Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 6/2014

01-06-2014 | Knee

Use of cell-free collagen type I matrix implants for the treatment of small cartilage defects in the knee: clinical and magnetic resonance imaging evaluation

Authors: Karl F. Schüttler, Hanno Schenker, Christina Theisen, Markus D. Schofer, Alan Getgood, Philip P. Roessler, Johannes Struewer, Marga B. Rominger, Turgay Efe

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 6/2014

Login to get access

Abstract

Purpose

Articular cartilage defects of the knee are a common condition for which several repair techniques have been described. The aim of the present study was to assess medium-term results of a one-step procedure using a cell-free collagen type I matrix.

Methods

Fifteen patients with articular cartilage defects of the knee were treated with an 11-mm-diameter cell-free collagen type 1 matrix implant. The matrices were implanted in a press-fit manner into the defect after careful debridement down to the subchondral bone but without penetration of this margin. Follow-up examinations were carried out at 6 weeks, 6 months, and at 12, 24, 36, and 48 months after implantation. Clinical assessment included the visual analogue scale (VAS), the Tegner activity scale, and the International Knee Documentation Committee (IKDC) score. Radiological assessment for graft attachment and tissue regeneration was performed using the magnetic observation of cartilage repair tissue (MOCART) score.

Results

A total of 15 patients (males: n = 6 and females: n = 9) with a mean age of 26.4 years (range 19–40) were treated. The mean VAS improved significantly when compared to the preoperative values (P < 0.05). Six weeks after implantation, IKDC values were slightly lower than the preoperative values (n.s.), but increased significantly at final follow-up (P < 0.05). At 24 months, there were no significant differences in the median Tegner score between the post-operative values and the preoperative values (n.s.). However, after 36 months, a significant improvement was noted that lasted at least up to 48 months (P < 0.05). The MOCART score improved consistently up to 4 years after implantation, with significant improvements already observed after 12 months (P < 0.05). No correlation between the clinical scores and the MOCART score could be perceived.

Conclusion

The present study showed that the use of cell-free collagen type I matrix implants led to a significant and durable improvement in all the clinical and imaging scores investigated 4 years after implantation.

Level of evidence

IV.
Literature
1.
go back to reference Bartlett W, Skinner JA, Gooding CR, Carrington RW, Flanagan AM, Briggs TW, Bentley G (2005) Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 87:640–645PubMedCrossRef Bartlett W, Skinner JA, Gooding CR, Carrington RW, Flanagan AM, Briggs TW, Bentley G (2005) Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 87:640–645PubMedCrossRef
2.
go back to reference Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg 85-A(Suppl 2):58–69PubMed Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg 85-A(Suppl 2):58–69PubMed
3.
go back to reference Christensen BB, Foldager CB, Hansen OM, Kristiansen AA, Le DQ, Nielsen AD, Nygaard JV, Bunger CE, Lind M (2012) A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies. Knee Surg Sports Traumatol Arthrosc 20:1192–1204PubMedCrossRef Christensen BB, Foldager CB, Hansen OM, Kristiansen AA, Le DQ, Nielsen AD, Nygaard JV, Bunger CE, Lind M (2012) A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies. Knee Surg Sports Traumatol Arthrosc 20:1192–1204PubMedCrossRef
4.
go back to reference Dhollander AA, Verdonk PC, Lambrecht S, Almqvist KF, Elewaut D, Verbruggen G, Verdonk R (2011) The combination of microfracture and a cell-free polymer-based implant immersed with autologous serum for cartilage defect coverage. Knee Surg Sports Traumatol Arthrosc 20:1773–1780PubMedCrossRef Dhollander AA, Verdonk PC, Lambrecht S, Almqvist KF, Elewaut D, Verbruggen G, Verdonk R (2011) The combination of microfracture and a cell-free polymer-based implant immersed with autologous serum for cartilage defect coverage. Knee Surg Sports Traumatol Arthrosc 20:1773–1780PubMedCrossRef
5.
go back to reference Efe T, Theisen C, Fuchs-Winkelmann S, Stein T, Getgood A, Rominger MB, Paletta JR, Schofer MD (2012) Cell-free collagen type I matrix for repair of cartilage defects-clinical and magnetic resonance imaging results. Knee Surg Sports Traumatol Arthrosc 20:1915–1922PubMedCrossRef Efe T, Theisen C, Fuchs-Winkelmann S, Stein T, Getgood A, Rominger MB, Paletta JR, Schofer MD (2012) Cell-free collagen type I matrix for repair of cartilage defects-clinical and magnetic resonance imaging results. Knee Surg Sports Traumatol Arthrosc 20:1915–1922PubMedCrossRef
6.
go back to reference Flandry F, Hunt JP, Terry GC, Hughston JC (1991) Analysis of subjective knee complaints using visual analog scales. Am J Sports Med 19:112–118PubMedCrossRef Flandry F, Hunt JP, Terry GC, Hughston JC (1991) Analysis of subjective knee complaints using visual analog scales. Am J Sports Med 19:112–118PubMedCrossRef
7.
go back to reference Gavenis K, Schneider U, Maus U, Mumme T, Muller-Rath R, Schmidt-Rohlfing B, Andereya S (2012) Cell-free repair of small cartilage defects in the Goettinger minipig: which defect size is possible? Knee Surg Sports Traumatol Arthrosc 20:2307–2314PubMedCrossRef Gavenis K, Schneider U, Maus U, Mumme T, Muller-Rath R, Schmidt-Rohlfing B, Andereya S (2012) Cell-free repair of small cartilage defects in the Goettinger minipig: which defect size is possible? Knee Surg Sports Traumatol Arthrosc 20:2307–2314PubMedCrossRef
8.
go back to reference Gobbi A, Nunag P, Malinowski K (2005) Treatment of full thickness chondral lesions of the knee with microfracture in a group of athletes. Knee Surg Sports Traumatol Arthrosc 13:213–221PubMedCrossRef Gobbi A, Nunag P, Malinowski K (2005) Treatment of full thickness chondral lesions of the knee with microfracture in a group of athletes. Knee Surg Sports Traumatol Arthrosc 13:213–221PubMedCrossRef
9.
go back to reference Guettler JH, Demetropoulos CK, Yang KH, Jurist KA (2004) Osteochondral defects in the human knee: influence of defect size on cartilage rim stress and load redistribution to surrounding cartilage. Am J Sports Med 32:1451–1458PubMedCrossRef Guettler JH, Demetropoulos CK, Yang KH, Jurist KA (2004) Osteochondral defects in the human knee: influence of defect size on cartilage rim stress and load redistribution to surrounding cartilage. Am J Sports Med 32:1451–1458PubMedCrossRef
10.
go back to reference Harris JD, Siston RA, Pan X, Flanigan DC (2010) Autologous chondrocyte implantation: a systematic review. J Bone Joint Surg Am 92:2220–2233PubMed Harris JD, Siston RA, Pan X, Flanigan DC (2010) Autologous chondrocyte implantation: a systematic review. J Bone Joint Surg Am 92:2220–2233PubMed
11.
go back to reference Henderson I, Francisco R, Oakes B, Cameron J (2005) Autologous chondrocyte implantation for treatment of focal chondral defects of the knee—a clinical, arthroscopic, MRI and histologic evaluation at 2 years. Knee 12:209–216PubMedCrossRef Henderson I, Francisco R, Oakes B, Cameron J (2005) Autologous chondrocyte implantation for treatment of focal chondral defects of the knee—a clinical, arthroscopic, MRI and histologic evaluation at 2 years. Knee 12:209–216PubMedCrossRef
12.
go back to reference Irrgang JJ, Anderson AF, Boland AL, Harner CD, Kurosaka M, Neyret P, Richmond JC, Shelborne KD (2001) Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med 29:600–613PubMed Irrgang JJ, Anderson AF, Boland AL, Harner CD, Kurosaka M, Neyret P, Richmond JC, Shelborne KD (2001) Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med 29:600–613PubMed
13.
go back to reference James SL, Connell DA, Saifuddin A, Skinner JA, Briggs TW (2006) MR imaging of autologous chondrocyte implantation of the knee. Eur Radiol 16:1022–1030PubMedCrossRef James SL, Connell DA, Saifuddin A, Skinner JA, Briggs TW (2006) MR imaging of autologous chondrocyte implantation of the knee. Eur Radiol 16:1022–1030PubMedCrossRef
14.
go back to reference Kalson NS, Gikas PD, Briggs TW (2010) Current strategies for knee cartilage repair. Int J Clin Pract 64:1444–1452PubMedCrossRef Kalson NS, Gikas PD, Briggs TW (2010) Current strategies for knee cartilage repair. Int J Clin Pract 64:1444–1452PubMedCrossRef
15.
go back to reference Kreuz PC, Steinwachs MR, Erggelet C, Krause SJ, Konrad G, Uhl M, Sudkamp N (2006) Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthr Cartil 14:1119–1125PubMedCrossRef Kreuz PC, Steinwachs MR, Erggelet C, Krause SJ, Konrad G, Uhl M, Sudkamp N (2006) Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthr Cartil 14:1119–1125PubMedCrossRef
16.
go back to reference LaPrade RF, Botker JC (2004) Donor-site morbidity after osteochondral autograft transfer procedures. Arthroscopy 20:69–73CrossRef LaPrade RF, Botker JC (2004) Donor-site morbidity after osteochondral autograft transfer procedures. Arthroscopy 20:69–73CrossRef
17.
go back to reference Marlovits S, Aldrian S, Wondrasch B, Zak L, Albrecht C, Welsch G, Trattnig S (2012) Clinical and radiological outcomes 5 years after matrix-induced autologous chondrocyte implantation in patients with symptomatic, traumatic chondral defects. Am J Sports Med 40:2273–2280PubMedCrossRef Marlovits S, Aldrian S, Wondrasch B, Zak L, Albrecht C, Welsch G, Trattnig S (2012) Clinical and radiological outcomes 5 years after matrix-induced autologous chondrocyte implantation in patients with symptomatic, traumatic chondral defects. Am J Sports Med 40:2273–2280PubMedCrossRef
18.
go back to reference Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57:16–23PubMedCrossRef Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57:16–23PubMedCrossRef
19.
go back to reference Marquass B, Mahn T, Engel T, Gossner J, Theopold JD, von Dercks N, Racynski C, Rose T, Josten C, Hepp P (2012) Clinical and radiological mid-term results after autologous osteochondral transplantation under consideration of quality of life. Z Orthop Unfall 150:360–367PubMed Marquass B, Mahn T, Engel T, Gossner J, Theopold JD, von Dercks N, Racynski C, Rose T, Josten C, Hepp P (2012) Clinical and radiological mid-term results after autologous osteochondral transplantation under consideration of quality of life. Z Orthop Unfall 150:360–367PubMed
20.
go back to reference Micheli LJ, Browne JE, Erggelet C, Fu F, Mandelbaum B, Moseley JB, Zurakowski D (2001) Autologous chondrocyte implantation of the knee: multicenter experience and minimum 3-year follow-up. Clin J Sport Med 11:223–228PubMedCrossRef Micheli LJ, Browne JE, Erggelet C, Fu F, Mandelbaum B, Moseley JB, Zurakowski D (2001) Autologous chondrocyte implantation of the knee: multicenter experience and minimum 3-year follow-up. Clin J Sport Med 11:223–228PubMedCrossRef
22.
go back to reference Niemeyer P, Pestka JM, Kreuz PC, Erggelet C, Schmal H, Suedkamp NP, Steinwachs M (2008) Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint. Am J Sports Med 36:2091–2099PubMedCrossRef Niemeyer P, Pestka JM, Kreuz PC, Erggelet C, Schmal H, Suedkamp NP, Steinwachs M (2008) Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint. Am J Sports Med 36:2091–2099PubMedCrossRef
23.
go back to reference Schneider U, Rackwitz L, Andereya S, Siebenlist S, Fensky F, Reichert J, Loer I, Barthel T, Rudert M, Noth U (2011) A prospective multicenter study on the outcome of type I collagen hydrogel-based autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. Am J Sports Med 39:2558–2565PubMedCrossRef Schneider U, Rackwitz L, Andereya S, Siebenlist S, Fensky F, Reichert J, Loer I, Barthel T, Rudert M, Noth U (2011) A prospective multicenter study on the outcome of type I collagen hydrogel-based autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. Am J Sports Med 39:2558–2565PubMedCrossRef
24.
go back to reference Schneider U, Schmidt-Rohlfing B, Gavenis K, Maus U, Mueller-Rath R, Andereya S (2011) A comparative study of 3 different cartilage repair techniques. Knee Surg Sports Traumatol Arthrosc 19:2145–2152PubMedCrossRef Schneider U, Schmidt-Rohlfing B, Gavenis K, Maus U, Mueller-Rath R, Andereya S (2011) A comparative study of 3 different cartilage repair techniques. Knee Surg Sports Traumatol Arthrosc 19:2145–2152PubMedCrossRef
25.
go back to reference Sohn DH, Lottman LM, Lum LY, Kim SG, Pedowitz RA, Coutts RD, Sah RL (2002) Effect of gravity on localization of chondrocytes implanted in cartilage defects. Clin Orthop Relat Res 394:254–262PubMedCrossRef Sohn DH, Lottman LM, Lum LY, Kim SG, Pedowitz RA, Coutts RD, Sah RL (2002) Effect of gravity on localization of chondrocytes implanted in cartilage defects. Clin Orthop Relat Res 394:254–262PubMedCrossRef
26.
go back to reference Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG (2003) Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 19:477–484PubMedCrossRef Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG (2003) Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 19:477–484PubMedCrossRef
27.
go back to reference Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 198:43–49PubMed Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 198:43–49PubMed
28.
go back to reference Vijayan S, Bartlett W, Bentley G, Carrington RW, Skinner JA, Pollock RC, Alorjani M, Briggs TW (2012) Autologous chondrocyte implantation for osteochondral lesions in the knee using a bilayer collagen membrane and bone graft: a two- to eight-year follow-up study. J Bone Joint Surg Br 94:488–492PubMedCrossRef Vijayan S, Bartlett W, Bentley G, Carrington RW, Skinner JA, Pollock RC, Alorjani M, Briggs TW (2012) Autologous chondrocyte implantation for osteochondral lesions in the knee using a bilayer collagen membrane and bone graft: a two- to eight-year follow-up study. J Bone Joint Surg Br 94:488–492PubMedCrossRef
29.
go back to reference Welsch GH, Trattnig S, Domayer S, Marlovits S, White LM, Mamisch TC (2009) Multimodal approach in the use of clinical scoring, morphological MRI and biochemical T2-mapping and diffusion-weighted imaging in their ability to assess differences between cartilage repair tissue after microfracture therapy and matrix-associated autologous chondrocyte transplantation: a pilot study. Osteoarthr Cartil 17:1219–1227PubMedCrossRef Welsch GH, Trattnig S, Domayer S, Marlovits S, White LM, Mamisch TC (2009) Multimodal approach in the use of clinical scoring, morphological MRI and biochemical T2-mapping and diffusion-weighted imaging in their ability to assess differences between cartilage repair tissue after microfracture therapy and matrix-associated autologous chondrocyte transplantation: a pilot study. Osteoarthr Cartil 17:1219–1227PubMedCrossRef
30.
go back to reference Willers C, Chen J, Wood D, Xu J, Zheng MH (2005) Autologous chondrocyte implantation with collagen bioscaffold for the treatment of osteochondral defects in rabbits. Tissue Eng 11:1065–1076PubMedCrossRef Willers C, Chen J, Wood D, Xu J, Zheng MH (2005) Autologous chondrocyte implantation with collagen bioscaffold for the treatment of osteochondral defects in rabbits. Tissue Eng 11:1065–1076PubMedCrossRef
Metadata
Title
Use of cell-free collagen type I matrix implants for the treatment of small cartilage defects in the knee: clinical and magnetic resonance imaging evaluation
Authors
Karl F. Schüttler
Hanno Schenker
Christina Theisen
Markus D. Schofer
Alan Getgood
Philip P. Roessler
Johannes Struewer
Marga B. Rominger
Turgay Efe
Publication date
01-06-2014
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 6/2014
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-013-2747-x

Other articles of this Issue 6/2014

Knee Surgery, Sports Traumatology, Arthroscopy 6/2014 Go to the issue