Skip to main content
Top
Published in: Osteoporosis International 5/2008

01-05-2008 | Original Article

Assessment of trabecular bone structure comparing magnetic resonance imaging at 3 Tesla with high-resolution peripheral quantitative computed tomography ex vivo and in vivo

Authors: R. Krug, J. Carballido-Gamio, A. J. Burghardt, G. Kazakia, B. H. Hyun, B. Jobke, S. Banerjee, M. Huber, T. M. Link, S. Majumdar

Published in: Osteoporosis International | Issue 5/2008

Login to get access

Abstract

Summary

In vivo high-resolution peripheral quantitative micro-CT (HR-pQCT) is a new modality for imaging peripheral sites like the distal tibia and the distal radius, providing structural bone parameters. Comparing HR-pQCT with MRI, we found that both modalities are capable of offering meaningful information on trabecular structure.

Background

Magnetic resonance imaging (MRI) has emerged as the leading in vivo method for measuring trabecular bone micro-architecture and providing structural information. Recently, an in vivo HR-pQCT modality was introduced for imaging peripheral sites like the distal tibia and the distal radius, providing structural bone parameters. The goal of this work was to compare and evaluate the performances and in vivo capabilities of HR-pQCT in comparison with MRI at 3 Tesla.

Methods

To this end images of 8 human specimens (5 tibiae and 3 radii) and 11 participants (6 tibia and 5 radii) were acquired with both modalities. Additionally, the radius specimens were scanned with micro-CT (μCT), which was used as a standard of reference. Structural parameters calculated from MRI were compared with results from HR-pQCT images and additionally μCT for the radii specimens.

Results

High correlations (r > 0.7) were found for trabecular number and trabecular spacing between the two modalities in vivo and ex vivo. 2D and 3D analysis revealed high correlations (r > 0.8) in structural bone parameters for all measurements. Using micro-CT as standard of reference both results from QCT and MRI correlated well.

Conclusion

Both imaging modalities were found to perform equally well regarding trabecular bone measurements.
Literature
1.
go back to reference Kanis JA, Melton LJ III, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141PubMed Kanis JA, Melton LJ III, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141PubMed
2.
go back to reference Link TM, Vieth V, Matheis J, Newitt D, Lu Y, Rummeny EJ, Majumdar S (2002) Bone structure of the distal radius and the calcaneus vs BMD of the spine and proximal femur in the prediction of osteoporotic spine fractures. Eur Radiol 12:401–408PubMedCrossRef Link TM, Vieth V, Matheis J, Newitt D, Lu Y, Rummeny EJ, Majumdar S (2002) Bone structure of the distal radius and the calcaneus vs BMD of the spine and proximal femur in the prediction of osteoporotic spine fractures. Eur Radiol 12:401–408PubMedCrossRef
3.
go back to reference Link TM, Majumdar S, Grampp S, Guglielmi G, van Kuijk C, Imhof H, Glueer C, Adams JE (1999) Imaging of trabecular bone structure in osteoporosis. Eur Radiol 9:1781–1788PubMedCrossRef Link TM, Majumdar S, Grampp S, Guglielmi G, van Kuijk C, Imhof H, Glueer C, Adams JE (1999) Imaging of trabecular bone structure in osteoporosis. Eur Radiol 9:1781–1788PubMedCrossRef
4.
go back to reference Kinney JH, Ryaby JT, Haupt DL, Lane NE (1998) Three-dimensional in vivo morphometry of trabecular bone in the OVX rat model of osteoporosis. Technol Health Care 6:339–350PubMed Kinney JH, Ryaby JT, Haupt DL, Lane NE (1998) Three-dimensional in vivo morphometry of trabecular bone in the OVX rat model of osteoporosis. Technol Health Care 6:339–350PubMed
5.
go back to reference Stenstrom M, Olander B, Lehto-Axtelius D, Madsen JE, Nordsletten L, Carlsson GA (2000) Bone mineral density and bone structure parameters as predictors of bone strength: an analysis using computerized microtomography and gastrectomy-induced osteopenia in the rat. J Biomech 33:289–297PubMedCrossRef Stenstrom M, Olander B, Lehto-Axtelius D, Madsen JE, Nordsletten L, Carlsson GA (2000) Bone mineral density and bone structure parameters as predictors of bone strength: an analysis using computerized microtomography and gastrectomy-induced osteopenia in the rat. J Biomech 33:289–297PubMedCrossRef
6.
go back to reference Cooper C (1993) The epidemiology of fragility fractures: is there a role for bone quality? Calcif Tissue Int 53 [Suppl 1]:S23–S26PubMedCrossRef Cooper C (1993) The epidemiology of fragility fractures: is there a role for bone quality? Calcif Tissue Int 53 [Suppl 1]:S23–S26PubMedCrossRef
7.
go back to reference Dempster DW, Ferguson-Pell MW, Mellish RW et al (1993) Relationships between bone structure in the iliac crest and bone structure and strength in the lumbar spine. Osteoporos Int 3:90–96PubMedCrossRef Dempster DW, Ferguson-Pell MW, Mellish RW et al (1993) Relationships between bone structure in the iliac crest and bone structure and strength in the lumbar spine. Osteoporos Int 3:90–96PubMedCrossRef
8.
go back to reference Kleerekoper M, Villanueva AR, Stanciu J, Rao DS, Parfitt AM (1985) The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 37:594–597PubMedCrossRef Kleerekoper M, Villanueva AR, Stanciu J, Rao DS, Parfitt AM (1985) The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 37:594–597PubMedCrossRef
9.
go back to reference Uitewaal PJ, Lips P, Netelenbos JC (1987) An analysis of bone structure in patients with hip fracture. Bone Miner 3:63–73PubMed Uitewaal PJ, Lips P, Netelenbos JC (1987) An analysis of bone structure in patients with hip fracture. Bone Miner 3:63–73PubMed
10.
go back to reference Majumdar S (2002) Magnetic resonance imaging of trabecular bone structure. Top Magn Reson Imaging 13:323–334PubMedCrossRef Majumdar S (2002) Magnetic resonance imaging of trabecular bone structure. Top Magn Reson Imaging 13:323–334PubMedCrossRef
11.
go back to reference Wehrli FW, Saha PK, Gomberg BR et al (2002) Role of magnetic resonance for assessing structure and function of trabecular bone. Top Magn Reson Imaging 13:335–355PubMedCrossRef Wehrli FW, Saha PK, Gomberg BR et al (2002) Role of magnetic resonance for assessing structure and function of trabecular bone. Top Magn Reson Imaging 13:335–355PubMedCrossRef
12.
go back to reference Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515PubMedCrossRef Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515PubMedCrossRef
13.
go back to reference Hipp JA, Jansujwicz A, Simmons CA, Snyder BD (1996) Trabecular bone morphology from micro-magnetic resonance imaging. J Bone Miner Res 11:286–297PubMedCrossRef Hipp JA, Jansujwicz A, Simmons CA, Snyder BD (1996) Trabecular bone morphology from micro-magnetic resonance imaging. J Bone Miner Res 11:286–297PubMedCrossRef
14.
go back to reference Jara H, Wehrli FW, Chung H, Ford JC (1993) High-resolution variable flip angle 3D MR imaging of trabecular microstructure in vivo. Magn Reson Med 29:528–539PubMedCrossRef Jara H, Wehrli FW, Chung H, Ford JC (1993) High-resolution variable flip angle 3D MR imaging of trabecular microstructure in vivo. Magn Reson Med 29:528–539PubMedCrossRef
15.
go back to reference Krug R, Han ET, Banerjee S, Majumdar S (2006) Fully balanced steady-state 3D-spin-echo (bSSSE) imaging at 3 Tesla. Magn Reson Med 56:1033–1040PubMedCrossRef Krug R, Han ET, Banerjee S, Majumdar S (2006) Fully balanced steady-state 3D-spin-echo (bSSSE) imaging at 3 Tesla. Magn Reson Med 56:1033–1040PubMedCrossRef
16.
go back to reference Techawiboonwong A, Song H, Wehrli FW, Saha PK (2004) Relative performance of FLASE, TrueFISP and gradient echo in micro-MRI of trabecular bone. International Society for Magnetic Resonance in Medicine, Kyoto Techawiboonwong A, Song H, Wehrli FW, Saha PK (2004) Relative performance of FLASE, TrueFISP and gradient echo in micro-MRI of trabecular bone. International Society for Magnetic Resonance in Medicine, Kyoto
17.
go back to reference Laib A, Beuf O, Issever A, Newitt DC, Majumdar S (2001) Direct measures of trabecular bone architecture from MR images. Adv Exp Med Biol 496:37–46PubMed Laib A, Beuf O, Issever A, Newitt DC, Majumdar S (2001) Direct measures of trabecular bone architecture from MR images. Adv Exp Med Biol 496:37–46PubMed
18.
go back to reference Hildebrand T, Ruegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185:67–75CrossRef Hildebrand T, Ruegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185:67–75CrossRef
19.
go back to reference Banerjee S, Choudhury S, Han ET, Brau AC, Morze CV, Vigneron DB, Majumdar S (2006) Autocalibrating parallel imaging of in vivo trabecular bone microarchitecture at 3 Tesla. Magn Reson Med 56:1075–1084PubMedCrossRef Banerjee S, Choudhury S, Han ET, Brau AC, Morze CV, Vigneron DB, Majumdar S (2006) Autocalibrating parallel imaging of in vivo trabecular bone microarchitecture at 3 Tesla. Magn Reson Med 56:1075–1084PubMedCrossRef
20.
go back to reference Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210PubMedCrossRef Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210PubMedCrossRef
21.
go back to reference Majumdar S, Genant HK, Grampp S, Newitt DC, Truong VH, Lin JC, Mathur A (1997) Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 12:111–118PubMedCrossRef Majumdar S, Genant HK, Grampp S, Newitt DC, Truong VH, Lin JC, Mathur A (1997) Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 12:111–118PubMedCrossRef
22.
go back to reference Newitt DC, van Rietbergen B, Majumdar S (2002) Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Osteoporos Int 13:278–287PubMedCrossRef Newitt DC, van Rietbergen B, Majumdar S (2002) Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Osteoporos Int 13:278–287PubMedCrossRef
23.
go back to reference Majumdar S, Genant HK (1997) Assessment of trabecular structure using high resolution magnetic resonance imaging. Stud Health Technol Inform 40:81–96PubMed Majumdar S, Genant HK (1997) Assessment of trabecular structure using high resolution magnetic resonance imaging. Stud Health Technol Inform 40:81–96PubMed
24.
go back to reference Laib A, Newitt DC, Lu Y, Majumdar S (2002) New model-independent measures of trabecular bone structure applied to in vivo high-resolution MR images. Osteoporos Int 13:130–136PubMedCrossRef Laib A, Newitt DC, Lu Y, Majumdar S (2002) New model-independent measures of trabecular bone structure applied to in vivo high-resolution MR images. Osteoporos Int 13:130–136PubMedCrossRef
25.
go back to reference Laib A, Ruegsegger P (1999) Comparison of structure extraction methods for in vivo trabecular bone measurements. Comput Med Imaging Graph 23:69–74PubMedCrossRef Laib A, Ruegsegger P (1999) Comparison of structure extraction methods for in vivo trabecular bone measurements. Comput Med Imaging Graph 23:69–74PubMedCrossRef
26.
go back to reference Link TM, Majumdar S, Augat P et al (1998) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13:1175–1182PubMedCrossRef Link TM, Majumdar S, Augat P et al (1998) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13:1175–1182PubMedCrossRef
27.
go back to reference Majumdar S, Kothari M, Augat P et al (1998) High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone 22:445–454PubMedCrossRef Majumdar S, Kothari M, Augat P et al (1998) High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone 22:445–454PubMedCrossRef
28.
go back to reference Majumdar S, Link TM, Augat P, Lin JC, Newitt D, Lane NE, Genant HK (1999) Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int 10:231–239PubMedCrossRef Majumdar S, Link TM, Augat P, Lin JC, Newitt D, Lane NE, Genant HK (1999) Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int 10:231–239PubMedCrossRef
29.
go back to reference Banerjee S, Han ET, Krug R, Newitt DC, Majumdar S (2005) Application of refocused steady-state free-precession methods at 1.5 and 3 T to in vivo high-resolution MRI of trabecular bone: simulations and experiments. J Magn Reson Imaging 21:818–825PubMedCrossRef Banerjee S, Han ET, Krug R, Newitt DC, Majumdar S (2005) Application of refocused steady-state free-precession methods at 1.5 and 3 T to in vivo high-resolution MRI of trabecular bone: simulations and experiments. J Magn Reson Imaging 21:818–825PubMedCrossRef
30.
go back to reference Krug R, Carballido-Gamio J, Burghardt AJ, Haase S, Sedat JW, Moss WC, Majumdar S (2007) Wavelet-based characterization of vertebral trabecular bone structure from magnetic resonance images at 3 T compared with micro-computed tomographic measurements. Magn Reson Imaging 25:392–398PubMedCrossRef Krug R, Carballido-Gamio J, Burghardt AJ, Haase S, Sedat JW, Moss WC, Majumdar S (2007) Wavelet-based characterization of vertebral trabecular bone structure from magnetic resonance images at 3 T compared with micro-computed tomographic measurements. Magn Reson Imaging 25:392–398PubMedCrossRef
Metadata
Title
Assessment of trabecular bone structure comparing magnetic resonance imaging at 3 Tesla with high-resolution peripheral quantitative computed tomography ex vivo and in vivo
Authors
R. Krug
J. Carballido-Gamio
A. J. Burghardt
G. Kazakia
B. H. Hyun
B. Jobke
S. Banerjee
M. Huber
T. M. Link
S. Majumdar
Publication date
01-05-2008
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 5/2008
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-007-0495-9

Other articles of this Issue 5/2008

Osteoporosis International 5/2008 Go to the issue