Skip to main content
Top
Published in: Intensive Care Medicine 3/2007

01-03-2007 | Experimental

Myocardial lactate deprivation is associated with decreased cardiovascular performance, decreased myocardial energetics, and early death in endotoxic shock

Authors: Bruno Levy, Arnauld Mansart, Chantal Montemont, Sebastien Gibot, Jean-Pierre Mallie, Veronique Regnault, Thomas Lecompte, Patrick Lacolley

Published in: Intensive Care Medicine | Issue 3/2007

Login to get access

Abstract

Objective

We examined whether lactate availability is a limiting factor for heart function during endotoxic shock, and whether lactate deprivation thus induces heart energy depletion, thereby altering cardiovascular performance. The study goals were to determine whether muscle lactate production is linked to β2-stimulation and to ascertain the effects of systemic lactate deprivation on hemodynamics, lactate metabolism, heart energetics, and outcome in a lethal model of rat's endotoxic shock.

Interventions

We modulated the adrenergic pathway in skeletal muscle using microdialysis with ICI-118551, a selective β2-blocker. Muscle lactate formation in endotoxic shock was further inhibited by intravenous infusion of ICI-118551 or dichloroacetate (DCA), an activator of pyruvate dehydrogenase (DCA) and their combination.

Results

Muscle lactate formation was decreased by ICI-118551. During endotoxic shock both ICI-118151 and DCA decreased circulating and heart lactate concentrations in parallel with a decrease in tissue ATP content. The combination ICI-118551-DCA resulted in early cardiovascular collapse and death. The addition of molar lactate to ICI-1185111 plus DCA blunted the effects of ICI-118551+DCA on hemodynamics. Survival was markedly less with ICI-118551 than with endotoxin alone.

Conclusion

Systemic lactate deprivation is detrimental to myocardial energetics, cardiovascular performance, and outcome.
Literature
1.
go back to reference Krishnagopalan S, Kumar A, Parrillo JE (2002) Myocardial dysfunction in the patient with sepsis. Curr Opin Crit Care 8:376–388PubMedCrossRef Krishnagopalan S, Kumar A, Parrillo JE (2002) Myocardial dysfunction in the patient with sepsis. Curr Opin Crit Care 8:376–388PubMedCrossRef
2.
go back to reference Lancel S, Tissier S, Mordon S, Marechal X, Depontieu F, Scherpereel A, Chopin C, Neviere R (2004) Peroxynitrite decomposition catalysts prevent myocardial dysfunction and inflammation in endotoxemic rats. J Am Coll Cardiol 43:2348–2358PubMedCrossRef Lancel S, Tissier S, Mordon S, Marechal X, Depontieu F, Scherpereel A, Chopin C, Neviere R (2004) Peroxynitrite decomposition catalysts prevent myocardial dysfunction and inflammation in endotoxemic rats. J Am Coll Cardiol 43:2348–2358PubMedCrossRef
3.
go back to reference Gibot S, Levy B, Neviere R, Cariou A, Lesur O (2004) [Myocardial dysfunction and septic shock]. Med Sci (Paris) 20:1115–1118 Gibot S, Levy B, Neviere R, Cariou A, Lesur O (2004) [Myocardial dysfunction and septic shock]. Med Sci (Paris) 20:1115–1118
4.
go back to reference James JH, Luchette FA, McCarter FD, Fischer JE (1999) Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 354:505–508PubMedCrossRef James JH, Luchette FA, McCarter FD, Fischer JE (1999) Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 354:505–508PubMedCrossRef
5.
go back to reference Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE (2005) Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 365:871–875PubMedCrossRef Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE (2005) Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 365:871–875PubMedCrossRef
6.
go back to reference Liggett SB, Shah SD, Cryer PE (1988) Characterization of beta-adrenergic receptors of human skeletal muscle obtained by needle biopsy. Am J Physiol 254:E795–E798PubMed Liggett SB, Shah SD, Cryer PE (1988) Characterization of beta-adrenergic receptors of human skeletal muscle obtained by needle biopsy. Am J Physiol 254:E795–E798PubMed
8.
go back to reference Salem JE, Stanley WC, Cabrera ME (2004) Computational studies of the effects of myocardial blood flow reductions on cardiac metabolism. Biomed Eng Online 3:15PubMedCrossRef Salem JE, Stanley WC, Cabrera ME (2004) Computational studies of the effects of myocardial blood flow reductions on cardiac metabolism. Biomed Eng Online 3:15PubMedCrossRef
9.
go back to reference Tessier JP, Thurner B, Jungling E, Luckhoff A, Fischer Y (2003) Impairment of glucose metabolism in hearts from rats treated with endotoxin. Cardiovasc Res 60:119–130PubMedCrossRef Tessier JP, Thurner B, Jungling E, Luckhoff A, Fischer Y (2003) Impairment of glucose metabolism in hearts from rats treated with endotoxin. Cardiovasc Res 60:119–130PubMedCrossRef
10.
go back to reference Rosdahl H, Ungerstedt U, Henriksson J (1997) Microdialysis in human skeletal muscle and adipose tissue at low flow rates is possible if dextran-70 is added to prevent loss of perfusion fluid. Acta Physiol Scand 159:261–262PubMedCrossRef Rosdahl H, Ungerstedt U, Henriksson J (1997) Microdialysis in human skeletal muscle and adipose tissue at low flow rates is possible if dextran-70 is added to prevent loss of perfusion fluid. Acta Physiol Scand 159:261–262PubMedCrossRef
11.
go back to reference Hickner RC, Rosdahl H, Borg I, Ungerstedt U, Jorfeldt L, Henriksson J (1992) The ethanol technique of monitoring local blood flow changes in rat skeletal muscle: implications for microdialysis. Acta Physiol Scand 146:87–97PubMed Hickner RC, Rosdahl H, Borg I, Ungerstedt U, Jorfeldt L, Henriksson J (1992) The ethanol technique of monitoring local blood flow changes in rat skeletal muscle: implications for microdialysis. Acta Physiol Scand 146:87–97PubMed
12.
go back to reference Oberbeck R, Schmitz D, Wilsenack K, Schuler M, Pehle B, Schedlowski M, Exton MS (2004) Adrenergic modulation of survival and cellular immune functions during polymicrobial sepsis. Neuroimmunomodulation 11:214–223PubMedCrossRef Oberbeck R, Schmitz D, Wilsenack K, Schuler M, Pehle B, Schedlowski M, Exton MS (2004) Adrenergic modulation of survival and cellular immune functions during polymicrobial sepsis. Neuroimmunomodulation 11:214–223PubMedCrossRef
13.
go back to reference James JH, Wagner KR, King JK, Leffler RE, Upputuri RK, Balasubramaniam A, Friend LA, Shelly DA, Paul RJ, Fischer JE (1999) Stimulation of both aerobic glycolysis and Na(+)-K(+)-ATPase activity in skeletal muscle by epinephrine or amylin. Am J Physiol 277:E176–E186PubMed James JH, Wagner KR, King JK, Leffler RE, Upputuri RK, Balasubramaniam A, Friend LA, Shelly DA, Paul RJ, Fischer JE (1999) Stimulation of both aerobic glycolysis and Na(+)-K(+)-ATPase activity in skeletal muscle by epinephrine or amylin. Am J Physiol 277:E176–E186PubMed
14.
go back to reference Clausen T, Flatman JA (1980) Beta 2-adrenoceptors mediate the stimulating effect of adrenaline on active electrogenic Na-K-transport in rat soleus muscle. Br J Pharmacol 68:749–755PubMed Clausen T, Flatman JA (1980) Beta 2-adrenoceptors mediate the stimulating effect of adrenaline on active electrogenic Na-K-transport in rat soleus muscle. Br J Pharmacol 68:749–755PubMed
15.
go back to reference Levy B, Mansart A, Bollaert PE, Franck P, Mallie JP (2003) Effects of epinephrine and norepinephrine on hemodynamics, oxidative metabolism, and organ energetics in endotoxemic rats. Intensive Care Med 29:292–300PubMed Levy B, Mansart A, Bollaert PE, Franck P, Mallie JP (2003) Effects of epinephrine and norepinephrine on hemodynamics, oxidative metabolism, and organ energetics in endotoxemic rats. Intensive Care Med 29:292–300PubMed
16.
go back to reference Saupe KW, Eberli FR, Ingwall JS, Apstein CS (2001) Metabolic support as an adjunct to inotropic support in the hypoperfused heart. J Mol Cell Cardiol 33:261–269PubMedCrossRef Saupe KW, Eberli FR, Ingwall JS, Apstein CS (2001) Metabolic support as an adjunct to inotropic support in the hypoperfused heart. J Mol Cell Cardiol 33:261–269PubMedCrossRef
17.
go back to reference Nakamura K, Kusuoka H, Ambrosio G, Becker LC (1993) Glycolysis is necessary to preserve myocardial Ca2+ homeostasis during beta-adrenergic stimulation. Am J Physiol 264:H670–H678PubMed Nakamura K, Kusuoka H, Ambrosio G, Becker LC (1993) Glycolysis is necessary to preserve myocardial Ca2+ homeostasis during beta-adrenergic stimulation. Am J Physiol 264:H670–H678PubMed
18.
go back to reference Mustafa I, Leverve XM (2002) Metabolic and hemodynamic effects of hypertonic solutions: sodium-lactate versus sodium chloride infusion in postoperative patients. Shock 18:306–310PubMedCrossRef Mustafa I, Leverve XM (2002) Metabolic and hemodynamic effects of hypertonic solutions: sodium-lactate versus sodium chloride infusion in postoperative patients. Shock 18:306–310PubMedCrossRef
19.
go back to reference Chiolero RL, Revelly JP, Leverve X, Gersbach P, Cayeux MC, Berger MM, Tappy L (2000) Effects of cardiogenic shock on lactate and glucose metabolism after heart surgery. Crit Care Med 28:3784–3791PubMedCrossRef Chiolero RL, Revelly JP, Leverve X, Gersbach P, Cayeux MC, Berger MM, Tappy L (2000) Effects of cardiogenic shock on lactate and glucose metabolism after heart surgery. Crit Care Med 28:3784–3791PubMedCrossRef
20.
go back to reference Schurr A, Payne RS, Miller JJ, Rigor BM (1997) Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: further in vitro validation. J Neurochem 69:423–426PubMedCrossRef Schurr A, Payne RS, Miller JJ, Rigor BM (1997) Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: further in vitro validation. J Neurochem 69:423–426PubMedCrossRef
21.
go back to reference Luptak I, Balschi JA, Xing Y, Leone TC, Kelly DP, Tian R (2005) Decreased contractile and metabolic reserve in peroxisome proliferator-activated receptor-alpha-null hearts can be rescued by increasing glucose transport and utilization. Circulation 112:2339–2346PubMedCrossRef Luptak I, Balschi JA, Xing Y, Leone TC, Kelly DP, Tian R (2005) Decreased contractile and metabolic reserve in peroxisome proliferator-activated receptor-alpha-null hearts can be rescued by increasing glucose transport and utilization. Circulation 112:2339–2346PubMedCrossRef
22.
go back to reference Johannsson E, Lunde PK, Heddle C, Sjaastad I, Thomas MJ, Bergersen L, Halestrap AP, Blackstad TW, Ottersen OP, Sejersted OM (2001) Upregulation of the cardiac monocarboxylate transporter MCT1 in a rat model of congestive heart failure. Circulation 104:729–734PubMed Johannsson E, Lunde PK, Heddle C, Sjaastad I, Thomas MJ, Bergersen L, Halestrap AP, Blackstad TW, Ottersen OP, Sejersted OM (2001) Upregulation of the cardiac monocarboxylate transporter MCT1 in a rat model of congestive heart failure. Circulation 104:729–734PubMed
23.
go back to reference Smith HJ, Halliday SE, Earl DC, Stribling D (1983) Effects of selective (beta-1 and beta-2) and nonselective beta adrenoceptor antagonists on the cardiovascular and metabolic responses to isoproterenol: comparison with ICI 141:292. J Pharmacol Exp Ther 226:211–216PubMed Smith HJ, Halliday SE, Earl DC, Stribling D (1983) Effects of selective (beta-1 and beta-2) and nonselective beta adrenoceptor antagonists on the cardiovascular and metabolic responses to isoproterenol: comparison with ICI 141:292. J Pharmacol Exp Ther 226:211–216PubMed
24.
go back to reference Linderman JK, Dallman PR, Rodriguez RE, Brooks GA (1993) Lactate is essential for maintenance of euglycemia in iron-deficient rats at rest and during exercise. Am J Physiol 264:E662–E667PubMed Linderman JK, Dallman PR, Rodriguez RE, Brooks GA (1993) Lactate is essential for maintenance of euglycemia in iron-deficient rats at rest and during exercise. Am J Physiol 264:E662–E667PubMed
25.
go back to reference Ventura-Clapier R, Garnier A, Veksler V (2004) Energy metabolism in heart failure. J Physiol 555:1–13PubMedCrossRef Ventura-Clapier R, Garnier A, Veksler V (2004) Energy metabolism in heart failure. J Physiol 555:1–13PubMedCrossRef
26.
go back to reference Dhainaut JF, Huyghebaert MF, Monsallier JF, Lefevre G, Dall'Ava-Santucci J, Brunet F, Villemant D, Carli A, Raichvarg D (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75:533–541PubMed Dhainaut JF, Huyghebaert MF, Monsallier JF, Lefevre G, Dall'Ava-Santucci J, Brunet F, Villemant D, Carli A, Raichvarg D (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75:533–541PubMed
27.
go back to reference Kline JA, Thornton LR, Lopaschuk GD, Barbee RW, Watts JA (2000) Lactate improves cardiac efficiency after hemorrhagic shock. Shock 14:215–221PubMed Kline JA, Thornton LR, Lopaschuk GD, Barbee RW, Watts JA (2000) Lactate improves cardiac efficiency after hemorrhagic shock. Shock 14:215–221PubMed
28.
go back to reference Barbee RW, Kline JA, Watts JA (2000) Depletion of lactate by dichloroacetate reduces cardiac efficiency after hemorrhagic shock. Shock 14:208–214PubMedCrossRef Barbee RW, Kline JA, Watts JA (2000) Depletion of lactate by dichloroacetate reduces cardiac efficiency after hemorrhagic shock. Shock 14:208–214PubMedCrossRef
29.
go back to reference Stacpoole PW, Harman EM, Curry SH, Baumgartner TG, Misbin RI (1983) Treatment of lactic acidosis with dichloroacetate. N Engl J Med 309:390–396PubMedCrossRef Stacpoole PW, Harman EM, Curry SH, Baumgartner TG, Misbin RI (1983) Treatment of lactic acidosis with dichloroacetate. N Engl J Med 309:390–396PubMedCrossRef
30.
go back to reference Gong H, Sun H, Koch WJ, Rau T, Eschenhagen T, Ravens U, Heubach JF, Adamson DL, Harding SE (2002) Specific beta (2) AR blocker ICI 118:551 actively decreases contraction through a G(i)-coupled form of the beta (2) AR in myocytes from failing human heart. Circulation 105:2497–2503PubMedCrossRef Gong H, Sun H, Koch WJ, Rau T, Eschenhagen T, Ravens U, Heubach JF, Adamson DL, Harding SE (2002) Specific beta (2) AR blocker ICI 118:551 actively decreases contraction through a G(i)-coupled form of the beta (2) AR in myocytes from failing human heart. Circulation 105:2497–2503PubMedCrossRef
31.
go back to reference Stacpoole PW, Nagaraja NV, Hutson AD (2003) Efficacy of dichloroacetate as a lactate-lowering drug. J Clin Pharmacol 43:683–691PubMed Stacpoole PW, Nagaraja NV, Hutson AD (2003) Efficacy of dichloroacetate as a lactate-lowering drug. J Clin Pharmacol 43:683–691PubMed
32.
go back to reference Gladden LB (2004) Lactate metabolism—a new paradigm for the third millennium. J Physiol 558:5–30PubMedCrossRef Gladden LB (2004) Lactate metabolism—a new paradigm for the third millennium. J Physiol 558:5–30PubMedCrossRef
33.
go back to reference Leverve XM, Mustafa I (2002) Lactate: a key metabolite in the intercellular metabolic interplay. Crit Care 6:284–285PubMedCrossRef Leverve XM, Mustafa I (2002) Lactate: a key metabolite in the intercellular metabolic interplay. Crit Care 6:284–285PubMedCrossRef
Metadata
Title
Myocardial lactate deprivation is associated with decreased cardiovascular performance, decreased myocardial energetics, and early death in endotoxic shock
Authors
Bruno Levy
Arnauld Mansart
Chantal Montemont
Sebastien Gibot
Jean-Pierre Mallie
Veronique Regnault
Thomas Lecompte
Patrick Lacolley
Publication date
01-03-2007
Publisher
Springer-Verlag
Published in
Intensive Care Medicine / Issue 3/2007
Print ISSN: 0342-4642
Electronic ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-006-0523-9

Other articles of this Issue 3/2007

Intensive Care Medicine 3/2007 Go to the issue

Announcements

Announcements