Skip to main content
Top
Published in: Diabetologia 6/2015

01-06-2015 | Review

Lessons from the mouse: potential contribution of bystander lymphocyte activation by viruses to human type 1 diabetes

Authors: Jessica A. Pane, Barbara S. Coulson

Published in: Diabetologia | Issue 6/2015

Login to get access

Abstract

Viruses are considered to be potential key modulators of type 1 diabetes mellitus, with several possible mechanisms proposed for their modes of action. Here we discuss the evidence for virus involvement, including pancreatic infection and the induction of T cell-mediated molecular mimicry. A particular focus of this review is the further possibility that virus infection triggers bystander activation of pre-existing autoreactive lymphocytes. In this scenario, the virus triggers dendritic cell maturation and proinflammatory cytokine secretion by engaging pattern recognition receptors. These proinflammatory cytokines provoke bystander autoreactive lymphocyte activation in the presence of cognate autoantigen, which leads to enhanced beta cell destruction. Importantly, this mechanism does not necessarily involve pancreatic virus infection, and its virally non-specific nature suggests that it might represent a means commonly employed by multiple viruses. The ability of viruses specifically associated with type 1 diabetes, including group B coxsackievirus, rotavirus and influenza A virus, to induce these responses is also examined. The elucidation of a mechanism shared amongst several viruses for accelerating progression to type 1 diabetes would facilitate the identification of important targets for disease intervention.
Literature
1.
go back to reference van Belle TL, Coppieters KT, von Herrath MG (2011) Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 91:79–118PubMed van Belle TL, Coppieters KT, von Herrath MG (2011) Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 91:79–118PubMed
2.
go back to reference Hyttinen V, Kaprio J, Kinnunen L, Koskenvuo M, Tuomilehto J (2003) Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes 52:1052–1055PubMed Hyttinen V, Kaprio J, Kinnunen L, Koskenvuo M, Tuomilehto J (2003) Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes 52:1052–1055PubMed
3.
go back to reference Fourlanos S, Varney MD, Tait BD et al (2008) The rising incidence of type 1 diabetes is accounted for by cases with lower-risk human leukocyte antigen genotypes. Diabetes Care 31:1546–1549PubMedCentralPubMed Fourlanos S, Varney MD, Tait BD et al (2008) The rising incidence of type 1 diabetes is accounted for by cases with lower-risk human leukocyte antigen genotypes. Diabetes Care 31:1546–1549PubMedCentralPubMed
5.
go back to reference Yeung WC, Rawlinson WD, Craig ME (2011) Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ 342:d35PubMedCentralPubMed Yeung WC, Rawlinson WD, Craig ME (2011) Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ 342:d35PubMedCentralPubMed
6.
go back to reference Honeyman MC, Coulson BS, Stone NL et al (2000) Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes 49:1319–1324PubMed Honeyman MC, Coulson BS, Stone NL et al (2000) Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes 49:1319–1324PubMed
7.
go back to reference Graham KL, Sanders N, Tan Y, Allison J, Kay TW, Coulson BS (2008) Rotavirus infection accelerates type 1 diabetes in mice with established insulitis. J Virol 82:6139–6149PubMedCentralPubMed Graham KL, Sanders N, Tan Y, Allison J, Kay TW, Coulson BS (2008) Rotavirus infection accelerates type 1 diabetes in mice with established insulitis. J Virol 82:6139–6149PubMedCentralPubMed
8.
go back to reference Tracy S, Drescher KM (2007) Coxsackievirus infections and NOD mice: relevant models of protection from, and induction of, type 1 diabetes. Ann N Y Acad Sci 1103:143–151PubMed Tracy S, Drescher KM (2007) Coxsackievirus infections and NOD mice: relevant models of protection from, and induction of, type 1 diabetes. Ann N Y Acad Sci 1103:143–151PubMed
9.
go back to reference Anderson MS, Bluestone JA (2005) The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 23:447–485PubMed Anderson MS, Bluestone JA (2005) The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 23:447–485PubMed
10.
go back to reference Lee AS, Gibson DL, Zhang Y, Sham HP, Vallance BA, Dutz JP (2010) Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice. Diabetologia 53:741–748PubMed Lee AS, Gibson DL, Zhang Y, Sham HP, Vallance BA, Dutz JP (2010) Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice. Diabetologia 53:741–748PubMed
11.
go back to reference Wen L, Ley RE, Volchkov PY et al (2008) Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455:1109–1113PubMedCentralPubMed Wen L, Ley RE, Volchkov PY et al (2008) Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455:1109–1113PubMedCentralPubMed
12.
go back to reference Schneider DA, von Herrath MG (2014) Potential viral pathogenic mechanism in human type 1 diabetes. Diabetologia 57:2009–2018PubMedCentralPubMed Schneider DA, von Herrath MG (2014) Potential viral pathogenic mechanism in human type 1 diabetes. Diabetologia 57:2009–2018PubMedCentralPubMed
13.
go back to reference Coppieters KT, Wiberg A, von Herrath MG (2012) Viral infections and molecular mimicry in type 1 diabetes. APMIS 120:941–949PubMed Coppieters KT, Wiberg A, von Herrath MG (2012) Viral infections and molecular mimicry in type 1 diabetes. APMIS 120:941–949PubMed
14.
go back to reference Horwitz MS, Ilic A, Fine C, Balasa B, Sarvetnick N (2004) Coxsackieviral-mediated diabetes: induction requires antigen-presenting cells and is accompanied by phagocytosis of beta cells. Clin Immunol 110:134–144PubMed Horwitz MS, Ilic A, Fine C, Balasa B, Sarvetnick N (2004) Coxsackieviral-mediated diabetes: induction requires antigen-presenting cells and is accompanied by phagocytosis of beta cells. Clin Immunol 110:134–144PubMed
15.
