Skip to main content
Top
Published in: Osteoporosis International 9/2008

01-09-2008 | Original Article

Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women

Authors: F. A. Syed, M. J. Oursler, T. E. Hefferanm, J. M. Peterson, B. L. Riggs, S. Khosla

Published in: Osteoporosis International | Issue 9/2008

Login to get access

Abstract

Summary

One-year treatment of osteoporotic postmenopausal women with transdermal estrogen resulted in significant decreases in bone marrow adipocyte volume and prevented increases in adipocyte number as compared to placebo-treated controls. Estrogen treatment also prevented increases in mean adipocyte size over 1 year.

Introduction

Aging is associated not only with bone loss but also with increases in bone marrow adipocytes. Since osteoblasts and adipocytes are derived from a common precursor, it is possible that with aging, there is a preferential “switch” in commitment of this precursor to the adipocyte over the osteoblast lineage. We tested the hypothesis that the apparent “age-related” increase in marrow adipocytes is due, at least in part, to estrogen (E) deficiency.

Methods

Reanalysis of bone biopsies from a randomized, placebo-controlled trial involving 56 postmenopausal osteoporotic women (mean age, 64 years) treated either with placebo (PL, n = 27) or transdermal estradiol (0.1 mg/d, n = 29) for 1 year.

Results

Adipocyte volume/tissue volume (AV/TV) and adipocyte number (Ad#) increased (by ∼20%, P < 0.05) in the PL group, but were unchanged (Ad#) or decreased (AV/TV, by −24%, P < 0.001) in the E group. E treatment also prevented increases in mean adipocyte size over 1 year.

Conclusions

These findings represent the first in vivo demonstration in humans that not only ongoing bone loss, but also the increase in bone marrow adipocyte number and size in postmenopausal osteoporotic women may be due, at least in part, to E deficiency.
Literature
1.
go back to reference Riggs BL, Khosla S, Melton LJ (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302PubMedCrossRef Riggs BL, Khosla S, Melton LJ (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302PubMedCrossRef
2.
go back to reference Lips P, Courpron P, Meunier PJ (1978) Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res 26:13–17PubMedCrossRef Lips P, Courpron P, Meunier PJ (1978) Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res 26:13–17PubMedCrossRef
3.
go back to reference Dunnill MS, Anderson JA, Whitehead R (1967) Quantitative histological studies on age changes in bone. J Path Bact 94:275–291PubMedCrossRef Dunnill MS, Anderson JA, Whitehead R (1967) Quantitative histological studies on age changes in bone. J Path Bact 94:275–291PubMedCrossRef
4.
go back to reference Meunier P, Aaron J, Edouard C, Vignon A (1971) Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. Clin Orthop Rel Res 80:147–154CrossRef Meunier P, Aaron J, Edouard C, Vignon A (1971) Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. Clin Orthop Rel Res 80:147–154CrossRef
5.
go back to reference Aubin JE, Liu F (1996) The osteoblast lineage. In: Bilezikian J, Raisz L, Rodan G (eds) Principles of bone biology. Academic Press, San Diego, CA., pp 51–68 Aubin JE, Liu F (1996) The osteoblast lineage. In: Bilezikian J, Raisz L, Rodan G (eds) Principles of bone biology. Academic Press, San Diego, CA., pp 51–68
6.
go back to reference Hicok KC, Thomas T, Gori F, Rickard DJ, Spelsberg TC, Riggs BL (1998) Development and characterization of conditionally immortalized osteoblast precursor cell lines from human bone marrow stroma. J Bone Miner Res 13:205–217PubMedCrossRef Hicok KC, Thomas T, Gori F, Rickard DJ, Spelsberg TC, Riggs BL (1998) Development and characterization of conditionally immortalized osteoblast precursor cell lines from human bone marrow stroma. J Bone Miner Res 13:205–217PubMedCrossRef
7.
go back to reference Gori F, Thomas T, Hicok KC, Spelsberg TC, Riggs BL (1999) Differentiation of human marrow stromal precursor cells: bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res 14:1522–1535PubMedCrossRef Gori F, Thomas T, Hicok KC, Spelsberg TC, Riggs BL (1999) Differentiation of human marrow stromal precursor cells: bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res 14:1522–1535PubMedCrossRef
8.
go back to reference Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V, Amling M, Karsenty G (1999) A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev 13:1025–1036PubMedCrossRef Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V, Amling M, Karsenty G (1999) A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev 13:1025–1036PubMedCrossRef
9.
go back to reference Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, Crombrugghe BD (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29PubMedCrossRef Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, Crombrugghe BD (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29PubMedCrossRef
11.
go back to reference Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung Ui, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H (2004) PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113:846–855PubMed Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung Ui, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H (2004) PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113:846–855PubMed
12.
go back to reference Jilka RL, Weinstein RS, Takahashi K, Parfitt AM, Manolagas SC (1996) Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J Clin Invest 97:1732–1740PubMedCrossRef Jilka RL, Weinstein RS, Takahashi K, Parfitt AM, Manolagas SC (1996) Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J Clin Invest 97:1732–1740PubMedCrossRef
13.
go back to reference Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102:341–351PubMed Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102:341–351PubMed
14.
go back to reference Rzonca SO, Suva LJ, Gaddy D, Montague DC, Lecka-Czernik B (2004) Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology 145:401–406PubMedCrossRef Rzonca SO, Suva LJ, Gaddy D, Montague DC, Lecka-Czernik B (2004) Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology 145:401–406PubMedCrossRef
15.
go back to reference Nuttall ME, Gimble JM (2000) Is there a therapeutic opportunity to either prevent or treat osteopenic disorders by inhibiting marrow adipogenesis? Bone 27:177–184PubMedCrossRef Nuttall ME, Gimble JM (2000) Is there a therapeutic opportunity to either prevent or treat osteopenic disorders by inhibiting marrow adipogenesis? Bone 27:177–184PubMedCrossRef
16.
go back to reference Cooke PS, Naaz A (2004) Role of estrogens in adipocyte development and function. Exp Biol Med 229:1127–1135 Cooke PS, Naaz A (2004) Role of estrogens in adipocyte development and function. Exp Biol Med 229:1127–1135
17.
go back to reference Benayahu D, Shur I, Ben-Eliyahu S (2000) Hormonal changes affect the bone and bone marrow cells in a rat model. J Cell Biochem 79:407–415PubMedCrossRef Benayahu D, Shur I, Ben-Eliyahu S (2000) Hormonal changes affect the bone and bone marrow cells in a rat model. J Cell Biochem 79:407–415PubMedCrossRef
18.
go back to reference Okazaki R, Inoue D, Shibata M, Saika M, Kido S, Ooka H, Tomiyama H, Sakamoto Y, Matsumoto T (2002) Estrogen promotes early osteoblast differentiation and inhibits adipocyte differentiation in mouse bone marrow stromal cell lines that express estrogen receptor (ER) alpha or beta. Endocrinology 143:2349–2356PubMedCrossRef Okazaki R, Inoue D, Shibata M, Saika M, Kido S, Ooka H, Tomiyama H, Sakamoto Y, Matsumoto T (2002) Estrogen promotes early osteoblast differentiation and inhibits adipocyte differentiation in mouse bone marrow stromal cell lines that express estrogen receptor (ER) alpha or beta. Endocrinology 143:2349–2356PubMedCrossRef
19.
go back to reference Dang ZC, Van Bezooijen RL, Karperien M, Papapoulos SE, Lowik CWGM (2002) Exposure of KS483 cells to estrogen enhances osteogenesis and inhibits adipogenesis. J Bone Miner Res 17:394–405PubMedCrossRef Dang ZC, Van Bezooijen RL, Karperien M, Papapoulos SE, Lowik CWGM (2002) Exposure of KS483 cells to estrogen enhances osteogenesis and inhibits adipogenesis. J Bone Miner Res 17:394–405PubMedCrossRef
20.
go back to reference Lufkin EG, Wahner HW, O’Fallon WM, Hodgson SF, Kotowicz MA, Lane AW, Judd HL, Caplan RH, Riggs BL (1992) Treatment of postmenopausal osteoporosis with transdermal estrogen. Ann Intern Med 117:1–9PubMed Lufkin EG, Wahner HW, O’Fallon WM, Hodgson SF, Kotowicz MA, Lane AW, Judd HL, Caplan RH, Riggs BL (1992) Treatment of postmenopausal osteoporosis with transdermal estrogen. Ann Intern Med 117:1–9PubMed
21.
go back to reference Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M (2001) Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2:165–171PubMedCrossRef Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M (2001) Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2:165–171PubMedCrossRef
22.
go back to reference Verma S, Rajaratnam JH, Denton J, Hoyland JA, Byers RJ (2002) Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol 55:693–698PubMedCrossRef Verma S, Rajaratnam JH, Denton J, Hoyland JA, Byers RJ (2002) Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol 55:693–698PubMedCrossRef
23.
go back to reference Hamosh M, Hamosh P (1975) The effect of estrogen on the lipoprotein lipase activity of rat adipose tissue. J Clin Invest 55:1132–1135PubMedCrossRef Hamosh M, Hamosh P (1975) The effect of estrogen on the lipoprotein lipase activity of rat adipose tissue. J Clin Invest 55:1132–1135PubMedCrossRef
24.
go back to reference Palin SL, McTernan PG, Anderson LA, Sturdee DW, Barnett AH, Kumar S (2003) 17beta-Estradiol and anti-estrogen ICI compound 182,780 regulate expression of lipoprotein lipase and hormone-sensitive lipase in isolated subcutaneous abdominal adipocytes. Metabolism 52:383–388PubMedCrossRef Palin SL, McTernan PG, Anderson LA, Sturdee DW, Barnett AH, Kumar S (2003) 17beta-Estradiol and anti-estrogen ICI compound 182,780 regulate expression of lipoprotein lipase and hormone-sensitive lipase in isolated subcutaneous abdominal adipocytes. Metabolism 52:383–388PubMedCrossRef
25.
go back to reference Pedersen SB, Kristensen K, Hermann PA, Katzenellenbogen JA, Richelsen B (2004) Estrogen controls by lipolysis by up-regulating alpha2A-adrenergic receptors directly in human adipose tissue through the estrogen receptor alpha. Implications for the female fat distribution. J Clin Endocrinol Metab 89:1869–1878PubMedCrossRef Pedersen SB, Kristensen K, Hermann PA, Katzenellenbogen JA, Richelsen B (2004) Estrogen controls by lipolysis by up-regulating alpha2A-adrenergic receptors directly in human adipose tissue through the estrogen receptor alpha. Implications for the female fat distribution. J Clin Endocrinol Metab 89:1869–1878PubMedCrossRef
26.
go back to reference Lindberg MK, Alatalo SL, Hallelen JM, Mohan S, Gustafsson JA, Ohlsson C (2001) Estrogen receptor specificity in the regulation of the skeleton in female mice. J Endocrinol 171:229–236PubMedCrossRef Lindberg MK, Alatalo SL, Hallelen JM, Mohan S, Gustafsson JA, Ohlsson C (2001) Estrogen receptor specificity in the regulation of the skeleton in female mice. J Endocrinol 171:229–236PubMedCrossRef
27.
go back to reference Misso ML, Murata Y, Boon WC, Jones MEE, Britt KL, Simpson ER (2003) Cellular and molecular characterization of the adipose phenotype of the aromatase-deficient mouse. Endocrinology 144:1474–1480PubMedCrossRef Misso ML, Murata Y, Boon WC, Jones MEE, Britt KL, Simpson ER (2003) Cellular and molecular characterization of the adipose phenotype of the aromatase-deficient mouse. Endocrinology 144:1474–1480PubMedCrossRef
28.
go back to reference Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS (2000) Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci USA 97:12729–12734PubMedCrossRef Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS (2000) Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci USA 97:12729–12734PubMedCrossRef
29.
go back to reference Brann DW, De Sevilla L, Zamorano PL, Mahesh VB (1999) Regulation of leptin gene expression and secretion by steroid hormones. Steroids 64:659–663PubMedCrossRef Brann DW, De Sevilla L, Zamorano PL, Mahesh VB (1999) Regulation of leptin gene expression and secretion by steroid hormones. Steroids 64:659–663PubMedCrossRef
30.
go back to reference Machinal-Quelin F, Dieudonne MN, Pecquery R, Leneveu MC, Giudicelli Y (2002) Direct in vitro effects of androgens and estrogens on ob gene expression and leptin secretion in human adipose tissue. Endocrine 18:179–184PubMedCrossRef Machinal-Quelin F, Dieudonne MN, Pecquery R, Leneveu MC, Giudicelli Y (2002) Direct in vitro effects of androgens and estrogens on ob gene expression and leptin secretion in human adipose tissue. Endocrine 18:179–184PubMedCrossRef
31.
go back to reference Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalmicrelay: a central control of bone mass. Cell 100:197–207PubMedCrossRef Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalmicrelay: a central control of bone mass. Cell 100:197–207PubMedCrossRef
32.
go back to reference Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317PubMedCrossRef Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317PubMedCrossRef
33.
go back to reference Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL (1999) Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140:1630–1638PubMedCrossRef Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL (1999) Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140:1630–1638PubMedCrossRef
34.
go back to reference Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME (2006) Playing with bone and fat. J Cell Biochem 98:251–266PubMedCrossRef Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME (2006) Playing with bone and fat. J Cell Biochem 98:251–266PubMedCrossRef
35.
go back to reference Duque G, Rivas D (2007) Alendronate has an anabolic effect on bone through the differentiation of mesenchymal stem cells. J Bone Miner Res 22:1603–1611PubMedCrossRef Duque G, Rivas D (2007) Alendronate has an anabolic effect on bone through the differentiation of mesenchymal stem cells. J Bone Miner Res 22:1603–1611PubMedCrossRef
36.
go back to reference Rickard DJ, F-LW, Rodriguez-Rojas AM, Wu Z, Trice WJ, Hoffman SJ, Votta BJ, Stroup GB, Kumar S, Nuttall ME (2006) Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule against of the PTH1 receptor inhibits adipocyte differentiation in human bone marrow stromal cells. Bone 39:1361–1372PubMedCrossRef Rickard DJ, F-LW, Rodriguez-Rojas AM, Wu Z, Trice WJ, Hoffman SJ, Votta BJ, Stroup GB, Kumar S, Nuttall ME (2006) Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule against of the PTH1 receptor inhibits adipocyte differentiation in human bone marrow stromal cells. Bone 39:1361–1372PubMedCrossRef
37.
go back to reference Kulkarni N, Wei T, Kumar A, Dow ER, Stewart TR, Shou J, N’cho M, Sterchi DL, Gitter BD, Higgs RE, Halladay DL, Engler TA, Martin TJ, Bryant HU, Ma YL, Onyia JE (in press DOI 10.1002/jcb.21374) Changes in osteoblast, chondrocyte, and adipocytes lineages mediate the bone anabolic actions of PTH and small molecule GSK-3 inhibitor. J Cell Biochem Kulkarni N, Wei T, Kumar A, Dow ER, Stewart TR, Shou J, N’cho M, Sterchi DL, Gitter BD, Higgs RE, Halladay DL, Engler TA, Martin TJ, Bryant HU, Ma YL, Onyia JE (in press DOI 10.​1002/​jcb.​21374) Changes in osteoblast, chondrocyte, and adipocytes lineages mediate the bone anabolic actions of PTH and small molecule GSK-3 inhibitor. J Cell Biochem
38.
go back to reference Sun L, Peng Y, Sharrow AC, Iqbal J, Zhang Z, Papachristou DJ, Zaidi S, Zhu LL, Yaroslavskiy BB, Zhou H, Zallone AZ, Sairam MR, Kumar TR, Bo W, Braun JJ, Cardoso-Landa L, Schaffler MB, Moonga BS, Blair HC, Zaidi M (2006) FSH directly regulates bone mass. Cell 125:247–260PubMedCrossRef Sun L, Peng Y, Sharrow AC, Iqbal J, Zhang Z, Papachristou DJ, Zaidi S, Zhu LL, Yaroslavskiy BB, Zhou H, Zallone AZ, Sairam MR, Kumar TR, Bo W, Braun JJ, Cardoso-Landa L, Schaffler MB, Moonga BS, Blair HC, Zaidi M (2006) FSH directly regulates bone mass. Cell 125:247–260PubMedCrossRef
39.
go back to reference Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3:379–389PubMedCrossRef Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3:379–389PubMedCrossRef
40.
go back to reference Tornvig L, Mosekilde Li, Justesen J, Falk E, Kassem M (2001) Troglitazone treatment increases bone marrow adipose tissue volume but does not affect trabecular bone volume in mice. Calcif Tissue Int 69:46–50PubMedCrossRef Tornvig L, Mosekilde Li, Justesen J, Falk E, Kassem M (2001) Troglitazone treatment increases bone marrow adipose tissue volume but does not affect trabecular bone volume in mice. Calcif Tissue Int 69:46–50PubMedCrossRef
41.
go back to reference Justesen J, Mosekilde L, Holmes M, Stenderup K, Gasser J, Mullins JJ, Seckl JR, Kassem M (2004) Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation. Endocrinology 145:1916–1925PubMedCrossRef Justesen J, Mosekilde L, Holmes M, Stenderup K, Gasser J, Mullins JJ, Seckl JR, Kassem M (2004) Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation. Endocrinology 145:1916–1925PubMedCrossRef
42.
go back to reference Martin RB, Zissimos SL (1991) Relationships between marrow fat and bone turnover in ovariectomized and intact rats. Bone 12:123–131PubMedCrossRef Martin RB, Zissimos SL (1991) Relationships between marrow fat and bone turnover in ovariectomized and intact rats. Bone 12:123–131PubMedCrossRef
Metadata
Title
Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women
Authors
F. A. Syed
M. J. Oursler
T. E. Hefferanm
J. M. Peterson
B. L. Riggs
S. Khosla
Publication date
01-09-2008
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 9/2008
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-008-0574-6

Other articles of this Issue 9/2008

Osteoporosis International 9/2008 Go to the issue