Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 12/2006

01-12-2006 | Knee

Is the increase in type III collagen of the patellar tendon graft after ligament reconstruction really caused by “ligamentization” of the graft?

Authors: Harukazu Tohyama, Kazunori Yasuda, Hisaya Uchida

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 12/2006

Login to get access

Abstract

To test the hypothesis that extrinsic cells that infiltrate the devitalized patellar tendon (PT) synthesize type III collagen even in the environmental milieu of the native PT, we conducted the present experimental study using the rat in situ frozen–thawed PTs. Tissue culture showed no cell outgrowth from the tendons immediately after the freeze–thaw treatment. Analysis by RT-PCR showed that the expression level of type III procollagen mRNA in the frozen–thawed tendon was significantly higher than that in the sham-operated tendon at 6 and 12 weeks. Immunohistological findings showed positive type III collagen staining around cells that had infiltrated the necrotized tendon at 3, 6, and 12 weeks. In addition, the elastic modulus of the in situ frozen–thawed tendon at 6 weeks was significantly less than that of the sham-operated tendon. The present study indicates that extrinsic cells that had infiltrated the devitalized PT synthesized type III collagen at least for 12 weeks even in the environmental milieu of the native PT. These findings raised the question whether the increase in type III collagen of the PT graft after ACL reconstruction is really caused by “ligamentization,” the adaptation of the PT graft to the ACL environment.
Literature
1.
go back to reference Abe S, Kurosaka M, Iguchi T, Yoshiya S, Hirohata K (1993) Light and electron microscopic study of remodeling and maturation process in autogenous graft for anterior cruciate ligament reconstruction. Arthroscopy 9(4):394–405PubMedCrossRef Abe S, Kurosaka M, Iguchi T, Yoshiya S, Hirohata K (1993) Light and electron microscopic study of remodeling and maturation process in autogenous graft for anterior cruciate ligament reconstruction. Arthroscopy 9(4):394–405PubMedCrossRef
2.
go back to reference Amiel D, Kleiner JB, Roux RD, Harwood FL, Akeson WH (1986) The phenomenon of “ligamentization”: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res 4(2):162–172PubMedCrossRef Amiel D, Kleiner JB, Roux RD, Harwood FL, Akeson WH (1986) The phenomenon of “ligamentization”: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res 4(2):162–172PubMedCrossRef
3.
go back to reference Arnoczky SP, Tarvin GB, Marshall JL (1982) Anterior cruciate ligament replacement using patellar tendon. An evaluation of graft revascularization in the dog. J Bone Joint Surg Am 64(2):217–224PubMed Arnoczky SP, Tarvin GB, Marshall JL (1982) Anterior cruciate ligament replacement using patellar tendon. An evaluation of graft revascularization in the dog. J Bone Joint Surg Am 64(2):217–224PubMed
4.
go back to reference Bosch U, Decker B, Moller HD, Kasperczyk WJ, Oestern HJ (1995) Collagen fibril organization in the patellar tendon autograft after posterior cruciate ligament reconstruction. A quantitative evaluation in a sheep model. Am J Sports Med 23(2):196–202PubMed Bosch U, Decker B, Moller HD, Kasperczyk WJ, Oestern HJ (1995) Collagen fibril organization in the patellar tendon autograft after posterior cruciate ligament reconstruction. A quantitative evaluation in a sheep model. Am J Sports Med 23(2):196–202PubMed
5.
go back to reference Bush-Joseph CA, Cummings JF, Buseck M, Bylski-Austrow DI, Butler DL, Noyes FR, Grood ES (1996) Effect of tibial attachment location on the healing of the anterior cruciate ligament freeze model. J Orthop Res 14(4):534–541PubMedCrossRef Bush-Joseph CA, Cummings JF, Buseck M, Bylski-Austrow DI, Butler DL, Noyes FR, Grood ES (1996) Effect of tibial attachment location on the healing of the anterior cruciate ligament freeze model. J Orthop Res 14(4):534–541PubMedCrossRef
6.
go back to reference Fleischmajer R, Gay S, Perlish JS, Cesarini JP (1980) Immunoelectron microscopy of type III collagen in normal and scleroderma skin. J Invest Dermatol 75(2):189–191PubMedCrossRef Fleischmajer R, Gay S, Perlish JS, Cesarini JP (1980) Immunoelectron microscopy of type III collagen in normal and scleroderma skin. J Invest Dermatol 75(2):189–191PubMedCrossRef
7.
go back to reference Graf BK, Fujisaki K, Vanderby R Jr, Vailas AC (1992) The effect of in situ freezing on rabbit patellar tendon. A histologic, biochemical, and biomechanical analysis. Am J Sports Med 20(4):401–405PubMed Graf BK, Fujisaki K, Vanderby R Jr, Vailas AC (1992) The effect of in situ freezing on rabbit patellar tendon. A histologic, biochemical, and biomechanical analysis. Am J Sports Med 20(4):401–405PubMed
8.
go back to reference Hara N, Yasuda K, Kimura S, Majima T, Minami A, Tohyama H (2003) Effects of stress deprivation on mechanical properties of the in situ frozen–thawed semitendinosus tendon in rabbits. Clin Biomech 18(1):60–68CrossRef Hara N, Yasuda K, Kimura S, Majima T, Minami A, Tohyama H (2003) Effects of stress deprivation on mechanical properties of the in situ frozen–thawed semitendinosus tendon in rabbits. Clin Biomech 18(1):60–68CrossRef
9.
go back to reference Jackson DW, Grood ES, Cohn BT, Arnoczky SP, Simon TM, Cummings JF (1991) The effects of in situ freezing on the anterior cruciate ligament. An experimental study in goats. J Bone Joint Surg Am 73(2):201–213PubMed Jackson DW, Grood ES, Cohn BT, Arnoczky SP, Simon TM, Cummings JF (1991) The effects of in situ freezing on the anterior cruciate ligament. An experimental study in goats. J Bone Joint Surg Am 73(2):201–213PubMed
10.
go back to reference Katsuragi R, Yasuda K, Tsujino J, Keira M, Kaneda K (2000) The effect of nonphysiologically high initial tension on the mechanical properties of in situ frozen anterior cruciate ligament in a canine model. Am J Sports Med 28(1):47–56PubMed Katsuragi R, Yasuda K, Tsujino J, Keira M, Kaneda K (2000) The effect of nonphysiologically high initial tension on the mechanical properties of in situ frozen anterior cruciate ligament in a canine model. Am J Sports Med 28(1):47–56PubMed
11.
go back to reference Kleiner JB, Amiel D, Roux RD, Akeson WH 1986) Origin of replacement cells for the anterior cruciate ligament autograft. J Orthop Res 4(4):466–474PubMedCrossRef Kleiner JB, Amiel D, Roux RD, Akeson WH 1986) Origin of replacement cells for the anterior cruciate ligament autograft. J Orthop Res 4(4):466–474PubMedCrossRef
12.
go back to reference Moeller HD, Bosch U, Decker B (1995) Collagen fibril diameter distribution in patellar tendon autografts after posterior cruciate ligament reconstruction in sheep: changes over time. J Anat 187(Pt 1):161–167PubMed Moeller HD, Bosch U, Decker B (1995) Collagen fibril diameter distribution in patellar tendon autografts after posterior cruciate ligament reconstruction in sheep: changes over time. J Anat 187(Pt 1):161–167PubMed
13.
go back to reference Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 66(3):344–352PubMed Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 66(3):344–352PubMed
14.
go back to reference Oakes BW (1993) Collagen ultrastructure in the normal ACL and in ACL graft. In: Jackson DW (ed) The anterior cruciate ligament. Current and future concepts. Raven Press, New York, pp 209–217 Oakes BW (1993) Collagen ultrastructure in the normal ACL and in ACL graft. In: Jackson DW (ed) The anterior cruciate ligament. Current and future concepts. Raven Press, New York, pp 209–217
15.
go back to reference Ohno K, Yasuda K, Yamamoto N, Kaneda K, Hayashi K (1993) Effects of complete stress-shielding on the mechanical properties and histology of in situ frozen patellar tendon. J Orthop Res 11(4):592–602PubMedCrossRef Ohno K, Yasuda K, Yamamoto N, Kaneda K, Hayashi K (1993) Effects of complete stress-shielding on the mechanical properties and histology of in situ frozen patellar tendon. J Orthop Res 11(4):592–602PubMedCrossRef
16.
go back to reference Ohno K, Yasuda K, Yamamoto N, Kaneda K, Hayashi K (1996) Biomechanical and histological changes in the patellar tendon after in situ freezing. An experimental study in rabbits. Clin Biomech 11(4):207–213CrossRef Ohno K, Yasuda K, Yamamoto N, Kaneda K, Hayashi K (1996) Biomechanical and histological changes in the patellar tendon after in situ freezing. An experimental study in rabbits. Clin Biomech 11(4):207–213CrossRef
17.
go back to reference Sakai H, Koibuchi N, Ohtake H, Tamai K, Fukui N, Oda H, Saotome K (2001) Type I and type III procollagen gene expressions in the early phase of ligament healing in rabbits: an in situ hybridization study. J Orthop Res 19(1):132–135PubMedCrossRef Sakai H, Koibuchi N, Ohtake H, Tamai K, Fukui N, Oda H, Saotome K (2001) Type I and type III procollagen gene expressions in the early phase of ligament healing in rabbits: an in situ hybridization study. J Orthop Res 19(1):132–135PubMedCrossRef
18.
go back to reference Shino K, Oakes BW, Horibe S, Nakata K, Nakamura N (1995) Collagen fibril populations in human anterior cruciate ligament allografts. Electron microscopic analysis. Am J Sports Med 23(2):203–208PubMed Shino K, Oakes BW, Horibe S, Nakata K, Nakamura N (1995) Collagen fibril populations in human anterior cruciate ligament allografts. Electron microscopic analysis. Am J Sports Med 23(2):203–208PubMed
19.
go back to reference Sluss JR, Liberti JP, Jiranek WA, Wayne JS, Zuelzer WA (2001) pN collagen type III within tendon grafts used for anterior cruciate ligament reconstruction. J Orthop Res 19(5):852–857PubMedCrossRef Sluss JR, Liberti JP, Jiranek WA, Wayne JS, Zuelzer WA (2001) pN collagen type III within tendon grafts used for anterior cruciate ligament reconstruction. J Orthop Res 19(5):852–857PubMedCrossRef
20.
go back to reference Tohyama H, Yasuda K (2000) Extrinsic cell infiltration and revascularization accelerate mechanical deterioration of the patellar tendon after fibroblast necrosis. J Biomech Eng 122(6):594–599PubMedCrossRef Tohyama H, Yasuda K (2000) Extrinsic cell infiltration and revascularization accelerate mechanical deterioration of the patellar tendon after fibroblast necrosis. J Biomech Eng 122(6):594–599PubMedCrossRef
21.
go back to reference Tsuchida T, Yasuda K, Kaneda K, Hayashi K, Yamamoto N, Miyakawa K, Tanaka K (1997) Effects of in situ freezing and stress-shielding on the ultrastructure of rabbit patellar tendons. J Orthop Res 15(6):904–910PubMedCrossRef Tsuchida T, Yasuda K, Kaneda K, Hayashi K, Yamamoto N, Miyakawa K, Tanaka K (1997) Effects of in situ freezing and stress-shielding on the ultrastructure of rabbit patellar tendons. J Orthop Res 15(6):904–910PubMedCrossRef
22.
go back to reference Uchida H, Tohyama H, Nagashima K, Ohba Y, Matsumoto H, Toyama Y, Yasuda K (2005) Stress deprivation simultaneously induces over-expression of interleukin-1beta, tumor necrosis factor-alpha, and transforming growth factor-beta in fibroblasts and mechanical deterioration of the tissue in the patellar tendon. J Biomech 38(4):791–798PubMedCrossRef Uchida H, Tohyama H, Nagashima K, Ohba Y, Matsumoto H, Toyama Y, Yasuda K (2005) Stress deprivation simultaneously induces over-expression of interleukin-1beta, tumor necrosis factor-alpha, and transforming growth factor-beta in fibroblasts and mechanical deterioration of the tissue in the patellar tendon. J Biomech 38(4):791–798PubMedCrossRef
23.
go back to reference Williams IF, Heaton A, McCullagh KG (1980) Cell morphology and collagen types in equine tendon scar. Res Vet Sci 28(3):302–310PubMed Williams IF, Heaton A, McCullagh KG (1980) Cell morphology and collagen types in equine tendon scar. Res Vet Sci 28(3):302–310PubMed
24.
go back to reference Williams IF, McCullagh KG, Silver IA (1984) The distribution of types I and III collagen and fibronectin in the healing equine tendon. Connect Tissue Res 12(3–4):211–227PubMed Williams IF, McCullagh KG, Silver IA (1984) The distribution of types I and III collagen and fibronectin in the healing equine tendon. Connect Tissue Res 12(3–4):211–227PubMed
25.
go back to reference Woo SL, Orlando CA, Camp JF, Akeson WH (1986) Effects of postmortem storage by freezing on ligament tensile behavior. J Biomech 19(5):399–404PubMedCrossRef Woo SL, Orlando CA, Camp JF, Akeson WH (1986) Effects of postmortem storage by freezing on ligament tensile behavior. J Biomech 19(5):399–404PubMedCrossRef
26.
go back to reference Yamamoto N, Hayashi K, Kuriyama H, Ohno K, Yasuda K, Kaneda K (1992) Mechanical properties of the rabbit patellar tendon. J Biomech Eng 114(3):332–337PubMed Yamamoto N, Hayashi K, Kuriyama H, Ohno K, Yasuda K, Kaneda K (1992) Mechanical properties of the rabbit patellar tendon. J Biomech Eng 114(3):332–337PubMed
Metadata
Title
Is the increase in type III collagen of the patellar tendon graft after ligament reconstruction really caused by “ligamentization” of the graft?
Authors
Harukazu Tohyama
Kazunori Yasuda
Hisaya Uchida
Publication date
01-12-2006
Publisher
Springer-Verlag
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 12/2006
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-006-0092-z

Other articles of this Issue 12/2006

Knee Surgery, Sports Traumatology, Arthroscopy 12/2006 Go to the issue