go back to reference Yoon JW, McClintock PR, Onodera T, Notkins AL (1980) Virus-induced diabetes mellitus. XVIII. Inhibition by a nondiabetogenic variant of encephalomyocarditis virus. J Exp Med 152:878–892PubMed Yoon JW, McClintock PR, Onodera T, Notkins AL (1980) Virus-induced diabetes mellitus. XVIII. Inhibition by a nondiabetogenic variant of encephalomyocarditis virus. J Exp Med 152:878–892PubMed
16.
go back to reference Horwitz MS, Bradley LM, Harbertson J, Krahl T, Lee J, Sarvetnick N (1998) Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med 4:781–785PubMed Horwitz MS, Bradley LM, Harbertson J, Krahl T, Lee J, Sarvetnick N (1998) Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med 4:781–785PubMed
17.
go back to reference Chehadeh W, Kerr-Conte J, Pattou F et al (2000) Persistent infection of human pancreatic islets by coxsackievirus B is associated with α interferon synthesis in beta cells. J Virol 74:10153–10164PubMedCentralPubMed Chehadeh W, Kerr-Conte J, Pattou F et al (2000) Persistent infection of human pancreatic islets by coxsackievirus B is associated with α interferon synthesis in beta cells. J Virol 74:10153–10164PubMedCentralPubMed
18.
go back to reference Krogvold L, Edwin B, Buanes T et al (2014) Detection of a low-grade enteroviral infection in the islets of Langerhans of living patients newly diagnosed with type 1 diabetes. Diabetes. doi:10.2337/db14-1370 PubMed Krogvold L, Edwin B, Buanes T et al (2014) Detection of a low-grade enteroviral infection in the islets of Langerhans of living patients newly diagnosed with type 1 diabetes. Diabetes. doi:10.​2337/​db14-1370 PubMed
19.
go back to reference Oikarinen M, Tauriainen S, Oikarinen S et al (2012) Type 1 diabetes is associated with enterovirus infection in gut mucosa. Diabetes 61:687–691PubMedCentralPubMed Oikarinen M, Tauriainen S, Oikarinen S et al (2012) Type 1 diabetes is associated with enterovirus infection in gut mucosa. Diabetes 61:687–691PubMedCentralPubMed
20.
go back to reference Mercalli A, Lampasona V, Klingel K et al (2012) No evidence of enteroviruses in the intestine of patients with type 1 diabetes. Diabetologia 55:2479–2488PubMed Mercalli A, Lampasona V, Klingel K et al (2012) No evidence of enteroviruses in the intestine of patients with type 1 diabetes. Diabetologia 55:2479–2488PubMed
21.
go back to reference Ohashi PS, Oehen S, Buerki K et al (1991) Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65:305–317PubMed Ohashi PS, Oehen S, Buerki K et al (1991) Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65:305–317PubMed
22.
go back to reference Honke N, Shaabani N, Zhang DE et al (2013) Usp18 driven enforced viral replication in dendritic cells contributes to break of immunological tolerance in autoimmune diabetes. PLoS Pathog 9:e1003650PubMedCentralPubMed Honke N, Shaabani N, Zhang DE et al (2013) Usp18 driven enforced viral replication in dendritic cells contributes to break of immunological tolerance in autoimmune diabetes. PLoS Pathog 9:e1003650PubMedCentralPubMed
23.
go back to reference Christen U, Edelmann KH, McGavern DB et al (2004) A viral epitope that mimics a self antigen can accelerate but not initiate autoimmune diabetes. J Clin Invest 114:1290–1298PubMedCentralPubMed Christen U, Edelmann KH, McGavern DB et al (2004) A viral epitope that mimics a self antigen can accelerate but not initiate autoimmune diabetes. J Clin Invest 114:1290–1298PubMedCentralPubMed
24.
go back to reference Sevilla N, Homann D, von Herrath M et al (2000) Virus-induced diabetes in a transgenic model: role of cross-reacting viruses and quantitation of effector T cells needed to cause disease. J Virol 74:3284–3292PubMedCentralPubMed Sevilla N, Homann D, von Herrath M et al (2000) Virus-induced diabetes in a transgenic model: role of cross-reacting viruses and quantitation of effector T cells needed to cause disease. J Virol 74:3284–3292PubMedCentralPubMed
25.
go back to reference Atkinson MA, Bowman MA, Campbell L, Darrow BL, Kaufman DL, Maclaren NK (1994) Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J Clin Invest 94:2125–2129PubMedCentralPubMed Atkinson MA, Bowman MA, Campbell L, Darrow BL, Kaufman DL, Maclaren NK (1994) Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J Clin Invest 94:2125–2129PubMedCentralPubMed
26.
go back to reference Honeyman MC, Stone NL, Harrison LC (1998) T cell epitopes in type 1 diabetes autoantigen tyrosine phosphatase IA-2: potential for mimicry with rotavirus and other environmental agents. Mol Med 4:231–239PubMedCentralPubMed Honeyman MC, Stone NL, Harrison LC (1998) T cell epitopes in type 1 diabetes autoantigen tyrosine phosphatase IA-2: potential for mimicry with rotavirus and other environmental agents. Mol Med 4:231–239PubMedCentralPubMed
27.
go back to reference Schloot NC, Willemen SJ, Duinkerken G, Drijfhout JW, de Vries RR, Roep BO (2001) Molecular mimicry in type 1 diabetes mellitus revisited: T cell clones to GAD65 peptides with sequence homology to Coxsackie or proinsulin peptides do not crossreact with homologous counterpart. Hum Immunol 62:299–309PubMed Schloot NC, Willemen SJ, Duinkerken G, Drijfhout JW, de Vries RR, Roep BO (2001) Molecular mimicry in type 1 diabetes mellitus revisited: T cell clones to GAD65 peptides with sequence homology to Coxsackie or proinsulin peptides do not crossreact with homologous counterpart. Hum Immunol 62:299–309PubMed
28.
go back to reference Honeyman MC, Stone NL, Falk BA, Nepom G, Harrison LC (2010) Evidence for molecular mimicry between human T cell epitopes in rotavirus and pancreatic islet autoantigens. J Immunol 184:2204–2210PubMed Honeyman MC, Stone NL, Falk BA, Nepom G, Harrison LC (2010) Evidence for molecular mimicry between human T cell epitopes in rotavirus and pancreatic islet autoantigens. J Immunol 184:2204–2210PubMed
29.
go back to reference Pane JA, Webster NL, Zufferey C, Coulson BS (2014) Rotavirus acceleration of murine type 1 diabetes is associated with increased MHC class I-restricted antigen presentation by B cells and elevated proinflammatory cytokine expression by T cells. Virus Res 179:73–84PubMed Pane JA, Webster NL, Zufferey C, Coulson BS (2014) Rotavirus acceleration of murine type 1 diabetes is associated with increased MHC class I-restricted antigen presentation by B cells and elevated proinflammatory cytokine expression by T cells. Virus Res 179:73–84PubMed
30.
go back to reference Pane JA, Webster NL, Coulson BS (2014) Rotavirus activates lymphocytes from non-obese diabetic mice by triggering toll-like receptor 7 signaling and interferon production in plasmacytoid dendritic cells. PLoS Pathog 10:e1003998PubMedCentralPubMed Pane JA, Webster NL, Coulson BS (2014) Rotavirus activates lymphocytes from non-obese diabetic mice by triggering toll-like receptor 7 signaling and interferon production in plasmacytoid dendritic cells. PLoS Pathog 10:e1003998PubMedCentralPubMed
31.
go back to reference Phillips JM, Parish NM, Bland C, Sawyer Y, de la Pena H, Cooke A (2009) Type 1 diabetes development requires both CD4+ and CD8+ T cells and can be reversed by non-depleting antibodies targeting both T cell populations. Rev Diabet Stud 6:97–103PubMedCentralPubMed Phillips JM, Parish NM, Bland C, Sawyer Y, de la Pena H, Cooke A (2009) Type 1 diabetes development requires both CD4+ and CD8+ T cells and can be reversed by non-depleting antibodies targeting both T cell populations. Rev Diabet Stud 6:97–103PubMedCentralPubMed
32.
go back to reference Trudeau JD, Kelly-Smith C, Verchere CB et al (2003) Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood. J Clin Invest 111:217–223PubMedCentralPubMed Trudeau JD, Kelly-Smith C, Verchere CB et al (2003) Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood. J Clin Invest 111:217–223PubMedCentralPubMed
33.
go back to reference Gagnerault MC, Luan JJ, Lotton C, Lepault F (2002) Pancreatic lymph nodes are required for priming of beta cell reactive T cells in NOD mice. J Exp Med 196:369–377PubMedCentralPubMed Gagnerault MC, Luan JJ, Lotton C, Lepault F (2002) Pancreatic lymph nodes are required for priming of beta cell reactive T cells in NOD mice. J Exp Med 196:369–377PubMedCentralPubMed
34.
go back to reference Coppieters KT, Dotta F, Amirian N et al (2012) Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med 209:51–60PubMedCentralPubMed Coppieters KT, Dotta F, Amirian N et al (2012) Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med 209:51–60PubMedCentralPubMed
35.
go back to reference Kent SC, Chen Y, Bregoli L et al (2005) Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature 435:224–228PubMed Kent SC, Chen Y, Bregoli L et al (2005) Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature 435:224–228PubMed
36.
go back to reference Drescher KM, Kono K, Bopegamage S, Carson SD, Tracy S (2004) Coxsackievirus B3 infection and type 1 diabetes development in NOD mice: insulitis determines susceptibility of pancreatic islets to virus infection. Virology 329:381–394PubMed Drescher KM, Kono K, Bopegamage S, Carson SD, Tracy S (2004) Coxsackievirus B3 infection and type 1 diabetes development in NOD mice: insulitis determines susceptibility of pancreatic islets to virus infection. Virology 329:381–394PubMed
37.
go back to reference Turley S, Poirot L, Hattori M, Benoist C, Mathis D (2003) Physiological beta cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J Exp Med 198:1527–1537PubMedCentralPubMed Turley S, Poirot L, Hattori M, Benoist C, Mathis D (2003) Physiological beta cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J Exp Med 198:1527–1537PubMedCentralPubMed
38.
go back to reference Diana J, Simoni Y, Furio L et al (2013) Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat Med 19:65–73PubMed Diana J, Simoni Y, Furio L et al (2013) Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat Med 19:65–73PubMed
39.
go back to reference Van Belle TL, Juntti T, Liao J, von Herrath MG (2010) Pre-existing autoimmunity determines type 1 diabetes outcome after Flt3-ligand treatment. J Autoimmun 34:445–452PubMedCentralPubMed Van Belle TL, Juntti T, Liao J, von Herrath MG (2010) Pre-existing autoimmunity determines type 1 diabetes outcome after Flt3-ligand treatment. J Autoimmun 34:445–452PubMedCentralPubMed
40.
go back to reference Hamza T, Barnett JB, Li B (2010) Interleukin 12 a key immunoregulatory cytokine in infection applications. Int J Mol Sci 11:789–806PubMedCentralPubMed Hamza T, Barnett JB, Li B (2010) Interleukin 12 a key immunoregulatory cytokine in infection applications. Int J Mol Sci 11:789–806PubMedCentralPubMed
41.
go back to reference Stetson DB, Medzhitov R (2006) Type I interferons in host defense. Immunity 25:373–381PubMed Stetson DB, Medzhitov R (2006) Type I interferons in host defense. Immunity 25:373–381PubMed
42.
go back to reference Saxena V, Ondr JK, Magnusen AF, Munn DH, Katz JD (2007) The countervailing actions of myeloid and plasmacytoid dendritic cells control autoimmune diabetes in the nonobese diabetic mouse. J Immunol 179:5041–5053PubMed Saxena V, Ondr JK, Magnusen AF, Munn DH, Katz JD (2007) The countervailing actions of myeloid and plasmacytoid dendritic cells control autoimmune diabetes in the nonobese diabetic mouse. J Immunol 179:5041–5053PubMed
43.
go back to reference O’Keeffe M, Brodnicki TC, Fancke B et al (2005) Fms-like tyrosine kinase 3 ligand administration overcomes a genetically determined dendritic cell deficiency in NOD mice and protects against diabetes development. Int Immunol 17:307–314PubMed O’Keeffe M, Brodnicki TC, Fancke B et al (2005) Fms-like tyrosine kinase 3 ligand administration overcomes a genetically determined dendritic cell deficiency in NOD mice and protects against diabetes development. Int Immunol 17:307–314PubMed
44.
go back to reference Poligone B, Weaver DJ Jr, Sen P, Baldwin AS Jr, Tisch R (2002) Elevated NF-κB activation in nonobese diabetic mouse dendritic cells results in enhanced APC function. J Immunol 168:188–196PubMed Poligone B, Weaver DJ Jr, Sen P, Baldwin AS Jr, Tisch R (2002) Elevated NF-κB activation in nonobese diabetic mouse dendritic cells results in enhanced APC function. J Immunol 168:188–196PubMed
45.
go back to reference Trembleau S, Penna G, Bosi E, Mortara A, Gately MK, Adorini L (1995) Interleukin 12 administration induces T helper type 1 cells and accelerates autoimmune diabetes in NOD mice. J Exp Med 181:817–821PubMed Trembleau S, Penna G, Bosi E, Mortara A, Gately MK, Adorini L (1995) Interleukin 12 administration induces T helper type 1 cells and accelerates autoimmune diabetes in NOD mice. J Exp Med 181:817–821PubMed
46.
go back to reference Trembleau S, Penna G, Gregori S et al (1999) Pancreas-infiltrating Th1 cells and diabetes develop in IL-12-deficient nonobese diabetic mice. J Immunol 163:2960–2968PubMed Trembleau S, Penna G, Gregori S et al (1999) Pancreas-infiltrating Th1 cells and diabetes develop in IL-12-deficient nonobese diabetic mice. J Immunol 163:2960–2968PubMed
47.
go back to reference Allen JS, Pang K, Skowera A et al (2009) Plasmacytoid dendritic cells are proportionally expanded at diagnosis of type 1 diabetes and enhance islet autoantigen presentation to T cells through immune complex capture. Diabetes 58:138–145PubMedCentralPubMed Allen JS, Pang K, Skowera A et al (2009) Plasmacytoid dendritic cells are proportionally expanded at diagnosis of type 1 diabetes and enhance islet autoantigen presentation to T cells through immune complex capture. Diabetes 58:138–145PubMedCentralPubMed
48.
go back to reference Xia CQ, Peng R, Chernatynskaya AV et al (2014) Increased IFN-α-producing plasmacytoid dendritic cells (pDCs) in human Th1-mediated type 1 diabetes: pDCs augment Th1 responses through IFN-α production. J Immunol 193:1024–1034PubMed Xia CQ, Peng R, Chernatynskaya AV et al (2014) Increased IFN-α-producing plasmacytoid dendritic cells (pDCs) in human Th1-mediated type 1 diabetes: pDCs augment Th1 responses through IFN-α production. J Immunol 193:1024–1034PubMed
49.
go back to reference Morahan G, Huang D, Ymer SI et al (2001) Linkage disequilibrium of a type 1 diabetes susceptibility locus with a regulatory IL12B allele. Nat Genet 27:218–221PubMed Morahan G, Huang D, Ymer SI et al (2001) Linkage disequilibrium of a type 1 diabetes susceptibility locus with a regulatory IL12B allele. Nat Genet 27:218–221PubMed
50.
go back to reference Li Q, Xu B, Michie SA, Rubins KH, Schreriber RD, McDevitt HO (2008) Interferon-α initiates type 1 diabetes in nonobese diabetic mice. Proc Natl Acad Sci U S A 105:12439–12444PubMedCentralPubMed Li Q, Xu B, Michie SA, Rubins KH, Schreriber RD, McDevitt HO (2008) Interferon-α initiates type 1 diabetes in nonobese diabetic mice. Proc Natl Acad Sci U S A 105:12439–12444PubMedCentralPubMed
51.
go back to reference Quah HS, Miranda-Hernandez S, Khoo A et al (2014) Deficiency in type I interferon signaling prevents the early interferon-induced gene signature in pancreatic islets but not type 1 diabetes in NOD mice. Diabetes 63:1032–1040PubMed Quah HS, Miranda-Hernandez S, Khoo A et al (2014) Deficiency in type I interferon signaling prevents the early interferon-induced gene signature in pancreatic islets but not type 1 diabetes in NOD mice. Diabetes 63:1032–1040PubMed
52.
go back to reference Li Q, McDevitt HO (2011) The role of interferon α in initiation of type I diabetes in the NOD mouse. Clin Immunol 140:3–7PubMed Li Q, McDevitt HO (2011) The role of interferon α in initiation of type I diabetes in the NOD mouse. Clin Immunol 140:3–7PubMed
53.
go back to reference Welzen-Coppens JM, van Helden-Meeuwsen CG, Leenen PJ, Drexhage HA, Versnel MA (2013) The kinetics of plasmacytoid dendritic cell accumulation in the pancreas of the NOD mouse during the early phases of insulitis. PLoS One 8:e55071PubMedCentralPubMed Welzen-Coppens JM, van Helden-Meeuwsen CG, Leenen PJ, Drexhage HA, Versnel MA (2013) The kinetics of plasmacytoid dendritic cell accumulation in the pancreas of the NOD mouse during the early phases of insulitis. PLoS One 8:e55071PubMedCentralPubMed
54.
go back to reference Chen X, Makala LH, Jin Y et al (2008) Type 1 diabetes patients have significantly lower frequency of plasmacytoid dendritic cells in the peripheral blood. Clin Immunol 129:413–418PubMedCentralPubMed Chen X, Makala LH, Jin Y et al (2008) Type 1 diabetes patients have significantly lower frequency of plasmacytoid dendritic cells in the peripheral blood. Clin Immunol 129:413–418PubMedCentralPubMed
55.
go back to reference Vuckovic S, Withers G, Harris M et al (2007) Decreased blood dendritic cell counts in type 1 diabetic children. Clin Immunol 123:281–288PubMed Vuckovic S, Withers G, Harris M et al (2007) Decreased blood dendritic cell counts in type 1 diabetic children. Clin Immunol 123:281–288PubMed
56.
go back to reference Ferreira RC, Guo H, Coulson RM et al (2014) A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes 63:2538–2550PubMedCentralPubMed Ferreira RC, Guo H, Coulson RM et al (2014) A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes 63:2538–2550PubMedCentralPubMed
57.
go back to reference Kallionpaa H, Elo LL, Laajala E et al (2014) Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility. Diabetes 63:2402–2414PubMed Kallionpaa H, Elo LL, Laajala E et al (2014) Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility. Diabetes 63:2402–2414PubMed
58.
go back to reference Zhao Y, Krishnamurthy B, Mollah ZU, Kay TW, Thomas HE (2011) NF-κB in type 1 diabetes. Inflamm Allergy Drug Targets 10:208–217PubMed Zhao Y, Krishnamurthy B, Mollah ZU, Kay TW, Thomas HE (2011) NF-κB in type 1 diabetes. Inflamm Allergy Drug Targets 10:208–217PubMed
59.
go back to reference Zipris D (2010) Toll-like receptors and type 1 diabetes. Adv Exp Med Biol 654:585–610PubMed Zipris D (2010) Toll-like receptors and type 1 diabetes. Adv Exp Med Biol 654:585–610PubMed
60.
go back to reference Devendra D, Eisenbarth GS (2004) Interferon α—a potential link in the pathogenesis of viral-induced type 1 diabetes and autoimmunity. Clin Immunol 111:225–233PubMed Devendra D, Eisenbarth GS (2004) Interferon α—a potential link in the pathogenesis of viral-induced type 1 diabetes and autoimmunity. Clin Immunol 111:225–233PubMed
61.
go back to reference Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511PubMed Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511PubMed
62.
go back to reference Zhang Y, Lee AS, Shameli A et al (2010) TLR9 blockade inhibits activation of diabetogenic CD8+ T cells and delays autoimmune diabetes. J Immunol 184:5645–5653PubMed Zhang Y, Lee AS, Shameli A et al (2010) TLR9 blockade inhibits activation of diabetogenic CD8+ T cells and delays autoimmune diabetes. J Immunol 184:5645–5653PubMed
63.
go back to reference Lee AS, Ghoreishi M, Cheng WK, Chang TY, Zhang YQ, Dutz JP (2011) Toll-like receptor 7 stimulation promotes autoimmune diabetes in the NOD mouse. Diabetologia 54:1407–1416PubMed Lee AS, Ghoreishi M, Cheng WK, Chang TY, Zhang YQ, Dutz JP (2011) Toll-like receptor 7 stimulation promotes autoimmune diabetes in the NOD mouse. Diabetologia 54:1407–1416PubMed
64.
go back to reference Trejo-de la OA, Hernandez-Sancen P, Maldonado-Bernal C (2014) Relevance of single-nucleotide polymorphisms in human TLR genes to infectious and inflammatory diseases and cancer. Genes Immun 15:199–209 Trejo-de la OA, Hernandez-Sancen P, Maldonado-Bernal C (2014) Relevance of single-nucleotide polymorphisms in human TLR genes to infectious and inflammatory diseases and cancer. Genes Immun 15:199–209
65.
go back to reference Moriyama H, Wen L, Abiru N et al (2002) Induction and acceleration of insulitis/diabetes in mice with a viral mimic (polyinosinic-polycytidylic acid) and an insulin self-peptide. Proc Natl Acad Sci U S A 99:5539–5544PubMedCentralPubMed Moriyama H, Wen L, Abiru N et al (2002) Induction and acceleration of insulitis/diabetes in mice with a viral mimic (polyinosinic-polycytidylic acid) and an insulin self-peptide. Proc Natl Acad Sci U S A 99:5539–5544PubMedCentralPubMed
66.
go back to reference Peng RH, Paek E, Xia CQ, Tennyson N, Clare-Salzler MJ (2006) Heightened interferon-α/β response causes myeloid cell dysfunction and promotes T1D pathogenesis in NOD mice. Ann N Y Acad Sci 1079:99–102PubMed Peng RH, Paek E, Xia CQ, Tennyson N, Clare-Salzler MJ (2006) Heightened interferon-α/β response causes myeloid cell dysfunction and promotes T1D pathogenesis in NOD mice. Ann N Y Acad Sci 1079:99–102PubMed
67.
go back to reference Hultcrantz M, Huhn MH, Wolf M et al (2007) Interferons induce an antiviral state in human pancreatic islet cells. Virology 367:92–101PubMed Hultcrantz M, Huhn MH, Wolf M et al (2007) Interferons induce an antiviral state in human pancreatic islet cells. Virology 367:92–101PubMed
68.
go back to reference Nejentsev S, Walker N, Riches D, Egholm M, Todd JA (2009) Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324:387–389PubMedCentralPubMed Nejentsev S, Walker N, Riches D, Egholm M, Todd JA (2009) Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324:387–389PubMedCentralPubMed
69.
go back to reference Smyth DJ, Cooper JD, Bailey R et al (2006) A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet 38:617–619PubMed Smyth DJ, Cooper JD, Bailey R et al (2006) A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet 38:617–619PubMed
70.
go back to reference Liu S, Wang H, Jin Y et al (2009) IFIH1 polymorphisms are significantly associated with type 1 diabetes and IFIH1 gene expression in peripheral blood mononuclear cells. Hum Mol Genet 18:358–365PubMedCentralPubMed Liu S, Wang H, Jin Y et al (2009) IFIH1 polymorphisms are significantly associated with type 1 diabetes and IFIH1 gene expression in peripheral blood mononuclear cells. Hum Mol Genet 18:358–365PubMedCentralPubMed
71.
go back to reference Hu CY, Rodriguez-Pinto D, Du W et al (2007) Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. J Clin Invest 117:3857–3867PubMedCentralPubMed Hu CY, Rodriguez-Pinto D, Du W et al (2007) Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. J Clin Invest 117:3857–3867PubMedCentralPubMed
72.
go back to reference Katz JD, Benoist C, Mathis D (1995) T helper cell subsets in insulin-dependent diabetes. Science 268:1185–1188PubMed Katz JD, Benoist C, Mathis D (1995) T helper cell subsets in insulin-dependent diabetes. Science 268:1185–1188PubMed
73.
go back to reference Jaakkola I, Jalkanen S, Hanninen A (2003) Diabetogenic T cells are primed both in pancreatic and gut-associated lymph nodes in NOD mice. Eur J Immunol 33:3255–3264PubMed Jaakkola I, Jalkanen S, Hanninen A (2003) Diabetogenic T cells are primed both in pancreatic and gut-associated lymph nodes in NOD mice. Eur J Immunol 33:3255–3264PubMed
74.
go back to reference Marino E, Batten M, Groom J et al (2008) Marginal-zone B cells of nonobese diabetic mice expand with diabetes onset, invade the pancreatic lymph nodes, and present autoantigen to diabetogenic T cells. Diabetes 57:395–404PubMed Marino E, Batten M, Groom J et al (2008) Marginal-zone B cells of nonobese diabetic mice expand with diabetes onset, invade the pancreatic lymph nodes, and present autoantigen to diabetogenic T cells. Diabetes 57:395–404PubMed
75.
go back to reference Noorchashm H, Lieu YK, Noorchashm N et al (1999) I-Ag7-mediated antigen presentation by B lymphocytes is critical in overcoming a checkpoint in T cell tolerance to islet beta cells of nonobese diabetic mice. J Immunol 163:743–750PubMed Noorchashm H, Lieu YK, Noorchashm N et al (1999) I-Ag7-mediated antigen presentation by B lymphocytes is critical in overcoming a checkpoint in T cell tolerance to islet beta cells of nonobese diabetic mice. J Immunol 163:743–750PubMed
76.
go back to reference Marino E, Tan B, Binge L, Mackay CR, Grey ST (2012) B cell cross-presentation of autologous antigen precipitates diabetes. Diabetes 61:2893–2905PubMedCentralPubMed Marino E, Tan B, Binge L, Mackay CR, Grey ST (2012) B cell cross-presentation of autologous antigen precipitates diabetes. Diabetes 61:2893–2905PubMedCentralPubMed
77.
go back to reference Arif S, Tree TI, Astill TP et al (2004) Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest 113:451–463PubMedCentralPubMed Arif S, Tree TI, Astill TP et al (2004) Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest 113:451–463PubMedCentralPubMed
78.
go back to reference Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H et al (2009) Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med 361:2143–2152PubMed Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H et al (2009) Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med 361:2143–2152PubMed
79.
go back to reference Lichtenegger FS, Mueller K, Otte B et al (2012) CD86 and IL-12p70 are key players for T helper 1 polarization and natural killer cell activation by Toll-like receptor-induced dendritic cells. PLoS One 7:e44266PubMedCentralPubMed Lichtenegger FS, Mueller K, Otte B et al (2012) CD86 and IL-12p70 are key players for T helper 1 polarization and natural killer cell activation by Toll-like receptor-induced dendritic cells. PLoS One 7:e44266PubMedCentralPubMed
80.
go back to reference Kiefer K, Oropallo MA, Cancro MP, Marshak-Rothstein A (2012) Role of type I interferons in the activation of autoreactive B cells. Immunol Cell Biol 90:498–504PubMedCentralPubMed Kiefer K, Oropallo MA, Cancro MP, Marshak-Rothstein A (2012) Role of type I interferons in the activation of autoreactive B cells. Immunol Cell Biol 90:498–504PubMedCentralPubMed
81.
go back to reference Gamble DR, Kinsley ML, FitzGerald MG, Bolton R, Taylor KW (1969) Viral antibodies in diabetes mellitus. BMJ 3:627–630PubMedCentralPubMed Gamble DR, Kinsley ML, FitzGerald MG, Bolton R, Taylor KW (1969) Viral antibodies in diabetes mellitus. BMJ 3:627–630PubMedCentralPubMed
82.
go back to reference Oikarinen S, Tauriainen S, Hober D et al (2014) Virus antibody survey in different European populations indicates risk association between coxsackievirus B1 and type 1 diabetes. Diabetes 63:655–662PubMed Oikarinen S, Tauriainen S, Hober D et al (2014) Virus antibody survey in different European populations indicates risk association between coxsackievirus B1 and type 1 diabetes. Diabetes 63:655–662PubMed
83.
go back to reference Laitinen OH, Honkanen H, Pakkanen O et al (2014) Coxsackievirus B1 is associated with induction of beta-cell autoimmunity that portends type 1 diabetes. Diabetes 63:446–455PubMed Laitinen OH, Honkanen H, Pakkanen O et al (2014) Coxsackievirus B1 is associated with induction of beta-cell autoimmunity that portends type 1 diabetes. Diabetes 63:446–455PubMed
84.
go back to reference Yoon JW, Onodera T, Jenson AB, Notkins AL (1978) Virus-induced diabetes mellitus. XI. Replication of coxsackie B3 virus in human pancreatic beta cell cultures. Diabetes 27:778–781PubMed Yoon JW, Onodera T, Jenson AB, Notkins AL (1978) Virus-induced diabetes mellitus. XI. Replication of coxsackie B3 virus in human pancreatic beta cell cultures. Diabetes 27:778–781PubMed
85.
go back to reference Nair S, Leung KC, Rawlinson WD, Naing Z, Craig ME (2010) Enterovirus infection induces cytokine and chemokine expression in insulin-producing cells. J Med Virol 82:1950–1957PubMed Nair S, Leung KC, Rawlinson WD, Naing Z, Craig ME (2010) Enterovirus infection induces cytokine and chemokine expression in insulin-producing cells. J Med Virol 82:1950–1957PubMed
86.
go back to reference Yoon JW, Onodera T, Notkins AL (1978) Virus-induced diabetes mellitus. XV. Beta cell damage and insulin-dependent hyperglycemia in mice infected with coxsackie virus B4. J Exp Med 148:1068–1080PubMed Yoon JW, Onodera T, Notkins AL (1978) Virus-induced diabetes mellitus. XV. Beta cell damage and insulin-dependent hyperglycemia in mice infected with coxsackie virus B4. J Exp Med 148:1068–1080PubMed
87.
go back to reference Chehadeh W, Weill J, Vantyghem MC et al (2000) Increased level of interferon-α in blood of patients with insulin-dependent diabetes mellitus: relationship with coxsackievirus B infection. J Infect Dis 181:1929–1939PubMed Chehadeh W, Weill J, Vantyghem MC et al (2000) Increased level of interferon-α in blood of patients with insulin-dependent diabetes mellitus: relationship with coxsackievirus B infection. J Infect Dis 181:1929–1939PubMed
88.
go back to reference Hamalainen S, Nurminen N, Ahlfors H et al (2014) Coxsackievirus B1 reveals strain specific differences in plasmacytoid dendritic cell mediated immunogenicity. J Med Virol 86:1412–1420PubMed Hamalainen S, Nurminen N, Ahlfors H et al (2014) Coxsackievirus B1 reveals strain specific differences in plasmacytoid dendritic cell mediated immunogenicity. J Med Virol 86:1412–1420PubMed
89.
go back to reference Wang JP, Cerny A, Asher DR, Kurt-Jones EA, Bronson RT, Finberg RW (2010) MDA5 and MAVS mediate type I interferon responses to coxsackie B virus. J Virol 84:254–260PubMedCentralPubMed Wang JP, Cerny A, Asher DR, Kurt-Jones EA, Bronson RT, Finberg RW (2010) MDA5 and MAVS mediate type I interferon responses to coxsackie B virus. J Virol 84:254–260PubMedCentralPubMed
90.
go back to reference Larsson PG, Lakshmikanth T, Laitinen OH et al (2015) A preclinical study on the efficacy and safety of a new vaccine against Coxsackievirus B1 reveals no risk for accelerated diabetes development in mouse models. Diabetologia 58:346–354PubMed Larsson PG, Lakshmikanth T, Laitinen OH et al (2015) A preclinical study on the efficacy and safety of a new vaccine against Coxsackievirus B1 reveals no risk for accelerated diabetes development in mouse models. Diabetologia 58:346–354PubMed
91.
go back to reference Serreze DV, Wasserfall C, Ottendorfer EW et al (2005) Diabetes acceleration or prevention by a coxsackievirus B4 infection: critical requirements for both interleukin-4 and gamma interferon. J Virol 79:1045–1052PubMedCentralPubMed Serreze DV, Wasserfall C, Ottendorfer EW et al (2005) Diabetes acceleration or prevention by a coxsackievirus B4 infection: critical requirements for both interleukin-4 and gamma interferon. J Virol 79:1045–1052PubMedCentralPubMed
92.
go back to reference Serreze DV, Ottendorfer EW, Ellis TM, Gauntt CJ, Atkinson MA (2000) Acceleration of type 1 diabetes by a coxsackievirus infection requires a preexisting critical mass of autoreactive T cells in pancreatic islets. Diabetes 49:708–711PubMed Serreze DV, Ottendorfer EW, Ellis TM, Gauntt CJ, Atkinson MA (2000) Acceleration of type 1 diabetes by a coxsackievirus infection requires a preexisting critical mass of autoreactive T cells in pancreatic islets. Diabetes 49:708–711PubMed
93.
go back to reference Horwitz MS, Ilic A, Fine C, Rodriguez E, Sarvetnick N (2002) Presented antigen from damaged pancreatic beta cells activates autoreactive T cells in virus-mediated autoimmune diabetes. J Clin Invest 109:79–87PubMedCentralPubMed Horwitz MS, Ilic A, Fine C, Rodriguez E, Sarvetnick N (2002) Presented antigen from damaged pancreatic beta cells activates autoreactive T cells in virus-mediated autoimmune diabetes. J Clin Invest 109:79–87PubMedCentralPubMed
94.
go back to reference Flodstrom M, Maday A, Balakrishna D, Cleary MM, Yoshimura A, Sarvetnick N (2002) Target cell defense prevents the development of diabetes after viral infection. Nat Immunol 3:373–382PubMed Flodstrom M, Maday A, Balakrishna D, Cleary MM, Yoshimura A, Sarvetnick N (2002) Target cell defense prevents the development of diabetes after viral infection. Nat Immunol 3:373–382PubMed
95.
go back to reference Chiappini E, Azzari C, Moriondo M, Galli L, de Martino M (2005) Viraemia is a common finding in immunocompetent children with rotavirus infection. J Med Virol 76:265–267PubMed Chiappini E, Azzari C, Moriondo M, Galli L, de Martino M (2005) Viraemia is a common finding in immunocompetent children with rotavirus infection. J Med Virol 76:265–267PubMed
96.
go back to reference Blutt SE, Kirkwood CD, Parreno V et al (2003) Rotavirus antigenaemia and viraemia: a common event? Lancet 362:1445–1449PubMed Blutt SE, Kirkwood CD, Parreno V et al (2003) Rotavirus antigenaemia and viraemia: a common event? Lancet 362:1445–1449PubMed
97.
go back to reference Lempainen J, Tauriainen S, Vaarala O et al (2012) Interaction of enterovirus infection and cow’s milk-based formula nutrition in type 1 diabetes-associated autoimmunity. Diabetes Metab Res Rev 28:177–185PubMed Lempainen J, Tauriainen S, Vaarala O et al (2012) Interaction of enterovirus infection and cow’s milk-based formula nutrition in type 1 diabetes-associated autoimmunity. Diabetes Metab Res Rev 28:177–185PubMed
98.
go back to reference Graham KL, O’Donnell JA, Tan Y et al (2007) Rotavirus infection of infant and young adult nonobese diabetic mice involves extraintestinal spread and delays diabetes onset. J Virol 81:6446–6458PubMedCentralPubMed Graham KL, O’Donnell JA, Tan Y et al (2007) Rotavirus infection of infant and young adult nonobese diabetic mice involves extraintestinal spread and delays diabetes onset. J Virol 81:6446–6458PubMedCentralPubMed
99.
go back to reference Pane JA, Webster NL, Graham KL, Holloway G, Zufferey C, Coulson BS (2013) Rotavirus acceleration of murine type 1 diabetes is associated with a T helper 1-dependent specific serum antibody response and virus effects in regional lymph nodes. Diabetologia 56:573–582PubMed Pane JA, Webster NL, Graham KL, Holloway G, Zufferey C, Coulson BS (2013) Rotavirus acceleration of murine type 1 diabetes is associated with a T helper 1-dependent specific serum antibody response and virus effects in regional lymph nodes. Diabetologia 56:573–582PubMed
100.
go back to reference Lappalainen S, Ylitalo S, Arola A, Halkosalo A, Rasanen S, Vesikari T (2012) Simultaneous presence of human herpesvirus 6 and adenovirus infections in intestinal intussusception of young children. Acta Paediatr 101:663–670PubMed Lappalainen S, Ylitalo S, Arola A, Halkosalo A, Rasanen S, Vesikari T (2012) Simultaneous presence of human herpesvirus 6 and adenovirus infections in intestinal intussusception of young children. Acta Paediatr 101:663–670PubMed
101.
go back to reference Holloway G, Coulson BS (2013) Innate cellular responses to rotavirus infection. J Gen Virol 94:1151–1160PubMed Holloway G, Coulson BS (2013) Innate cellular responses to rotavirus infection. J Gen Virol 94:1151–1160PubMed
102.
go back to reference Deal EM, Lahl K, Narvaez CF, Butcher EC, Greenberg HB (2013) Plasmacytoid dendritic cells promote rotavirus-induced human and murine B cell responses. J Clin Invest 123:2464–2474PubMedCentralPubMed Deal EM, Lahl K, Narvaez CF, Butcher EC, Greenberg HB (2013) Plasmacytoid dendritic cells promote rotavirus-induced human and murine B cell responses. J Clin Invest 123:2464–2474PubMedCentralPubMed
103.
go back to reference Capua I, Mercalli A, Pizzuto MS et al (2013) Influenza A viruses grow in human pancreatic cells and cause pancreatitis and diabetes in an animal model. J Virol 87:597–610PubMedCentralPubMed Capua I, Mercalli A, Pizzuto MS et al (2013) Influenza A viruses grow in human pancreatic cells and cause pancreatitis and diabetes in an animal model. J Virol 87:597–610PubMedCentralPubMed
104.
go back to reference Watanabe N (2011) Conversion to type 1 diabetes after H1N1 influenza infection: a case report. J Diabetes 3:103PubMed Watanabe N (2011) Conversion to type 1 diabetes after H1N1 influenza infection: a case report. J Diabetes 3:103PubMed
105.
go back to reference Nenna R, Papoff P, Moretti C et al (2011) Detection of respiratory viruses in the 2009 winter season in Rome: 2009 influenza A (H1N1) complications in children and concomitant type 1 diabetes onset. Int J Immunopathol Pharmacol 24:651–659PubMed Nenna R, Papoff P, Moretti C et al (2011) Detection of respiratory viruses in the 2009 winter season in Rome: 2009 influenza A (H1N1) complications in children and concomitant type 1 diabetes onset. Int J Immunopathol Pharmacol 24:651–659PubMed
106.
go back to reference Ramondetti F, Sacco S, Comelli M et al (2012) Type 1 diabetes and measles, mumps and rubella childhood infections within the Italian Insulin-dependent Diabetes Registry. Diabet Med 29:761–766PubMed Ramondetti F, Sacco S, Comelli M et al (2012) Type 1 diabetes and measles, mumps and rubella childhood infections within the Italian Insulin-dependent Diabetes Registry. Diabet Med 29:761–766PubMed
107.
go back to reference Prince GA, Jenson AB, Billups LC, Notkins AL (1978) Infection of human pancreatic beta cell cultures with mumps virus. Nature 271:158–161PubMed Prince GA, Jenson AB, Billups LC, Notkins AL (1978) Infection of human pancreatic beta cell cultures with mumps virus. Nature 271:158–161PubMed
108.
go back to reference Numazaki K, Goldman H, Wong I, Wainberg MA (1989) Infection of cultured human fetal pancreatic islet cells by rubella virus. Am J Clin Pathol 91:446–451PubMed Numazaki K, Goldman H, Wong I, Wainberg MA (1989) Infection of cultured human fetal pancreatic islet cells by rubella virus. Am J Clin Pathol 91:446–451PubMed
109.
go back to reference Karounos DG, Wolinsky JS, Thomas JW (1993) Monoclonal antibody to rubella virus capsid protein recognizes a beta-cell antigen. J Immunol 150:3080–3085PubMed Karounos DG, Wolinsky JS, Thomas JW (1993) Monoclonal antibody to rubella virus capsid protein recognizes a beta-cell antigen. J Immunol 150:3080–3085PubMed
110.
go back to reference Ou D, Mitchell LA, Metzger DL, Gillam S, Tingle AJ (2000) Cross-reactive rubella virus and glutamic acid decarboxylase (65 and 67) protein determinants recognised by T cells of patients with type I diabetes mellitus. Diabetologia 43:750–762PubMed Ou D, Mitchell LA, Metzger DL, Gillam S, Tingle AJ (2000) Cross-reactive rubella virus and glutamic acid decarboxylase (65 and 67) protein determinants recognised by T cells of patients with type I diabetes mellitus. Diabetologia 43:750–762PubMed
Metadata
Title
Lessons from the mouse: potential contribution of bystander lymphocyte activation by viruses to human type 1 diabetes
Authors
Jessica A. Pane
Barbara S. Coulson
Publication date
01-06-2015
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 6/2015
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-015-3562-3

Other articles of this Issue 6/2015

Diabetologia 6/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine