Skip to main content
Top
Published in: Intensive Care Medicine 9/2006

01-09-2006 | Pediatric Original

Body and head position effects on regional lung ventilation in infants: an electrical impedance tomography study

Authors: Sina Heinrich, Holger Schiffmann, Alexander Frerichs, Adelbert Klockgether-Radke, Inéz Frerichs

Published in: Intensive Care Medicine | Issue 9/2006

Login to get access

Abstract

Objective

To determine the effects of body and head positions on the spatial distribution of ventilation in nonintubated spontaneously breathing and mechanically ventilated infants using electrical impedance tomography (EIT).

Design and setting

Prospective study in a neonatal intensive care unit.

Patients

Ten spontaneously breathing (gestational age 38 weeks, postnatal age 13 days) and ten mechanically ventilated infants (gestational age 35 weeks, postnatal age 58 days).

Interventions

Supine and prone postures with different head positions (midline and rotated to the left and right side).

Measurements and results

The distribution of ventilation in the chest cross-section was repeatedly determined from EIT data in each body/head position studied. During spontaneous breathing the tidal volumes in the left lung region were reduced in the supine posture with the head turned to the left as well as in the prone posture with the head rotated to either side when compared with the supine posture with the head in the midline position. During mechanical ventilation the tidal volumes in the left lung region were unaffected by the body and head position except for the prone posture combined with the leftward head rotation which reduced them. In both types of ventilation the tidal volumes in the right lung region were unaffected by the change in body/head position.

Conclusion

The results indicate that the spatial distribution of ventilation is influenced by the body and head position in spontaneously breathing infants. Prone posture with the leftward head rotation has the most prominent effect which is detectable even during mechanical ventilation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Schibler A, Hall GL, Businger F, Reinmann B, Wildhaber JH, Cernelc M, Frey U (2002) Measurement of lung volume and ventilation distribution with an ultrasonic flow meter in healthy infants. Eur Respir J 20:912–918PubMedCrossRef Schibler A, Hall GL, Businger F, Reinmann B, Wildhaber JH, Cernelc M, Frey U (2002) Measurement of lung volume and ventilation distribution with an ultrasonic flow meter in healthy infants. Eur Respir J 20:912–918PubMedCrossRef
2.
go back to reference Aurora P, Gustafsson P, Bush A, Lindblad A, Oliver C, Wallis CE, Stocks J (2004) Multiple breath inert gas washout as a measure of ventilation distribution in children with cystic fibrosis. Thorax 59:1068–1073PubMedCrossRef Aurora P, Gustafsson P, Bush A, Lindblad A, Oliver C, Wallis CE, Stocks J (2004) Multiple breath inert gas washout as a measure of ventilation distribution in children with cystic fibrosis. Thorax 59:1068–1073PubMedCrossRef
3.
go back to reference Pillow JJ, Frerichs I, Stocks J (2006) Lung function tests in neonates and infants with chronic lung disease: global and regional ventilation inhomogeneity. Pediatr Pulmonol 41:105–121PubMedCrossRef Pillow JJ, Frerichs I, Stocks J (2006) Lung function tests in neonates and infants with chronic lung disease: global and regional ventilation inhomogeneity. Pediatr Pulmonol 41:105–121PubMedCrossRef
4.
go back to reference Frerichs I, Braun B, Dudykevych T, Hahn G, Genée D, Hellige G (2004) Distribution of ventilation in young and elderly adults determined by electrical impedance tomography. Respir Physiol Neurobiol 143:63–75PubMedCrossRef Frerichs I, Braun B, Dudykevych T, Hahn G, Genée D, Hellige G (2004) Distribution of ventilation in young and elderly adults determined by electrical impedance tomography. Respir Physiol Neurobiol 143:63–75PubMedCrossRef
5.
go back to reference Riedel T, Richards T, Schibler A (2005) The value of electrical impedance tomography in assessing the effect of body position and positive airway pressures on regional lung ventilation in spontaneously breathing subjects. Intensive Care Med 31:1522–1528PubMedCrossRef Riedel T, Richards T, Schibler A (2005) The value of electrical impedance tomography in assessing the effect of body position and positive airway pressures on regional lung ventilation in spontaneously breathing subjects. Intensive Care Med 31:1522–1528PubMedCrossRef
6.
go back to reference Smallwood RH, Hampshire AR, Brown BH, Primhak RA, Marven S, Nopp P (1999) A comparison of neonatal and adult lung impedances derived from EIT images. Physiol Meas 20:401–413PubMedCrossRef Smallwood RH, Hampshire AR, Brown BH, Primhak RA, Marven S, Nopp P (1999) A comparison of neonatal and adult lung impedances derived from EIT images. Physiol Meas 20:401–413PubMedCrossRef
7.
go back to reference van Genderingen HR, Vugt AJ, Jansen JRC (2003) Estimation of regional lung volume changes by electrical impedance tomography during a pressure-volume maneuver. Intensive Care Med 29:233–240PubMed van Genderingen HR, Vugt AJ, Jansen JRC (2003) Estimation of regional lung volume changes by electrical impedance tomography during a pressure-volume maneuver. Intensive Care Med 29:233–240PubMed
8.
go back to reference Frerichs I, Hinz J, Herrmann P, Weisser G, Hahn G, Dudykevych T, Quintel M, Hellige G (2002) Detection of local lung air content by electrical impedance tomography compared with electron beam CT. J Appl Physiol 93:660–666PubMed Frerichs I, Hinz J, Herrmann P, Weisser G, Hahn G, Dudykevych T, Quintel M, Hellige G (2002) Detection of local lung air content by electrical impedance tomography compared with electron beam CT. J Appl Physiol 93:660–666PubMed
9.
go back to reference Hinz J, Neumann P, Dudykevych T, Andersson LG, Wrigge H, Burchardi H, Hedenstierna G (2003) Regional ventilation by electrical impedance tomography: a comparison with ventilation scintigraphy in pigs. Chest 124:314–322PubMedCrossRef Hinz J, Neumann P, Dudykevych T, Andersson LG, Wrigge H, Burchardi H, Hedenstierna G (2003) Regional ventilation by electrical impedance tomography: a comparison with ventilation scintigraphy in pigs. Chest 124:314–322PubMedCrossRef
10.
go back to reference Kunst PW, Vonk Noordegraaf A, Hoekstra OS, Postmus PE, de Vries PM (1998) Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning. Physiol Meas 19:481–490PubMedCrossRef Kunst PW, Vonk Noordegraaf A, Hoekstra OS, Postmus PE, de Vries PM (1998) Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning. Physiol Meas 19:481–490PubMedCrossRef
11.
go back to reference Victorino JA, Borges JB, Okamoto VN, Matos GFJ, Tucci MR, Caramez MPR, Tanaka H, Sipmann FS, Santos DCB, Barbas CSV, Carvalho CRR, Amato MBP (2004) Imbalances in regional lung ventilation. A validation study on electrical impedance tomography. Am J Respir Crit Care Med 169:791–800PubMedCrossRef Victorino JA, Borges JB, Okamoto VN, Matos GFJ, Tucci MR, Caramez MPR, Tanaka H, Sipmann FS, Santos DCB, Barbas CSV, Carvalho CRR, Amato MBP (2004) Imbalances in regional lung ventilation. A validation study on electrical impedance tomography. Am J Respir Crit Care Med 169:791–800PubMedCrossRef
12.
go back to reference Caples M, Hubmayr RD (2003) Respiratory monitoring tools in the intensive care unit. Curr Opin Crit Care 9:230–235PubMedCrossRef Caples M, Hubmayr RD (2003) Respiratory monitoring tools in the intensive care unit. Curr Opin Crit Care 9:230–235PubMedCrossRef
13.
go back to reference Frerichs I, Schiffmann H, Hahn G, Hellige G (2001) Non-invasive radiation-free monitoring of regional lung ventilation in critically ill infants. Intensive Care Med 27:1385–1394PubMedCrossRef Frerichs I, Schiffmann H, Hahn G, Hellige G (2001) Non-invasive radiation-free monitoring of regional lung ventilation in critically ill infants. Intensive Care Med 27:1385–1394PubMedCrossRef
14.
go back to reference Wolf GK, Arnold JA (2005) Noninvasive assessment of lung volume: respiratory inductance plethysmography and electrical impedance tomography. Crit Care Med 33:S163–S169PubMedCrossRef Wolf GK, Arnold JA (2005) Noninvasive assessment of lung volume: respiratory inductance plethysmography and electrical impedance tomography. Crit Care Med 33:S163–S169PubMedCrossRef
15.
go back to reference Frerichs I, Schiffmann H, Ohler R, Dudykevych T, Hahn G, Hinz J, Hellige G (2003) Distribution of lung ventilation in spontaneously breathing neonates lying in different body positions. Intensive Care Med 29:787–794PubMedCrossRef Frerichs I, Schiffmann H, Ohler R, Dudykevych T, Hahn G, Hinz J, Hellige G (2003) Distribution of lung ventilation in spontaneously breathing neonates lying in different body positions. Intensive Care Med 29:787–794PubMedCrossRef
16.
go back to reference Carlo WA, Beoglos A, Siner BS, Martin RJ (1989) Neck and body position effects on pulmonary mechanics in infants. Pediatrics 84:670–674PubMed Carlo WA, Beoglos A, Siner BS, Martin RJ (1989) Neck and body position effects on pulmonary mechanics in infants. Pediatrics 84:670–674PubMed
17.
go back to reference Paluszynska DA, Harris KA, Thach BT (2004) Influence of sleep position experience on ability of prone-sleeping infants to escape from asphyxiating microenvironments by changing head position. Pediatrics 114:1634–1639PubMedCrossRef Paluszynska DA, Harris KA, Thach BT (2004) Influence of sleep position experience on ability of prone-sleeping infants to escape from asphyxiating microenvironments by changing head position. Pediatrics 114:1634–1639PubMedCrossRef
18.
go back to reference Brown BH (2003) Electrical impedance tomography (EIT): a review. J Med Eng Technol 27:97–108PubMedCrossRef Brown BH (2003) Electrical impedance tomography (EIT): a review. J Med Eng Technol 27:97–108PubMedCrossRef
19.
go back to reference Frerichs I (2000) Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities. Physiol Meas 21:R1–R21PubMedCrossRef Frerichs I (2000) Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities. Physiol Meas 21:R1–R21PubMedCrossRef
20.
go back to reference Hahn G, Thiel F, Dudykevych T, Frerichs I, Gersing E, Schröder T, Hartung C, Hellige G (2001) Quantitative evaluation of the performance of different electrical tomography devices. Biomed Tech (Berl) 46:91–95CrossRef Hahn G, Thiel F, Dudykevych T, Frerichs I, Gersing E, Schröder T, Hartung C, Hellige G (2001) Quantitative evaluation of the performance of different electrical tomography devices. Biomed Tech (Berl) 46:91–95CrossRef
21.
go back to reference Hahn G, Dudykevych T, Frerichs I, Thiel F, Hellige G (2002) A high performance electrical impedance tomography (EIT) system for clinical evaluation studies and space application. In: Hutten H, Krösl P (eds) Proceedings of the 2nd European Medical & Biological Engineering Conference. Verlag der TU Graz, Graz, pp 110–111 Hahn G, Dudykevych T, Frerichs I, Thiel F, Hellige G (2002) A high performance electrical impedance tomography (EIT) system for clinical evaluation studies and space application. In: Hutten H, Krösl P (eds) Proceedings of the 2nd European Medical & Biological Engineering Conference. Verlag der TU Graz, Graz, pp 110–111
22.
go back to reference Kühnel G, Hahn G, Frerichs I, Schröder T, Hellige G (1997) New methods for improving the image quality of functional electrical impedance tomography. Biomed Tech (Berl) 42 [Suppl]:470–471 Kühnel G, Hahn G, Frerichs I, Schröder T, Hellige G (1997) New methods for improving the image quality of functional electrical impedance tomography. Biomed Tech (Berl) 42 [Suppl]:470–471
23.
go back to reference Fewell J, Arrington R, Seibert J (1979) The effect of head position and angle of tracheal bifurcation on bronchus catheterization in the intubated neonate. Pediatrics 64:318–320PubMed Fewell J, Arrington R, Seibert J (1979) The effect of head position and angle of tracheal bifurcation on bronchus catheterization in the intubated neonate. Pediatrics 64:318–320PubMed
24.
go back to reference Woodrum D (1992) Respiratory muscles. In: Polin RA, Fox WW (eds) Fetal and neonatal physiology. Saunders, Philadelphia, pp 829–841 Woodrum D (1992) Respiratory muscles. In: Polin RA, Fox WW (eds) Fetal and neonatal physiology. Saunders, Philadelphia, pp 829–841
25.
go back to reference Rabbani KS, Kabir AM (1991) Studies on the effect of the third dimension on a two-dimensional electrical impedance tomography system. Physiol Meas 12:393–402CrossRef Rabbani KS, Kabir AM (1991) Studies on the effect of the third dimension on a two-dimensional electrical impedance tomography system. Physiol Meas 12:393–402CrossRef
26.
go back to reference Adams JA, Zabaleta IA, Sackner MA (1994) Comparison of supine and prone non-invasive measurements of breathing patterns in fullterm newborns. Pediatr Pulmonol 18:8–12PubMedCrossRef Adams JA, Zabaleta IA, Sackner MA (1994) Comparison of supine and prone non-invasive measurements of breathing patterns in fullterm newborns. Pediatr Pulmonol 18:8–12PubMedCrossRef
27.
go back to reference Heimler R, Langlois J, Hodel DJ, Nelin LD, Sasidharan P (1992) Effect of positioning on the breathing pattern of preterm infants. Arch Dis Child 67:312–314PubMedCrossRef Heimler R, Langlois J, Hodel DJ, Nelin LD, Sasidharan P (1992) Effect of positioning on the breathing pattern of preterm infants. Arch Dis Child 67:312–314PubMedCrossRef
28.
go back to reference Shen XM, Zhoa W, Huang DS, Lin FG, Wu SM (1996) Effect of positioning on pulmonary function of newborns: comparison of supine and prone position. Pediatr Pulmonol 21:167–170PubMedCrossRef Shen XM, Zhoa W, Huang DS, Lin FG, Wu SM (1996) Effect of positioning on pulmonary function of newborns: comparison of supine and prone position. Pediatr Pulmonol 21:167–170PubMedCrossRef
29.
go back to reference Rehan VK, Nakashima JM, Gutman A, Rubin LP, McCool FD (2000) Effects of the supine and prone position on diaphragm thickness in healthy term infants. Arch Dis Child 83:234–238PubMedCrossRef Rehan VK, Nakashima JM, Gutman A, Rubin LP, McCool FD (2000) Effects of the supine and prone position on diaphragm thickness in healthy term infants. Arch Dis Child 83:234–238PubMedCrossRef
30.
go back to reference Baird TM, Neuman MR (1991) Effect of infant position on breath amplitude measured by transthoracic impedance and strain gauges. Pediatr Pulmonol 10:52–56PubMedCrossRef Baird TM, Neuman MR (1991) Effect of infant position on breath amplitude measured by transthoracic impedance and strain gauges. Pediatr Pulmonol 10:52–56PubMedCrossRef
31.
go back to reference Alexander RT, Radisch D (2005) Sudden infant death syndrome risk factors with regards to sleep position, sleep surface, and co-sleeping. J Forensic Sci 50:147–151PubMedCrossRef Alexander RT, Radisch D (2005) Sudden infant death syndrome risk factors with regards to sleep position, sleep surface, and co-sleeping. J Forensic Sci 50:147–151PubMedCrossRef
32.
go back to reference Wells D, Gillies D, Fitzgerald D (2005) Positioning for acute respiratory distress in hospitalised infants and children. Cochrane Database Syst Rev 2:CD003645 Wells D, Gillies D, Fitzgerald D (2005) Positioning for acute respiratory distress in hospitalised infants and children. Cochrane Database Syst Rev 2:CD003645
33.
go back to reference Malloy MH (2004) SIDS-a syndrome in search of a cause. N Engl J Med 2:957–959CrossRef Malloy MH (2004) SIDS-a syndrome in search of a cause. N Engl J Med 2:957–959CrossRef
Metadata
Title
Body and head position effects on regional lung ventilation in infants: an electrical impedance tomography study
Authors
Sina Heinrich
Holger Schiffmann
Alexander Frerichs
Adelbert Klockgether-Radke
Inéz Frerichs
Publication date
01-09-2006
Publisher
Springer-Verlag
Published in
Intensive Care Medicine / Issue 9/2006
Print ISSN: 0342-4642
Electronic ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-006-0252-0

Other articles of this Issue 9/2006

Intensive Care Medicine 9/2006 Go to the issue

Physiological Note

Work of breathing