Skip to main content
Top
Published in: Diabetologia 7/2015

Open Access 01-07-2015 | Review

A model for the role of gut bacteria in the development of autoimmunity for type 1 diabetes

Authors: Austin G. Davis-Richardson, Eric W. Triplett

Published in: Diabetologia | Issue 7/2015

Login to get access

Abstract

Several lines of evidence suggest a role for the gut microbiome in type 1 diabetes. Treating diabetes-prone rodents with probiotics or antibiotics prevents the development of the disorder. Diabetes-prone rodents also have a distinctly different gut microbiome compared with healthy rodents. Recent studies in children with a high genetic risk for type 1 diabetes demonstrate significant differences in the gut microbiome between children who develop autoimmunity for the disease and those who remain healthy. However, the differences in microbiome composition between autoimmune and healthy children are not consistent across all studies because of the strong environmental influences on microbiome composition, particularly diet and geography. Controlling confounding factors of microbiome composition uncovers bacterial associations with disease. For example, in a human cohort from a single Finnish city where geography is confined, a strong association between one dominant bacterial species, Bacteroides dorei, and type 1 diabetes was discovered (Davis-Richardson et al. Front Microbiol 2014;5:678). Beyond this, recent DNA methylation analyses suggest that a thorough epigenetic analysis of the gut microbiome may be warranted. These studies suggest a testable model whereby a diet high in fat and gluten and low in resistant starch may be the primary driver of gut dysbiosis. This dysbiosis may cause a lack of butyrate production by gut bacteria, which, in turn, leads to the development of a permeable gut followed by autoimmunity. The bacterial community responsible for these changes in butyrate production may vary around the world, but bacteria of the genus Bacteroides are thought to play a key role.
Literature
2.
go back to reference Bosi E, Molteni L, Radaelli M et al (2006) Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 49:2824–2827PubMedCrossRef Bosi E, Molteni L, Radaelli M et al (2006) Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 49:2824–2827PubMedCrossRef
3.
go back to reference Vaarala O, Atkinson M, Neu J (2008) The “perfect storm” for type 1 diabetes – the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes 57:2555–2562PubMedCentralPubMedCrossRef Vaarala O, Atkinson M, Neu J (2008) The “perfect storm” for type 1 diabetes – the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes 57:2555–2562PubMedCentralPubMedCrossRef
4.
go back to reference Brugman S, Klatter FA, Visser JT et al (2006) Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia 49:2105–2108PubMedCrossRef Brugman S, Klatter FA, Visser JT et al (2006) Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia 49:2105–2108PubMedCrossRef
5.
go back to reference Schwartz RF, Neu J, Schatz D, Atkinson MA, Wasserfall C (2007) Comment on: Brugman S et al. (2006) Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia 49:2105–2108, Diabetologia 50: 220–221 Schwartz RF, Neu J, Schatz D, Atkinson MA, Wasserfall C (2007) Comment on: Brugman S et al. (2006) Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia 49:2105–2108, Diabetologia 50: 220–221
6.
go back to reference Hansen CHF, Krych L, Nielsen DS et al (2012) Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia 55:2285–2294PubMedCrossRef Hansen CHF, Krych L, Nielsen DS et al (2012) Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia 55:2285–2294PubMedCrossRef
7.
go back to reference Roesch LF, Lorca GL, Casella G et al (2009) Culture-independent identification of gut bacteria correlated with the onset of diabetes in a rat model. ISME J 3:536–548PubMedCentralPubMedCrossRef Roesch LF, Lorca GL, Casella G et al (2009) Culture-independent identification of gut bacteria correlated with the onset of diabetes in a rat model. ISME J 3:536–548PubMedCentralPubMedCrossRef
8.
9.
go back to reference Lau K, Benitez P, Ardissone A et al (2011) Inhibition of type 1 diabetes correlated to a Lactobacillus johnsonii N6.2-mediated Th17 bias. J Immunol 186:3538–3546PubMedCrossRef Lau K, Benitez P, Ardissone A et al (2011) Inhibition of type 1 diabetes correlated to a Lactobacillus johnsonii N6.2-mediated Th17 bias. J Immunol 186:3538–3546PubMedCrossRef
10.
go back to reference Alam C, Bittoun E, Bhagwat D et al (2011) Effects of a germ-free environment on gut immune regulation and diabetes progression in non-obese diabetic (NOD) mice. Diabetologia 54:1398–1406PubMedCrossRef Alam C, Bittoun E, Bhagwat D et al (2011) Effects of a germ-free environment on gut immune regulation and diabetes progression in non-obese diabetic (NOD) mice. Diabetologia 54:1398–1406PubMedCrossRef
11.
12.
go back to reference Kriegel MA, Sefik E, Hill JA, Wu H-J, Benoist C, Mathis D (2011) Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci U S A 108:11548–11553PubMedCentralPubMedCrossRef Kriegel MA, Sefik E, Hill JA, Wu H-J, Benoist C, Mathis D (2011) Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci U S A 108:11548–11553PubMedCentralPubMedCrossRef
13.
go back to reference Patrick C, Wang G-S, Lefebvre DE et al (2013) Promotion of autoimmune diabetes by cereal diet in the presence or absence of microbes associated with gut immune activation, regulatory imbalance, and altered cathelicidin antimicrobial peptide. Diabetes 62:2036–2047PubMedCentralPubMedCrossRef Patrick C, Wang G-S, Lefebvre DE et al (2013) Promotion of autoimmune diabetes by cereal diet in the presence or absence of microbes associated with gut immune activation, regulatory imbalance, and altered cathelicidin antimicrobial peptide. Diabetes 62:2036–2047PubMedCentralPubMedCrossRef
14.
go back to reference Sofi MH, Gudi R, Karumuthil-Melehil S, Perez N, Johnson BM, Vasu C (2014) pH of drinking water influences the composition of gut microbiome and type 1 diabetes incidence. Diabetes 63:632–644PubMedCentralPubMedCrossRef Sofi MH, Gudi R, Karumuthil-Melehil S, Perez N, Johnson BM, Vasu C (2014) pH of drinking water influences the composition of gut microbiome and type 1 diabetes incidence. Diabetes 63:632–644PubMedCentralPubMedCrossRef
15.
go back to reference Davis-Richardson AG, Ardissone AN, Dias R et al (2014) Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Front Microbiol 5:678PubMedCentralPubMedCrossRef Davis-Richardson AG, Ardissone AN, Dias R et al (2014) Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Front Microbiol 5:678PubMedCentralPubMedCrossRef
16.
go back to reference Brown CT, Davis-Richardson AG, Giongo A et al (2011) Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS ONE 6, e25792PubMedCentralPubMedCrossRef Brown CT, Davis-Richardson AG, Giongo A et al (2011) Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS ONE 6, e25792PubMedCentralPubMedCrossRef
18.
go back to reference Endesfelder D, zu Castell W, Ardissone A et al (2014) Compromised gut microbiota networks in children with anti-islet cell autoimmunity. Diabetes 63:2006–2014PubMedCrossRef Endesfelder D, zu Castell W, Ardissone A et al (2014) Compromised gut microbiota networks in children with anti-islet cell autoimmunity. Diabetes 63:2006–2014PubMedCrossRef
19.
go back to reference de Goffau MC, Fuentes S, van den Bogert B (2014) Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia 57:1569–1577PubMedCrossRef de Goffau MC, Fuentes S, van den Bogert B (2014) Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia 57:1569–1577PubMedCrossRef
21.
go back to reference Goodrich JK, Waters JL, Poole AC et al (2014) Host genetics and the gut microbiome can both influence metabolic phenotypes. Cell 159:789–799PubMedCrossRef Goodrich JK, Waters JL, Poole AC et al (2014) Host genetics and the gut microbiome can both influence metabolic phenotypes. Cell 159:789–799PubMedCrossRef
22.
go back to reference Kondrashova A, Seiskari T, Ilonen J, Knip M, Hyöty H (2012) The ‘Hygiene hypothesis’ and the sharp gradient in the incidence of autoimmune and allergic diseases between Russian Karelia and Finland. APMIS 121:478–493PubMedCrossRef Kondrashova A, Seiskari T, Ilonen J, Knip M, Hyöty H (2012) The ‘Hygiene hypothesis’ and the sharp gradient in the incidence of autoimmune and allergic diseases between Russian Karelia and Finland. APMIS 121:478–493PubMedCrossRef
23.
go back to reference Borchers AT, Uibo R, Gershwin ME (2010) The geoepidemiology of type 1 diabetes. Autoimmun Rev 9:A355–A365PubMedCrossRef Borchers AT, Uibo R, Gershwin ME (2010) The geoepidemiology of type 1 diabetes. Autoimmun Rev 9:A355–A365PubMedCrossRef
24.
go back to reference Kemppainen KM, Ardissone AN, Davis-Richardson AG et al (2015) Early childhood gut microbiomes show strong geographic differences among subjects at high risk for type 1 diabetes. Diabetes Care 38:329–332PubMedCrossRef Kemppainen KM, Ardissone AN, Davis-Richardson AG et al (2015) Early childhood gut microbiomes show strong geographic differences among subjects at high risk for type 1 diabetes. Diabetes Care 38:329–332PubMedCrossRef
25.
go back to reference Calixto 0-J, Anaya J-M (2014) Socioeconomic status. The relationship with health and autoimmune diseases. Autoimmun Rev 13:641–654PubMedCrossRef Calixto 0-J, Anaya J-M (2014) Socioeconomic status. The relationship with health and autoimmune diseases. Autoimmun Rev 13:641–654PubMedCrossRef
26.
go back to reference Belstrom D, Holmstrup P, Nielsen CH et al (2014) Bacterial profiles of saliva in relation to diet, lifestyle factors, and socioeconomic status. J Oral Microbiol 6:23609CrossRef Belstrom D, Holmstrup P, Nielsen CH et al (2014) Bacterial profiles of saliva in relation to diet, lifestyle factors, and socioeconomic status. J Oral Microbiol 6:23609CrossRef
28.
30.
go back to reference Scott K, Gratz S, Sheridan P, Flint H, Duncan S (2013) The influence of diet on the gut microbiota. Pharmacol Res 69:52–60PubMedCrossRef Scott K, Gratz S, Sheridan P, Flint H, Duncan S (2013) The influence of diet on the gut microbiota. Pharmacol Res 69:52–60PubMedCrossRef
31.
go back to reference Zimmer J, Lange B, Frick J-S et al (2011) A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr 66:53–60PubMedCrossRef Zimmer J, Lange B, Frick J-S et al (2011) A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr 66:53–60PubMedCrossRef
32.
go back to reference Sanchez E, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2010) Intestinal Bacteroides species associated with coeliac disease. J Clin Pathol 63:1105–1111PubMedCrossRef Sanchez E, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2010) Intestinal Bacteroides species associated with coeliac disease. J Clin Pathol 63:1105–1111PubMedCrossRef
33.
go back to reference Sanchez E, de Palma G, Capilla A et al (2011) Influence of environmental and genetic factors linked to celiac disease risk on infant gut colonization by Bacteroides species. Appl Environ Microbiol 77:5316–5323PubMedCentralPubMedCrossRef Sanchez E, de Palma G, Capilla A et al (2011) Influence of environmental and genetic factors linked to celiac disease risk on infant gut colonization by Bacteroides species. Appl Environ Microbiol 77:5316–5323PubMedCentralPubMedCrossRef
34.
go back to reference McOrist AL, Miller RB, Bird AR et al (2011) Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch. J Nutr 141:883–889PubMedCrossRef McOrist AL, Miller RB, Bird AR et al (2011) Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch. J Nutr 141:883–889PubMedCrossRef
35.
go back to reference Kuitunen M, Saukkonen T, Ilonen J, Akerblom HK, Savilahti E (2002) Intestinal permeability to mannitol and lactulose in children with type 1 diabetes with the HLA-DQB1*02 allele. Autoimmunity 35:365–368PubMedCrossRef Kuitunen M, Saukkonen T, Ilonen J, Akerblom HK, Savilahti E (2002) Intestinal permeability to mannitol and lactulose in children with type 1 diabetes with the HLA-DQB1*02 allele. Autoimmunity 35:365–368PubMedCrossRef
36.
go back to reference Sapone A, de Magistris L, Pietzak M et al (2006) Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes 55:1443–1449PubMedCrossRef Sapone A, de Magistris L, Pietzak M et al (2006) Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes 55:1443–1449PubMedCrossRef
37.
go back to reference Secondulfo M, Iafusco D, Carratu R, deMagistris L, Sapone A, Generoso M (2004) Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type I diabetic patients. Dig Liver Dis 36:35–45PubMedCrossRef Secondulfo M, Iafusco D, Carratu R, deMagistris L, Sapone A, Generoso M (2004) Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type I diabetic patients. Dig Liver Dis 36:35–45PubMedCrossRef
38.
go back to reference Lee AS, Gibson DL, Zhang Y, Sham HP, Vallance BA, Dutz JP (2010) Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice. Diabetologia 53:741–748PubMedCrossRef Lee AS, Gibson DL, Zhang Y, Sham HP, Vallance BA, Dutz JP (2010) Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice. Diabetologia 53:741–748PubMedCrossRef
39.
go back to reference de Kort S, Keszthelyi D, Masclee AAM (2011) Leaky gut and diabetes mellitus: what is the link? Obes Rev 12:449–458PubMedCrossRef de Kort S, Keszthelyi D, Masclee AAM (2011) Leaky gut and diabetes mellitus: what is the link? Obes Rev 12:449–458PubMedCrossRef
41.
go back to reference Brahe LK, Astrup A, Larsen LH (2013) Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes Rev 14:950–959PubMedCrossRef Brahe LK, Astrup A, Larsen LH (2013) Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes Rev 14:950–959PubMedCrossRef
42.
go back to reference Lewis K, Lutgendorff F, Phan V, Soderholm JD, Sherman PM, McKay DM (2010) Stressed epithelia is reduced by butyrate. Inflamm Bowel Dis 16:1138–1148PubMedCrossRef Lewis K, Lutgendorff F, Phan V, Soderholm JD, Sherman PM, McKay DM (2010) Stressed epithelia is reduced by butyrate. Inflamm Bowel Dis 16:1138–1148PubMedCrossRef
43.
go back to reference Thibault R, Blachier F, Darcy-Vrillon B, de Coppet P, Bourreille A, Segain J-P (2010) Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: a transport deficiency. Inflamm Bowel Dis 16:684–695PubMedCrossRef Thibault R, Blachier F, Darcy-Vrillon B, de Coppet P, Bourreille A, Segain J-P (2010) Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: a transport deficiency. Inflamm Bowel Dis 16:684–695PubMedCrossRef
44.
go back to reference Burger-van Paassen N, Vincent A, Pulman PJ et al (2009) The regulation of intestinal mucin MUC2 expression by short chain fatty acids: implications for epithelial protection. Biochem J 420:211–219PubMedCrossRef Burger-van Paassen N, Vincent A, Pulman PJ et al (2009) The regulation of intestinal mucin MUC2 expression by short chain fatty acids: implications for epithelial protection. Biochem J 420:211–219PubMedCrossRef
45.
go back to reference Peng L, Li Z-R, Green RS, Holzman IR, Lin J (2009) Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 139:1619–1625PubMedCentralPubMedCrossRef Peng L, Li Z-R, Green RS, Holzman IR, Lin J (2009) Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 139:1619–1625PubMedCentralPubMedCrossRef
46.
go back to reference Plöger S, Stumpff F, Penner GB et al (2012) Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann NY Acad Sci 1258:52–59PubMedCrossRef Plöger S, Stumpff F, Penner GB et al (2012) Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann NY Acad Sci 1258:52–59PubMedCrossRef
47.
go back to reference de Goffau MC, Luopajarvi K, Knip M et al (2013) Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes 62:1238–1244PubMedCentralPubMedCrossRef de Goffau MC, Luopajarvi K, Knip M et al (2013) Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes 62:1238–1244PubMedCentralPubMedCrossRef
48.
go back to reference Paparo L, Di Cotanzo M, Di Scala C et al (2014) The influence of early life nutrition on epigenetic regulatory mechanisms of the immune system. Nutrients 6:4706–4719PubMedCentralPubMedCrossRef Paparo L, Di Cotanzo M, Di Scala C et al (2014) The influence of early life nutrition on epigenetic regulatory mechanisms of the immune system. Nutrients 6:4706–4719PubMedCentralPubMedCrossRef
49.
go back to reference Daly K, Shirazi-Beechey SP (2006) Microarray analysis of butyrate regulated genes in colonic epithelial cells. DNA Cell Biol 25:49–62PubMedCrossRef Daly K, Shirazi-Beechey SP (2006) Microarray analysis of butyrate regulated genes in colonic epithelial cells. DNA Cell Biol 25:49–62PubMedCrossRef
50.
go back to reference Russo I, Luciani A, de Cicco P, Troncone E, Ciacci C (2012) Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn’s mucosa through modulation of antioxidant defense machinery. PLoS ONE 7, e32841PubMedCentralPubMedCrossRef Russo I, Luciani A, de Cicco P, Troncone E, Ciacci C (2012) Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn’s mucosa through modulation of antioxidant defense machinery. PLoS ONE 7, e32841PubMedCentralPubMedCrossRef
51.
go back to reference Chang PV, Hao L, Offermanns S, Medzhitov R (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 111:2247–2252PubMedCentralPubMedCrossRef Chang PV, Hao L, Offermanns S, Medzhitov R (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 111:2247–2252PubMedCentralPubMedCrossRef
52.
go back to reference Furusawa Y, Obata Y, Fukuda S et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450PubMedCrossRef Furusawa Y, Obata Y, Fukuda S et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450PubMedCrossRef
54.
go back to reference Leonard MT, Davis-Richardson AG, Ardissone AN et al (2014) The methylome of the gut microbiome: disparate Dam methylation patterns in intestinal Bacteroides dorei. Front Microbiol 5:361PubMedCentralPubMedCrossRef Leonard MT, Davis-Richardson AG, Ardissone AN et al (2014) The methylome of the gut microbiome: disparate Dam methylation patterns in intestinal Bacteroides dorei. Front Microbiol 5:361PubMedCentralPubMedCrossRef
55.
go back to reference Murphy J, Mahony J, Ainsworth S, Nauta A, van Sinderen D (2013) Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl Environ Microbiol 79:7547–7555PubMedCentralPubMedCrossRef Murphy J, Mahony J, Ainsworth S, Nauta A, van Sinderen D (2013) Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl Environ Microbiol 79:7547–7555PubMedCentralPubMedCrossRef
56.
go back to reference Marinus MG, Casadeus J (2009) Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol Rev 33:488–503PubMedCentralPubMedCrossRef Marinus MG, Casadeus J (2009) Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol Rev 33:488–503PubMedCentralPubMedCrossRef
57.
go back to reference Rakyan VK, Beyan H, Down TA et al (2011) Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet 7, e1002300PubMedCentralPubMedCrossRef Rakyan VK, Beyan H, Down TA et al (2011) Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet 7, e1002300PubMedCentralPubMedCrossRef
58.
go back to reference Stefan M, Zhang W, Concepcion E, Yi Z, Tomer Y (2014) DNA methylation profiles in type 1 diabetes twins point to strong epigenetic effects in etiology. J Autoimmun 50:33–37PubMedCentralPubMedCrossRef Stefan M, Zhang W, Concepcion E, Yi Z, Tomer Y (2014) DNA methylation profiles in type 1 diabetes twins point to strong epigenetic effects in etiology. J Autoimmun 50:33–37PubMedCentralPubMedCrossRef
Metadata
Title
A model for the role of gut bacteria in the development of autoimmunity for type 1 diabetes
Authors
Austin G. Davis-Richardson
Eric W. Triplett
Publication date
01-07-2015
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 7/2015
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-015-3614-8

Other articles of this Issue 7/2015

Diabetologia 7/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine