Skip to main content
Top
Published in: Intensive Care Medicine 11/2013

01-11-2013 | Original

Potentially harmful effects of inspiratory synchronization during pressure preset ventilation

Authors: J. C. M. Richard, A. Lyazidi, E. Akoumianaki, S. Mortaza, R. L. Cordioli, J. C. Lefebvre, N. Rey, L. Piquilloud, G. F. Sferrazza-Papa, A. Mercat, L. Brochard

Published in: Intensive Care Medicine | Issue 11/2013

Login to get access

Abstract

Purpose

Pressure preset ventilation (PPV) modes with set inspiratory time can be classified according to their ability to synchronize pressure delivery with patient’s inspiratory efforts (i-synchronization). Non-i-synchronized (like airway pressure release ventilation, APRV), partially i-synchronized (like biphasic airway pressure), and fully i-synchronized modes (like assist-pressure control) can be distinguished. Under identical ventilatory settings across PPV modes, the degree of i-synchronization may affect tidal volume (V T), transpulmonary pressure (P TP), and their variability. We performed bench and clinical studies.

Methods

In the bench study, all the PPV modes of five ventilators were tested with an active lung simulator. Spontaneous efforts of −10 cmH2O at rates of 20 and 30 breaths/min were simulated. Ventilator settings were high pressure 30 cmH2O, positive end-expiratory pressure (PEEP) 15 cmH2O, frequency 15 breaths/min, and inspiratory to expiratory ratios (I:E) 1:3 and 3:1. In the clinical studies, data from eight intubated patients suffering from acute respiratory distress syndrome (ARDS) and ventilated with APRV were compared to the bench tests. In four additional ARDS patients, each of the PPV modes was compared.

Results

As the degree of i-synchronization among the different PPV modes increased, mean V T and P TP swings markedly increased while breathing variability decreased. This was consistent with clinical comparison in four ARDS patients. Observational results in eight ARDS patients show low V T and a high variability with APRV.

Conclusion

Despite identical ventilator settings, the different PPV modes lead to substantial differences in V T, P TP, and breathing variability in the presence spontaneous efforts. Clinicians should be aware of the possible harmful effects of i-synchronization especially when high V T is undesirable.
Appendix
Available only for authorised users
Literature
1.
go back to reference The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRef The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRef
2.
go back to reference Amato MB, Barbas CS, Medeiros DM, Magaldi RB et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedCrossRef Amato MB, Barbas CS, Medeiros DM, Magaldi RB et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedCrossRef
3.
go back to reference Slutsky AS, Tremblay LN (1998) Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 157:1721–1725PubMedCrossRef Slutsky AS, Tremblay LN (1998) Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 157:1721–1725PubMedCrossRef
4.
go back to reference Gattinoni L, Protti A, Caironi P, Carlesso E (2010) Ventilator-induced lung injury: the anatomical and physiological framework. Crit Care Med 38:S539–S548PubMedCrossRef Gattinoni L, Protti A, Caironi P, Carlesso E (2010) Ventilator-induced lung injury: the anatomical and physiological framework. Crit Care Med 38:S539–S548PubMedCrossRef
5.
go back to reference Papazian L, Forel JM, Gacouin A, Penot-Ragon C et al (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363:1107–1116PubMedCrossRef Papazian L, Forel JM, Gacouin A, Penot-Ragon C et al (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363:1107–1116PubMedCrossRef
6.
go back to reference Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J (1999) Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 159:1241–1248PubMedCrossRef Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J (1999) Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 159:1241–1248PubMedCrossRef
7.
go back to reference Putensen C, Zech S, Wrigge H, Zinserling J, Stuber F, Von Spiegel T, Mutz N (2001) Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 164:43–49PubMedCrossRef Putensen C, Zech S, Wrigge H, Zinserling J, Stuber F, Von Spiegel T, Mutz N (2001) Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 164:43–49PubMedCrossRef
8.
go back to reference Marini JJ (2012) Spontaneously regulated vs. controlled ventilation of acute lung injury/acute respiratory distress syndrome. Curr Opin Crit Care 17:24–29CrossRef Marini JJ (2012) Spontaneously regulated vs. controlled ventilation of acute lung injury/acute respiratory distress syndrome. Curr Opin Crit Care 17:24–29CrossRef
9.
go back to reference Neumann P, Wrigge H, Zinserling J, Hinz J et al (2005) Spontaneous breathing affects the spatial ventilation and perfusion distribution during mechanical ventilatory support. Crit Care Med 33:1090–1095PubMedCrossRef Neumann P, Wrigge H, Zinserling J, Hinz J et al (2005) Spontaneous breathing affects the spatial ventilation and perfusion distribution during mechanical ventilatory support. Crit Care Med 33:1090–1095PubMedCrossRef
10.
go back to reference Wrigge H, Zinserling J, Neumann P, Muders T, Magnusson A, Putensen C, Hedenstierna G (2005) Spontaneous breathing with airway pressure release ventilation favors ventilation in dependent lung regions and counters cyclic alveolar collapse in oleic-acid-induced lung injury: a randomized controlled computed tomography trial. Crit Care 9:R780–R789PubMedCrossRef Wrigge H, Zinserling J, Neumann P, Muders T, Magnusson A, Putensen C, Hedenstierna G (2005) Spontaneous breathing with airway pressure release ventilation favors ventilation in dependent lung regions and counters cyclic alveolar collapse in oleic-acid-induced lung injury: a randomized controlled computed tomography trial. Crit Care 9:R780–R789PubMedCrossRef
11.
go back to reference Rose L, Hawkins M (2008) Airway pressure release ventilation and biphasic positive airway pressure: a systematic review of definitional criteria. Intensive Care Med 34:1766–1773PubMedCrossRef Rose L, Hawkins M (2008) Airway pressure release ventilation and biphasic positive airway pressure: a systematic review of definitional criteria. Intensive Care Med 34:1766–1773PubMedCrossRef
12.
go back to reference Sasidhar M, Chatburn RL (2012) Tidal volume variability during airway pressure release ventilation: case summary and theoretical analysis. Respir Care 57:1325–1333PubMedCrossRef Sasidhar M, Chatburn RL (2012) Tidal volume variability during airway pressure release ventilation: case summary and theoretical analysis. Respir Care 57:1325–1333PubMedCrossRef
13.
go back to reference Akoumianaki E, Rey N, Lyazidi A, Perez-Martinez N, Brochard L, Richard JCM (2012) Impact of airway pressure release ventilation (APRV) and biphasic intermittent positive airway pressure (BIPAP) modes on the lung protection in breathing lung model. Intensive Care Med 38(Suppl 1):S142 Akoumianaki E, Rey N, Lyazidi A, Perez-Martinez N, Brochard L, Richard JCM (2012) Impact of airway pressure release ventilation (APRV) and biphasic intermittent positive airway pressure (BIPAP) modes on the lung protection in breathing lung model. Intensive Care Med 38(Suppl 1):S142
14.
go back to reference Sessler CN, Gosnell MS, Grap MJ, Brophy GM et al (2002) The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med 166:1338–1344PubMedCrossRef Sessler CN, Gosnell MS, Grap MJ, Brophy GM et al (2002) The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med 166:1338–1344PubMedCrossRef
15.
go back to reference Daoud EG, Farag HL, Chatburn RL (2012) Airway pressure release ventilation: what do we know? Respir Care 57:282–292PubMed Daoud EG, Farag HL, Chatburn RL (2012) Airway pressure release ventilation: what do we know? Respir Care 57:282–292PubMed
16.
go back to reference Modrykamien A, Chatburn RL, Ashton RW (2011) Airway pressure release ventilation: an alternative mode of mechanical ventilation in acute respiratory distress syndrome. Cleve Clin J Med 78:101–110PubMedCrossRef Modrykamien A, Chatburn RL, Ashton RW (2011) Airway pressure release ventilation: an alternative mode of mechanical ventilation in acute respiratory distress syndrome. Cleve Clin J Med 78:101–110PubMedCrossRef
17.
go back to reference Chiumello D, Carlesso E, Cadringher P, Caironi P et al (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178:346–355PubMedCrossRef Chiumello D, Carlesso E, Cadringher P, Caironi P et al (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178:346–355PubMedCrossRef
18.
go back to reference González M, Arroliga AC, Frutos-Vivar F, Raymondos K et al (2010) Airway pressure release ventilation versus assist-control ventilation: a comparative propensity score and international cohort study. Intensive Care Med 36:817–827PubMedCrossRef González M, Arroliga AC, Frutos-Vivar F, Raymondos K et al (2010) Airway pressure release ventilation versus assist-control ventilation: a comparative propensity score and international cohort study. Intensive Care Med 36:817–827PubMedCrossRef
19.
go back to reference Maxwell RA, Green JM, Waldrop J, Dart BW et al (2010) A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma 69:501–510 discussion 511PubMedCrossRef Maxwell RA, Green JM, Waldrop J, Dart BW et al (2010) A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma 69:501–510 discussion 511PubMedCrossRef
20.
go back to reference Richard JC, Maggiore SM, Jonson B, Mancebo J, Lemaire F, Brochard L (2001) Influence of tidal volume on alveolar recruitment. Respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med 163:1609–1613PubMedCrossRef Richard JC, Maggiore SM, Jonson B, Mancebo J, Lemaire F, Brochard L (2001) Influence of tidal volume on alveolar recruitment. Respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med 163:1609–1613PubMedCrossRef
21.
go back to reference Cereda M, Foti G, Musch G, Sparacino ME, Pesenti A (1996) Positive end-expiratory pressure prevents the loss of respiratory compliance during low tidal volume ventilation in acute lung injury patients. Chest 109:480–485PubMedCrossRef Cereda M, Foti G, Musch G, Sparacino ME, Pesenti A (1996) Positive end-expiratory pressure prevents the loss of respiratory compliance during low tidal volume ventilation in acute lung injury patients. Chest 109:480–485PubMedCrossRef
22.
go back to reference Pelosi P, Cadringher P, Bottino N, Panigada M et al (1999) Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med 159:872–880PubMedCrossRef Pelosi P, Cadringher P, Bottino N, Panigada M et al (1999) Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med 159:872–880PubMedCrossRef
23.
go back to reference Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334PubMedCrossRef Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334PubMedCrossRef
24.
go back to reference Richard JC, Brochard L, Vandelet P, Breton L et al (2003) Respective effects of end-expiratory and end-inspiratory pressures on alveolar recruitment in acute lung injury. Crit Care Med 31:89–92PubMedCrossRef Richard JC, Brochard L, Vandelet P, Breton L et al (2003) Respective effects of end-expiratory and end-inspiratory pressures on alveolar recruitment in acute lung injury. Crit Care Med 31:89–92PubMedCrossRef
25.
go back to reference Grasso S, Mascia L, Del Turco M, Malacarne P et al (2002) Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology 96:795–802PubMedCrossRef Grasso S, Mascia L, Del Turco M, Malacarne P et al (2002) Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology 96:795–802PubMedCrossRef
26.
go back to reference Suki B, Alencar AM, Sujeer MK, Lutchen KR et al (1998) Life-support system benefits from noise. Nature 393:127–128PubMedCrossRef Suki B, Alencar AM, Sujeer MK, Lutchen KR et al (1998) Life-support system benefits from noise. Nature 393:127–128PubMedCrossRef
27.
go back to reference Ma B, Suki B, Bates JH (2011) Effects of recruitment/derecruitment dynamics on the efficacy of variable ventilation. J Appl Physiol 110:1319–1326PubMedCrossRef Ma B, Suki B, Bates JH (2011) Effects of recruitment/derecruitment dynamics on the efficacy of variable ventilation. J Appl Physiol 110:1319–1326PubMedCrossRef
28.
go back to reference Thille AW, Lyazidi A, Richard JC, Galia F, Brochard L (2009) A bench study of intensive-care-unit ventilators: new versus old and turbine-based versus compressed gas-based ventilators. Intensive Care Med 35:1368–1376PubMedCrossRef Thille AW, Lyazidi A, Richard JC, Galia F, Brochard L (2009) A bench study of intensive-care-unit ventilators: new versus old and turbine-based versus compressed gas-based ventilators. Intensive Care Med 35:1368–1376PubMedCrossRef
29.
go back to reference Lyazidi A, Thille AW, Carteaux G, Galia F, Brochard L, Richard JC (2010) Bench test evaluation of volume delivered by modern ICU ventilators during volume-controlled ventilation. Intensive Care Med 36:2074–2080PubMedCrossRef Lyazidi A, Thille AW, Carteaux G, Galia F, Brochard L, Richard JC (2010) Bench test evaluation of volume delivered by modern ICU ventilators during volume-controlled ventilation. Intensive Care Med 36:2074–2080PubMedCrossRef
Metadata
Title
Potentially harmful effects of inspiratory synchronization during pressure preset ventilation
Authors
J. C. M. Richard
A. Lyazidi
E. Akoumianaki
S. Mortaza
R. L. Cordioli
J. C. Lefebvre
N. Rey
L. Piquilloud
G. F. Sferrazza-Papa
A. Mercat
L. Brochard
Publication date
01-11-2013
Publisher
Springer Berlin Heidelberg
Published in
Intensive Care Medicine / Issue 11/2013
Print ISSN: 0342-4642
Electronic ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-013-3032-7

Other articles of this Issue 11/2013

Intensive Care Medicine 11/2013 Go to the issue