Skip to main content
Top
Published in: Diabetologia 4/2018

Open Access 01-04-2018 | Article

Aberrant intestinal microbiota in individuals with prediabetes

Authors: Kristine H. Allin, Valentina Tremaroli, Robert Caesar, Benjamin A. H. Jensen, Mads T. F. Damgaard, Martin I. Bahl, Tine R. Licht, Tue H. Hansen, Trine Nielsen, Thomas M. Dantoft, Allan Linneberg, Torben Jørgensen, Henrik Vestergaard, Karsten Kristiansen, Paul W. Franks, Torben Hansen, Fredrik Bäckhed, Oluf Pedersen, the IMI-DIRECT consortium

Published in: Diabetologia | Issue 4/2018

Login to get access

Abstract

Aims/hypothesis

Individuals with type 2 diabetes have aberrant intestinal microbiota. However, recent studies suggest that metformin alters the composition and functional potential of gut microbiota, thereby interfering with the diabetes-related microbial signatures. We tested whether specific gut microbiota profiles are associated with prediabetes (defined as fasting plasma glucose of 6.1–7.0 mmol/l or HbA1c of 42–48 mmol/mol [6.0–6.5%]) and a range of clinical biomarkers of poor metabolic health.

Methods

In the present case–control study, we analysed the gut microbiota of 134 Danish adults with prediabetes, overweight, insulin resistance, dyslipidaemia and low-grade inflammation and 134 age- and sex-matched individuals with normal glucose regulation.

Results

We found that five bacterial genera and 36 operational taxonomic units (OTUs) were differentially abundant between individuals with prediabetes and those with normal glucose regulation. At the genus level, the abundance of Clostridium was decreased (mean log2 fold change −0.64 (SEM 0.23), p adj  = 0.0497), whereas the abundances of Dorea, [Ruminococcus], Sutterella and Streptococcus were increased (mean log2 fold change 0.51 (SEM 0.12), p adj  = 5 × 10−4; 0.51 (SEM 0.11), p adj  = 1 × 10−4; 0.60 (SEM 0.21), p adj  = 0.0497; and 0.92 (SEM 0.21), p adj  = 4 × 10−4, respectively). The two OTUs that differed the most were a member of the order Clostridiales (OTU 146564) and Akkermansia muciniphila, which both displayed lower abundance among individuals with prediabetes (mean log2 fold change −1.74 (SEM 0.41), p adj  = 2 × 10−3 and −1.65 (SEM 0.34), p adj  = 4 × 10−4, respectively). Faecal transfer from donors with prediabetes or screen-detected, drug-naive type 2 diabetes to germfree Swiss Webster or conventional C57BL/6 J mice did not induce impaired glucose regulation in recipient mice.

Conclusions/interpretation

Collectively, our data show that individuals with prediabetes have aberrant intestinal microbiota characterised by a decreased abundance of the genus Clostridium and the mucin-degrading bacterium A. muciniphila. Our findings are comparable to observations in overt chronic diseases characterised by low-grade inflammation.
Appendix
Available only for authorised users
Literature
3.
go back to reference Karlsson FH, Tremaroli V, Nookaew I et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103CrossRefPubMed Karlsson FH, Tremaroli V, Nookaew I et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103CrossRefPubMed
4.
go back to reference Larsen N, Vogensen FK, van den Berg FW et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5:e9085 Larsen N, Vogensen FK, van den Berg FW et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5:e9085
5.
go back to reference Qin J, Li Y, Cai Z et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60CrossRefPubMed Qin J, Li Y, Cai Z et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60CrossRefPubMed
6.
go back to reference Sato J, Kanazawa A, Ikeda F et al (2014) Gut dysbiosis and detection of “live gut bacteria” in blood of Japanese patients with type 2 diabetes. Diabetes Care 37:2343–2350CrossRefPubMed Sato J, Kanazawa A, Ikeda F et al (2014) Gut dysbiosis and detection of “live gut bacteria” in blood of Japanese patients with type 2 diabetes. Diabetes Care 37:2343–2350CrossRefPubMed
8.
9.
go back to reference Forslund K, Hildebrand F, Nielsen T et al (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528:262–266CrossRefPubMedPubMedCentral Forslund K, Hildebrand F, Nielsen T et al (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528:262–266CrossRefPubMedPubMedCentral
10.
go back to reference John WG, on behalf of the UKDoHACoD (2012) Use of HbA1c in the diagnosis of diabetes mellitus in the UK. The implementation of World Health Organization guidance 2011. Diabet Med 29:1350–1357CrossRefPubMed John WG, on behalf of the UKDoHACoD (2012) Use of HbA1c in the diagnosis of diabetes mellitus in the UK. The implementation of World Health Organization guidance 2011. Diabet Med 29:1350–1357CrossRefPubMed
11.
go back to reference World Health Organization (2006) Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation. WHO, Geneva World Health Organization (2006) Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation. WHO, Geneva
12.
go back to reference American Diabetes Association (2013) Standards of medical care in diabetes—2013. Diabetes Care 36:S11–S66CrossRef American Diabetes Association (2013) Standards of medical care in diabetes—2013. Diabetes Care 36:S11–S66CrossRef
13.
go back to reference Koivula RW, Heggie A, Barnett A et al (2014) Discovery of biomarkers for glycaemic deterioration before and after the onset of type 2 diabetes: rationale and design of the epidemiological studies within the IMI DIRECT Consortium. Diabetologia 57:1132–1142CrossRefPubMedPubMedCentral Koivula RW, Heggie A, Barnett A et al (2014) Discovery of biomarkers for glycaemic deterioration before and after the onset of type 2 diabetes: rationale and design of the epidemiological studies within the IMI DIRECT Consortium. Diabetologia 57:1132–1142CrossRefPubMedPubMedCentral
15.
go back to reference Bäckhed F, Roswall J, Peng Y et al (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:690–703CrossRefPubMed Bäckhed F, Roswall J, Peng Y et al (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:690–703CrossRefPubMed
16.
go back to reference Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120CrossRefPubMedPubMedCentral Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120CrossRefPubMedPubMedCentral
17.
go back to reference Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614–620CrossRefPubMed Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614–620CrossRefPubMed
18.
19.
go back to reference Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267CrossRefPubMed Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267CrossRefPubMed
20.
go back to reference Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology 26:32–46 Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology 26:32–46
24.
go back to reference Best DJ, Roberts DE (1975) Algorithm AS 89: the upper tail probabilities of Spearman’s rho. J R Stat Soc: Ser C: Appl Stat 24:377–379 Best DJ, Roberts DE (1975) Algorithm AS 89: the upper tail probabilities of Spearman’s rho. J R Stat Soc: Ser C: Appl Stat 24:377–379
25.
go back to reference Shin NR, Lee JC, Lee HY et al (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63:727–735CrossRefPubMed Shin NR, Lee JC, Lee HY et al (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63:727–735CrossRefPubMed
26.
go back to reference de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V et al (2017) Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care 40:54–62CrossRefPubMed de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V et al (2017) Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care 40:54–62CrossRefPubMed
27.
go back to reference Wu H, Esteve E, Tremaroli V et al (2017) Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 23:850–858CrossRefPubMed Wu H, Esteve E, Tremaroli V et al (2017) Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 23:850–858CrossRefPubMed
28.
go back to reference Everard A, Belzer C, Geurts L et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 110:9066–9071CrossRefPubMedPubMedCentral Everard A, Belzer C, Geurts L et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 110:9066–9071CrossRefPubMedPubMedCentral
29.
go back to reference Plovier H, Everard A, Druart C et al (2017) A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 23:107–113CrossRefPubMed Plovier H, Everard A, Druart C et al (2017) A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 23:107–113CrossRefPubMed
30.
go back to reference Liu R, Hong J, Xu X et al (2017) Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med 23:859–868CrossRefPubMed Liu R, Hong J, Xu X et al (2017) Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med 23:859–868CrossRefPubMed
31.
go back to reference Le Chatelier E, Nielsen T, Qin J et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546CrossRefPubMed Le Chatelier E, Nielsen T, Qin J et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546CrossRefPubMed
32.
go back to reference Org E, Blum Y, Kasela S et al (2017) Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol 18:70CrossRefPubMedPubMedCentral Org E, Blum Y, Kasela S et al (2017) Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol 18:70CrossRefPubMedPubMedCentral
33.
go back to reference Zhang L, Bahl MI, Roager HM et al (2017) Environmental spread of microbes impacts the development of metabolic phenotypes in mice transplanted with microbial communities from humans. ISME J 11:676–690CrossRefPubMed Zhang L, Bahl MI, Roager HM et al (2017) Environmental spread of microbes impacts the development of metabolic phenotypes in mice transplanted with microbial communities from humans. ISME J 11:676–690CrossRefPubMed
34.
go back to reference Damgaard MTF, Pærregaard SI, Søgaard I et al (2017) Age-dependent alterations of glucose clearance and homeostasis are temporally separated and modulated by dietary fat. J Nutr Biochem 54:66–76 Damgaard MTF, Pærregaard SI, Søgaard I et al (2017) Age-dependent alterations of glucose clearance and homeostasis are temporally separated and modulated by dietary fat. J Nutr Biochem 54:66–76
35.
go back to reference Png CW, Linden SK, Gilshenan KS et al (2010) Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 105:2420–2428CrossRefPubMed Png CW, Linden SK, Gilshenan KS et al (2010) Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 105:2420–2428CrossRefPubMed
37.
go back to reference Chen HM, Yu YN, Wang JL et al (2013) Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am J Clin Nutr 97:1044–1052CrossRefPubMed Chen HM, Yu YN, Wang JL et al (2013) Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am J Clin Nutr 97:1044–1052CrossRefPubMed
38.
go back to reference Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375:2369–2379CrossRefPubMed Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375:2369–2379CrossRefPubMed
39.
go back to reference Tremaroli V, Karlsson F, Werling M et al (2015) Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab 22:228–238CrossRefPubMedPubMedCentral Tremaroli V, Karlsson F, Werling M et al (2015) Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab 22:228–238CrossRefPubMedPubMedCentral
40.
go back to reference Wahlström A, Kovatcheva-Datchary P, Ståhlman M, Khan MT, Bäckhed F, Marschall HU (2017) Induction of farnesoid X receptor signaling in germ-free mice colonized with a human microbiota. J Lipid Res 58:412–419CrossRefPubMedPubMedCentral Wahlström A, Kovatcheva-Datchary P, Ståhlman M, Khan MT, Bäckhed F, Marschall HU (2017) Induction of farnesoid X receptor signaling in germ-free mice colonized with a human microbiota. J Lipid Res 58:412–419CrossRefPubMedPubMedCentral
Metadata
Title
Aberrant intestinal microbiota in individuals with prediabetes
Authors
Kristine H. Allin
Valentina Tremaroli
Robert Caesar
Benjamin A. H. Jensen
Mads T. F. Damgaard
Martin I. Bahl
Tine R. Licht
Tue H. Hansen
Trine Nielsen
Thomas M. Dantoft
Allan Linneberg
Torben Jørgensen
Henrik Vestergaard
Karsten Kristiansen
Paul W. Franks
Torben Hansen
Fredrik Bäckhed
Oluf Pedersen
the IMI-DIRECT consortium
Publication date
01-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 4/2018
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-018-4550-1

Other articles of this Issue 4/2018

Diabetologia 4/2018 Go to the issue

Up Front

Up front

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine