Skip to main content
Top
Published in: Intensive Care Medicine 9/2018

01-09-2018 | What's New in Intensive Care

Inspiratory preload obliteration may injure lungs via cyclical “on–off” vascular flow

Authors: B. H. Katira, W. M. Kuebler, B. P. Kavanagh

Published in: Intensive Care Medicine | Issue 9/2018

Login to get access

Excerpt

Mechanical ventilation is the mainstay of supportive treatment for acute respiratory distress syndrome (ARDS) and high tidal volumes worsen outcome [1, 2]. The current paper considers how the pulmonary vasculature might participate in the development of ventilator-associated lung injury, and how recent research insights might ultimately be exploited in practice. …
Appendix
Available only for authorised users
Literature
1.
go back to reference Hickling KG, Walsh J, Henderson S, Jackson R (1994) Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 22:1568–1578CrossRefPubMed Hickling KG, Walsh J, Henderson S, Jackson R (1994) Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 22:1568–1578CrossRefPubMed
2.
go back to reference The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308 The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308
3.
go back to reference Marini JJ, Hotchkiss JR, Broccard AF (2003) Bench-to-bedside review: microvascular and airspace linkage in ventilator-induced lung injury. Crit Care 7:435–444CrossRefPubMedPubMedCentral Marini JJ, Hotchkiss JR, Broccard AF (2003) Bench-to-bedside review: microvascular and airspace linkage in ventilator-induced lung injury. Crit Care 7:435–444CrossRefPubMedPubMedCentral
4.
go back to reference Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323CrossRefPubMed Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323CrossRefPubMed
5.
go back to reference Kornecki A, Engelberts D, McNamara P, Jankov RP, McCaul C, Ackerley C, Post M, Kavanagh BP (2008) Vascular remodeling protects against ventilator-induced lung injury in the in vivo rat. Anesthesiology 108:1047–1054CrossRefPubMed Kornecki A, Engelberts D, McNamara P, Jankov RP, McCaul C, Ackerley C, Post M, Kavanagh BP (2008) Vascular remodeling protects against ventilator-induced lung injury in the in vivo rat. Anesthesiology 108:1047–1054CrossRefPubMed
6.
go back to reference Wang T, Gross C, Desai AA, Zemskov E, Wu X, Garcia AN, Jacobson JR, Yuan JX, Garcia JG, Black SM (2017) Endothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets. Am J Physiol Lung Cell Mol Physiol 312:L452–L476CrossRefPubMed Wang T, Gross C, Desai AA, Zemskov E, Wu X, Garcia AN, Jacobson JR, Yuan JX, Garcia JG, Black SM (2017) Endothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets. Am J Physiol Lung Cell Mol Physiol 312:L452–L476CrossRefPubMed
7.
go back to reference Michalick L, Erfinanda L, Weichelt U, van der Giet M, Liedtke W, Kuebler WM (2017) Transient receptor potential vanilloid 4 and serum glucocorticoid-regulated kinase 1 are critical mediators of lung injury in overventilated mice in vivo. Anesthesiology 126:300–311CrossRefPubMed Michalick L, Erfinanda L, Weichelt U, van der Giet M, Liedtke W, Kuebler WM (2017) Transient receptor potential vanilloid 4 and serum glucocorticoid-regulated kinase 1 are critical mediators of lung injury in overventilated mice in vivo. Anesthesiology 126:300–311CrossRefPubMed
9.
go back to reference Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28:596–608CrossRefPubMed Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28:596–608CrossRefPubMed
10.
go back to reference West JB, Tsukimoto K, Mathieu-Costello O, Prediletto R (1991) Stress failure in pulmonary capillaries. J Appl Physiol (1985) 70:1731–1742CrossRef West JB, Tsukimoto K, Mathieu-Costello O, Prediletto R (1991) Stress failure in pulmonary capillaries. J Appl Physiol (1985) 70:1731–1742CrossRef
11.
go back to reference Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110:556–565PubMed Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110:556–565PubMed
12.
go back to reference Katira BH, Giesinger RE, Engelberts D, Zabini D, Kornecki A, Otulakowski G, Yoshida T, Kuebler WM, McNamara PJ, Connelly KA, Kavanagh BP (2017) Adverse heart–lung interactions in ventilator-induced lung injury. Am J Respir Crit care Med 196(11):1411–1421CrossRefPubMed Katira BH, Giesinger RE, Engelberts D, Zabini D, Kornecki A, Otulakowski G, Yoshida T, Kuebler WM, McNamara PJ, Connelly KA, Kavanagh BP (2017) Adverse heart–lung interactions in ventilator-induced lung injury. Am J Respir Crit care Med 196(11):1411–1421CrossRefPubMed
13.
go back to reference Magder S, Guerard B (2012) Heart–lung interactions and pulmonary buffering: lessons from a computational modeling study. Respir Physiol Neurobiol 182:60–70CrossRefPubMed Magder S, Guerard B (2012) Heart–lung interactions and pulmonary buffering: lessons from a computational modeling study. Respir Physiol Neurobiol 182:60–70CrossRefPubMed
14.
go back to reference Vieillard-Baron A, Loubieres Y, Schmitt JM, Page B, Dubourg O, Jardin F (1999) Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol (1985) 87:1644–1650CrossRef Vieillard-Baron A, Loubieres Y, Schmitt JM, Page B, Dubourg O, Jardin F (1999) Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol (1985) 87:1644–1650CrossRef
15.
go back to reference Yoshida T, Fujino Y, Amato MB, Kavanagh BP (2017) Fifty years of research in ARDS. Spontaneous breathing during mechanical ventilation. Risks, mechanisms, and management. Am J Respir Crit Care Med 195:985–992CrossRefPubMed Yoshida T, Fujino Y, Amato MB, Kavanagh BP (2017) Fifty years of research in ARDS. Spontaneous breathing during mechanical ventilation. Risks, mechanisms, and management. Am J Respir Crit Care Med 195:985–992CrossRefPubMed
Metadata
Title
Inspiratory preload obliteration may injure lungs via cyclical “on–off” vascular flow
Authors
B. H. Katira
W. M. Kuebler
B. P. Kavanagh
Publication date
01-09-2018
Publisher
Springer Berlin Heidelberg
Published in
Intensive Care Medicine / Issue 9/2018
Print ISSN: 0342-4642
Electronic ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-017-5024-5

Other articles of this Issue 9/2018

Intensive Care Medicine 9/2018 Go to the issue

Imaging in Intensive Care Medicine

Acute sulfamethoxazole-induced crystal nephropathy