Skip to main content
Top
Published in: Diabetologia 11/2015

Open Access 01-11-2015 | Article

Central GLP-1 receptor signalling accelerates plasma clearance of triacylglycerol and glucose by activating brown adipose tissue in mice

Authors: Sander Kooijman, Yanan Wang, Edwin T. Parlevliet, Mariëtte R. Boon, David Edelschaap, Gido Snaterse, Hanno Pijl, Johannes A. Romijn, Patrick C. N. Rensen

Published in: Diabetologia | Issue 11/2015

Login to get access

Abstract

Aims/hypothesis

Glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) agonism, used in the treatment of type 2 diabetes, has recently been shown to increase thermogenesis via the brain. As brown adipose tissue (BAT) produces heat by burning triacylglycerol (TG) and takes up glucose for de novo lipogenesis, the aim of this study was to evaluate the potential of chronic central GLP-1R activation by exendin-4 to facilitate clearance of lipids and glucose from the circulation by activating BAT.

Methods

Lean and diet-induced obese (DIO) C57Bl/6J mice were used to explore the effect of a 5 day intracerebroventricular infusion of the GLP-1 analogue exendin-4 or vehicle on lipid and glucose uptake by BAT in both insulin-sensitive and insulin-resistant conditions.

Results

Central administration of exendin-4 in lean mice increased sympathetic outflow towards BAT and white adipose tissue (WAT), resulting in increased thermogenesis as evidenced by increased uncoupling protein 1 (UCP-1) protein levels and decreased lipid content, while the uptake of TG-derived fatty acids was increased in both BAT and WAT. Interestingly, in DIO mice, the effects on WAT were blunted, while exendin-4 still increased sympathetic outflow towards BAT and increased the uptake of plasma TG-derived fatty acids and glucose by BAT. These effects were accompanied by increased fat oxidation, lower plasma TG and glucose concentrations, and reduced body weight.

Conclusions/interpretation

Collectively, our results suggest that BAT activation may be a major contributor to the glucose- and TG-lowering effects of GLP-1R agonism.
Literature
1.
go back to reference Gallwitz B (2011) Glucagon-like peptide-1 analogues for Type 2 diabetes mellitus: current and emerging agents. Drugs 71:1675–1688CrossRefPubMed Gallwitz B (2011) Glucagon-like peptide-1 analogues for Type 2 diabetes mellitus: current and emerging agents. Drugs 71:1675–1688CrossRefPubMed
2.
go back to reference Hwa JJ, Ghibaudi L, Williams P, Witten MB, Tedesco R, Strader CD (1998) Differential effects of intracerebroventricular glucagon-like peptide-1 on feeding and energy expenditure regulation. Peptides 19:869–875CrossRefPubMed Hwa JJ, Ghibaudi L, Williams P, Witten MB, Tedesco R, Strader CD (1998) Differential effects of intracerebroventricular glucagon-like peptide-1 on feeding and energy expenditure regulation. Peptides 19:869–875CrossRefPubMed
3.
go back to reference Turton MD, O'Shea D, Gunn I et al (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379:69–72CrossRefPubMed Turton MD, O'Shea D, Gunn I et al (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379:69–72CrossRefPubMed
4.
go back to reference Knauf C, Cani PD, Perrin C et al (2005) Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J Clin Invest 115:3554–3563PubMedCentralCrossRefPubMed Knauf C, Cani PD, Perrin C et al (2005) Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J Clin Invest 115:3554–3563PubMedCentralCrossRefPubMed
5.
go back to reference Sandoval DA, Bagnol D, Woods SC, D'Alessio DA, Seeley RJ (2008) Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake. Diabetes 57:2046–2054PubMedCentralCrossRefPubMed Sandoval DA, Bagnol D, Woods SC, D'Alessio DA, Seeley RJ (2008) Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake. Diabetes 57:2046–2054PubMedCentralCrossRefPubMed
6.
go back to reference Parlevliet ET, de Leeuw van Weenen JE, Romijn JA, Pijl H (2010) GLP-1 treatment reduces endogenous insulin resistance via activation of central GLP-1 receptors in mice fed a high-fat diet. Am J Physiol Endocrinol Metab 299:E318–E324PubMed Parlevliet ET, de Leeuw van Weenen JE, Romijn JA, Pijl H (2010) GLP-1 treatment reduces endogenous insulin resistance via activation of central GLP-1 receptors in mice fed a high-fat diet. Am J Physiol Endocrinol Metab 299:E318–E324PubMed
7.
go back to reference Boon MR, van den Berg SA, Wang Y et al (2013) BMP7 activates brown adipose tissue and reduces diet-induced obesity only at subthermoneutrality. PLoS One 8, e74083PubMedCentralCrossRefPubMed Boon MR, van den Berg SA, Wang Y et al (2013) BMP7 activates brown adipose tissue and reduces diet-induced obesity only at subthermoneutrality. PLoS One 8, e74083PubMedCentralCrossRefPubMed
8.
go back to reference Geerling JJ, Boon MR, van der Zon GC et al (2014) Metformin lowers plasma triglycerides by promoting VLDL-triglyceride clearance by brown adipose tissue in mice. Diabetes 63:880–891CrossRefPubMed Geerling JJ, Boon MR, van der Zon GC et al (2014) Metformin lowers plasma triglycerides by promoting VLDL-triglyceride clearance by brown adipose tissue in mice. Diabetes 63:880–891CrossRefPubMed
9.
go back to reference Bartelt A, Bruns OT, Reimer R et al (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17:200–205CrossRefPubMed Bartelt A, Bruns OT, Reimer R et al (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17:200–205CrossRefPubMed
10.
go back to reference Emanuelli B, Vienberg SG, Smyth G et al (2014) Interplay between FGF21 and insulin action in the liver regulates metabolism. J Clin Invest 124:515–527PubMedCentralCrossRefPubMed Emanuelli B, Vienberg SG, Smyth G et al (2014) Interplay between FGF21 and insulin action in the liver regulates metabolism. J Clin Invest 124:515–527PubMedCentralCrossRefPubMed
11.
go back to reference Khedoe PP, Hoeke G, Kooijman S et al (2015) Brown adipose tissue takes up plasma triglycerides mostly after lipolysis. J Lipid Res 56:51–59CrossRefPubMed Khedoe PP, Hoeke G, Kooijman S et al (2015) Brown adipose tissue takes up plasma triglycerides mostly after lipolysis. J Lipid Res 56:51–59CrossRefPubMed
12.
go back to reference Lockie SH, Heppner KM, Chaudhary N et al (2012) Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling. Diabetes 61:2753–2762PubMedCentralCrossRefPubMed Lockie SH, Heppner KM, Chaudhary N et al (2012) Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling. Diabetes 61:2753–2762PubMedCentralCrossRefPubMed
13.
go back to reference Beiroa D, Imbernon M, Gallego R et al (2014) GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63:3346–3358CrossRefPubMed Beiroa D, Imbernon M, Gallego R et al (2014) GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63:3346–3358CrossRefPubMed
14.
go back to reference Coomans CP, Biermasz NR, Geerling JJ et al (2011) Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice. Diabetes 60:3132–3140PubMedCentralCrossRefPubMed Coomans CP, Biermasz NR, Geerling JJ et al (2011) Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice. Diabetes 60:3132–3140PubMedCentralCrossRefPubMed
15.
go back to reference Rensen PC, Herijgers N, Netscher MH, Meskers SC, van Eck M, van Berkel TJ (1997) Particle size determines the specificity of apolipoprotein E-containing triglyceride-rich emulsions for the LDL receptor versus hepatic remnant receptor in vivo. J Lipid Res 38:1070–1084PubMed Rensen PC, Herijgers N, Netscher MH, Meskers SC, van Eck M, van Berkel TJ (1997) Particle size determines the specificity of apolipoprotein E-containing triglyceride-rich emulsions for the LDL receptor versus hepatic remnant receptor in vivo. J Lipid Res 38:1070–1084PubMed
16.
go back to reference Van Klinken JB, van den Berg SA, Havekes LM, van Willems DK (2012) Estimation of activity related energy expenditure and resting metabolic rate in freely moving mice from indirect calorimetry data. PLoS One 7, e36162PubMedCentralCrossRefPubMed Van Klinken JB, van den Berg SA, Havekes LM, van Willems DK (2012) Estimation of activity related energy expenditure and resting metabolic rate in freely moving mice from indirect calorimetry data. PLoS One 7, e36162PubMedCentralCrossRefPubMed
17.
go back to reference Al-Barazanji KA, Arch JR, Buckingham RE, Tadayyon M (2000) Central exendin-4 infusion reduces body weight without altering plasma leptin in (fa/fa) Zucker rats. Obes Res 8:317–323CrossRefPubMed Al-Barazanji KA, Arch JR, Buckingham RE, Tadayyon M (2000) Central exendin-4 infusion reduces body weight without altering plasma leptin in (fa/fa) Zucker rats. Obes Res 8:317–323CrossRefPubMed
18.
go back to reference Nogueiras R, Perez-Tilve D, Veyrat-Durebex C et al (2009) Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity. J Neurosci 29:5916–5925CrossRefPubMed Nogueiras R, Perez-Tilve D, Veyrat-Durebex C et al (2009) Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity. J Neurosci 29:5916–5925CrossRefPubMed
19.
go back to reference Giordano A, Frontini A, Cinti S (2008) Adipose organ nerves revealed by immunohistochemistry. Methods Mol Biol 456:83–95CrossRefPubMed Giordano A, Frontini A, Cinti S (2008) Adipose organ nerves revealed by immunohistochemistry. Methods Mol Biol 456:83–95CrossRefPubMed
20.
go back to reference Challa TD, Beaton N, Arnold M, Rudofsky G, Langhans W, Wolfrum C (2012) Regulation of adipocyte formation by GLP-1/GLP-1R signaling. J Biol Chem 287:6421–6430PubMedCentralCrossRefPubMed Challa TD, Beaton N, Arnold M, Rudofsky G, Langhans W, Wolfrum C (2012) Regulation of adipocyte formation by GLP-1/GLP-1R signaling. J Biol Chem 287:6421–6430PubMedCentralCrossRefPubMed
21.
go back to reference Korsheninnikova E, van der Zon GC, Voshol PJ et al (2006) Sustained activation of the mammalian target of rapamycin nutrient sensing pathway is associated with hepatic insulin resistance, but not with steatosis, in mice. Diabetologia 49:3049–3057CrossRefPubMed Korsheninnikova E, van der Zon GC, Voshol PJ et al (2006) Sustained activation of the mammalian target of rapamycin nutrient sensing pathway is associated with hepatic insulin resistance, but not with steatosis, in mice. Diabetologia 49:3049–3057CrossRefPubMed
22.
go back to reference Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN (1988) Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37:1163–1167CrossRefPubMed Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN (1988) Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37:1163–1167CrossRefPubMed
23.
25.
go back to reference Goke R, Larsen PJ, Mikkelsen JD, Sheikh SP (1995) Distribution of GLP-1 binding sites in the rat brain: evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur J Neurosci 7:2294–2300CrossRefPubMed Goke R, Larsen PJ, Mikkelsen JD, Sheikh SP (1995) Distribution of GLP-1 binding sites in the rat brain: evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur J Neurosci 7:2294–2300CrossRefPubMed
26.
go back to reference Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359CrossRefPubMed Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359CrossRefPubMed
27.
go back to reference Parlevliet ET, Wang Y, Geerling JJ et al (2012) GLP-1 receptor activation inhibits VLDL production and reverses hepatic steatosis by decreasing hepatic lipogenesis in high-fat-fed APOE*3-Leiden mice. PLoS One 7, e49152PubMedCentralCrossRefPubMed Parlevliet ET, Wang Y, Geerling JJ et al (2012) GLP-1 receptor activation inhibits VLDL production and reverses hepatic steatosis by decreasing hepatic lipogenesis in high-fat-fed APOE*3-Leiden mice. PLoS One 7, e49152PubMedCentralCrossRefPubMed
28.
go back to reference Tachibana T, Oikawa D, Adachi N, Boswell T, Furuse M (2007) Intracerebroventricular injection of glucagon-like peptide-1 changes lipid metabolism in chicks. Comp Biochem Physiol A Mol Integr Physiol 147:1104–1108CrossRefPubMed Tachibana T, Oikawa D, Adachi N, Boswell T, Furuse M (2007) Intracerebroventricular injection of glucagon-like peptide-1 changes lipid metabolism in chicks. Comp Biochem Physiol A Mol Integr Physiol 147:1104–1108CrossRefPubMed
29.
go back to reference Dickson SL, Shirazi RH, Hansson C, Bergquist F, Nissbrandt H, Skibicka KP (2012) The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: a new role for mesolimbic GLP-1 receptors. J Neurosci 32:4812–4820CrossRefPubMed Dickson SL, Shirazi RH, Hansson C, Bergquist F, Nissbrandt H, Skibicka KP (2012) The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: a new role for mesolimbic GLP-1 receptors. J Neurosci 32:4812–4820CrossRefPubMed
30.
go back to reference Virtue S, Even P, Vidal-Puig A (2012) Below thermoneutrality, changes in activity do not drive changes in total daily energy expenditure between groups of mice. Cell Metab 16:665–671PubMedCentralCrossRefPubMed Virtue S, Even P, Vidal-Puig A (2012) Below thermoneutrality, changes in activity do not drive changes in total daily energy expenditure between groups of mice. Cell Metab 16:665–671PubMedCentralCrossRefPubMed
31.
go back to reference Berbee JF, Boon MR, Khedoe PP et al (2015) Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun 6:6356PubMedCentralCrossRefPubMed Berbee JF, Boon MR, Khedoe PP et al (2015) Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun 6:6356PubMedCentralCrossRefPubMed
Metadata
Title
Central GLP-1 receptor signalling accelerates plasma clearance of triacylglycerol and glucose by activating brown adipose tissue in mice
Authors
Sander Kooijman
Yanan Wang
Edwin T. Parlevliet
Mariëtte R. Boon
David Edelschaap
Gido Snaterse
Hanno Pijl
Johannes A. Romijn
Patrick C. N. Rensen
Publication date
01-11-2015
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 11/2015
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-015-3727-0

Other articles of this Issue 11/2015

Diabetologia 11/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine