: a method with optimal properties for calibration among several instruments. J Bone Miner Res 12:1463–1470CrossRefPubMed
5.
go back to reference Lu Y, Fuerst T, Hui S, Genant HK (2001) Standardization of bone mineral density at femoral neck, trochanter and Ward's triangle. Osteoporos Int 12:438–444CrossRefPubMed Lu Y, Fuerst T, Hui S, Genant HK (2001) Standardization of bone mineral density at femoral neck, trochanter and Ward's triangle. Osteoporos Int 12:438–444CrossRefPubMed
6.
go back to reference Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270CrossRefPubMed Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270CrossRefPubMed
7.
go back to reference Gluer CC (1999) Monitoring skeletal changes by radiological techniques. J Bone Miner Res 14:1952–1962CrossRefPubMed Gluer CC (1999) Monitoring skeletal changes by radiological techniques. J Bone Miner Res 14:1952–1962CrossRefPubMed
8.
go back to reference Shepherd JA, Lu Y, Wilson K, Fuerst T, Genant H, Hangartner TN, Wilson C, Hans D, Leib ES (2006) Cross-calibration and minimum precision standards for dual-energy X-ray absorptiometry: the 2005 ISCD Official Positions. J Clin Densitom 9:31–36CrossRefPubMed Shepherd JA, Lu Y, Wilson K, Fuerst T, Genant H, Hangartner TN, Wilson C, Hans D, Leib ES (2006) Cross-calibration and minimum precision standards for dual-energy X-ray absorptiometry: the 2005 ISCD Official Positions. J Clin Densitom 9:31–36CrossRefPubMed
9.
go back to reference Hangartner TN (2007) A study of the long-term precision of dual-energy X-ray absorptiometry bone densitometers and implications for the validity of the least-significant-change calculation. Osteoporos Int 18:513–523CrossRefPubMed Hangartner TN (2007) A study of the long-term precision of dual-energy X-ray absorptiometry bone densitometers and implications for the validity of the least-significant-change calculation. Osteoporos Int 18:513–523CrossRefPubMed
Metadata
Title
Improved precision with Hologic Apex software
Authors
B. Fan
E. M. Lewiecki
M. Sherman
Y. Lu
P. D. Miller
H. K. Genant
J. A. Shepherd
Publication date
01-11-2008
Publisher
Springer London
Published in
Osteoporosis International / Issue 11/2008
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-008-0594-2

Other articles of this Issue 11/2008

Osteoporosis International 11/2008 Go to the issue