Skip to main content
Top
Published in: Osteoporosis International 4/2003

01-06-2003 | Original Article

Predicting the failure load of the distal radius

Authors: Monique E. Muller, Colin E. Webber, Mary L Bouxsein

Published in: Osteoporosis International | Issue 4/2003

Login to get access

Abstract

The distal radius is an important site for the early detection of patients at risk for fracture. Since measuring bone strength in vivo is not possible, we evaluated which bone assessment method of the forearm would best predict failure load of the distal radius and computed a factor of risk for wrist fracture (Φwrist). Thirty-eight cadaveric forearm specimens were measured by five different techniques to assess bone density, bone mineral content, geometry and trabecular structure at the distal forearm. The bone assessment techniques included dual-energy X-ray absorptiometry (DXA) of the radius, peripheral quantitative computed tomography (pQCT) of the 4% and 20% distal sites of the radius, DXA of the phalanges, digital X-ray radiogrammetry of the forearm (DXR-BMD), and quantitative ultrasound of the radius. The failure load of each excised radius was determined by simulating a fall on an outstretched hand. The pQCT measurements of polar stress-strain index and cortical content explained the greatest portion of variance in failure load (r 2=0.82–0.85). Bone mineral content measures were generally better predictors of failure load (r 2=0.53–0.85) than the corresponding volumetric or areal bone mineral density values (r 2=0.22–0.69) measured by either pQCT or DXA. Multiple regression analysis showed that the addition of a bone geometry measure improved the ability of a bone density measure alone to predict failure load. There was high variability in the ability of different techniques and different variables within a given technique to predict failure load. Estimates of the factor of risk for wrist fracture (Φwrist) revealed that the women in this study would have been likely to fracture their distal radius upon falling from a standing height (Φwrist=1.04), whereas the men would have likely withstood the impact without fracturing their wrist (Φwrist=0.79).
Literature
1.
go back to reference National Institutes of Health (2000) Osteoporosis prevention, diagnosis, and therapy. NIH Consensus Statement 17:1–36 National Institutes of Health (2000) Osteoporosis prevention, diagnosis, and therapy. NIH Consensus Statement 17:1–36
2.
go back to reference Owen RA, Melton LJ, Johnson KA, Ilstrup DM, Riggs BL (1982) Incidence of Colles' fracture in a North American community. Am J Public Health 72:605–607 Owen RA, Melton LJ, Johnson KA, Ilstrup DM, Riggs BL (1982) Incidence of Colles' fracture in a North American community. Am J Public Health 72:605–607
3.
go back to reference Eastell R (1996) Forearm fracture. Bone 18:203S–207S Eastell R (1996) Forearm fracture. Bone 18:203S–207S
4.
go back to reference Mallmin H, Ljunghall S, Persson I, Naessen T, Krusemo UB, Bergstrom R (1993) Fracture of the distal forearm as a forecaster of subsequent hip fracture: a population-based cohort study with 24 years of follow-up. Calcif Tissue Int 52:269–272 Mallmin H, Ljunghall S, Persson I, Naessen T, Krusemo UB, Bergstrom R (1993) Fracture of the distal forearm as a forecaster of subsequent hip fracture: a population-based cohort study with 24 years of follow-up. Calcif Tissue Int 52:269–272
5.
go back to reference Gardsell P, Johnell O, Nilsson BE, Gullberg B (1993) Predicting various fragility fractures in women by forearm bone densitometry: a follow-up study. Calcif Tissue Int 52:348–353 Gardsell P, Johnell O, Nilsson BE, Gullberg B (1993) Predicting various fragility fractures in women by forearm bone densitometry: a follow-up study. Calcif Tissue Int 52:348–353
6.
go back to reference Cuddihy MT, Gabriel SE, Crowson CS, O'Fallon WM, Melton LJ (1999) Forearm fractures as predictors of subsequent osteoporotic fractures. Osteoporos Int 9:469–475 Cuddihy MT, Gabriel SE, Crowson CS, O'Fallon WM, Melton LJ (1999) Forearm fractures as predictors of subsequent osteoporotic fractures. Osteoporos Int 9:469–475
7.
go back to reference Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259 Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259
8.
go back to reference Greenspan SL, Myers ER, Maitland LA, Resnick NM, Hayes WC (1994) Fall severity and bone mineral density as risk factors for hip fracture in ambulatory elderly. JAMA 271:128–133 Greenspan SL, Myers ER, Maitland LA, Resnick NM, Hayes WC (1994) Fall severity and bone mineral density as risk factors for hip fracture in ambulatory elderly. JAMA 271:128–133
9.
go back to reference Melton LJ, Eddy DM, Johnston CCJ (1990) Screening for osteoporosis. Ann Int Med 112:516–528 Melton LJ, Eddy DM, Johnston CCJ (1990) Screening for osteoporosis. Ann Int Med 112:516–528
10.
go back to reference Gordon CL, Webber CE, Nicholson PS (1998) Relation between image-based assessment of distal radius trabecular structure and compressive strength. Can Assoc Radiol J 49:390–397 Gordon CL, Webber CE, Nicholson PS (1998) Relation between image-based assessment of distal radius trabecular structure and compressive strength. Can Assoc Radiol J 49:390–397
11.
go back to reference Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner CH (1997) Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res 12:6–15 Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner CH (1997) Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res 12:6–15
12.
go back to reference Hayes WC, Piazza SJ, Zysset PK (1991) Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography. Radiol Clin N Am 29:1–18 Hayes WC, Piazza SJ, Zysset PK (1991) Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography. Radiol Clin N Am 29:1–18
13.
go back to reference Gordon CL, Webber CE, Adachi JD, Christoforou N (1996) In vivo assessment of trabecular bone structure at the distal radius from high-resolution computed tomography images. Phys Med Biol 41:495–508 Gordon CL, Webber CE, Adachi JD, Christoforou N (1996) In vivo assessment of trabecular bone structure at the distal radius from high-resolution computed tomography images. Phys Med Biol 41:495–508
14.
go back to reference Hans D, Srivastav SK, Singal C et al. (1999) Does combining the results from multiple bone sites measured by a new quantitative ultrasound device improve discrimination of hip fracture? J Bone Miner Res 14:644–651 Hans D, Srivastav SK, Singal C et al. (1999) Does combining the results from multiple bone sites measured by a new quantitative ultrasound device improve discrimination of hip fracture? J Bone Miner Res 14:644–651
15.
go back to reference Jorgensen JT, Andersen PB, Rosholm A, Bjarnason NH (2000) Digital X-ray radiogrammetry: a new appendicular bone densitometric method with high precision. Clin Physiol 20:330–335 Jorgensen JT, Andersen PB, Rosholm A, Bjarnason NH (2000) Digital X-ray radiogrammetry: a new appendicular bone densitometric method with high precision. Clin Physiol 20:330–335
16.
go back to reference Bouxsein ML, Palermo L, Yeung C, Black DM (2002) Digital X-ray radiogrammetry predicts hip, wrist and vertebral fracture risk in elderly women: a prospective analysis from the study of osteoporotic fractures. Osteoporos Int 13:358–365 Bouxsein ML, Palermo L, Yeung C, Black DM (2002) Digital X-ray radiogrammetry predicts hip, wrist and vertebral fracture risk in elderly women: a prospective analysis from the study of osteoporotic fractures. Osteoporos Int 13:358–365
17.
go back to reference Myers ER, Sebeny EA, Hecker AT et al. (1991) Correlations between photon absorption properties and failure load of the distal radius in vitro. Calcif Tissue Int 49:292–297 Myers ER, Sebeny EA, Hecker AT et al. (1991) Correlations between photon absorption properties and failure load of the distal radius in vitro. Calcif Tissue Int 49:292–297
18.
go back to reference Myers ER, Hecker AT, Rooks DS, Hipp JA, Hayes WC (1993) Geometric variables from DXA of the radius predict forearm fracture load in vitro. Calcif Tissue Int 52:199–204 Myers ER, Hecker AT, Rooks DS, Hipp JA, Hayes WC (1993) Geometric variables from DXA of the radius predict forearm fracture load in vitro. Calcif Tissue Int 52:199–204
19.
go back to reference Augat P, Reeb H, Claes LE (1996) Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell. J Bone Miner Res 11:1356–1363 Augat P, Reeb H, Claes LE (1996) Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell. J Bone Miner Res 11:1356–1363
20.
go back to reference Augat P, Iida H, Jiang Y, Diao E, Genant HK (1998) Distal radius fractures: mechanisms of injury and strength prediction by bone mineral assessment. J Orthop Res 16:629–635 Augat P, Iida H, Jiang Y, Diao E, Genant HK (1998) Distal radius fractures: mechanisms of injury and strength prediction by bone mineral assessment. J Orthop Res 16:629–635
21.
go back to reference Chiu J, Robinovitch SN (1998) Prediction of upper extremity impact forces during falls on the outstretched hand. J Biomech 31:1169–1176 Chiu J, Robinovitch SN (1998) Prediction of upper extremity impact forces during falls on the outstretched hand. J Biomech 31:1169–1176
22.
go back to reference Spadaro JA, Werner FW, Brenner RA, Fortino MD, Fay LA, Edwards WT (1994) Cortical and trabecular bone contribute strength to the osteopenic distal radius. J Orthop Res 12:211–218 Spadaro JA, Werner FW, Brenner RA, Fortino MD, Fay LA, Edwards WT (1994) Cortical and trabecular bone contribute strength to the osteopenic distal radius. J Orthop Res 12:211–218
23.
go back to reference Carter DR, Hayes WC (1976) Bone compressive strength: the influence of density and strain rate. Science 194:1174–1175 Carter DR, Hayes WC (1976) Bone compressive strength: the influence of density and strain rate. Science 194:1174–1175
24.
go back to reference Wu C, Hans D, He Y et al. (2000) Prediction of bone strength of distal forearm using radius bone mineral density and phalangeal speed of sound. Bone 26:529–533 Wu C, Hans D, He Y et al. (2000) Prediction of bone strength of distal forearm using radius bone mineral density and phalangeal speed of sound. Bone 26:529–533
Metadata
Title
Predicting the failure load of the distal radius
Authors
Monique E. Muller
Colin E. Webber
Mary L Bouxsein
Publication date
01-06-2003
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 4/2003
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-003-1380-9

Other articles of this Issue 4/2003

Osteoporosis International 4/2003 Go to the issue